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1 Introduction

Today we are going to talk about primality testing algorithm by Agarwal, Kayal, and Saxena.
The problem is following.

Given an integer N , determine if N is a prime.

There is a sequence of results dealing with this problem.

• By definition, Primality is in coNP. Any nontrivial factorization of N is a short proof that the N
is not a prime.

• [Pratt ’75]1 Primality is in NP. Note that N is prime if and only if there is a ∈ (ZN )
×

such that
ordN (a) = N−1, i.e., aN−1 = 1 (mod N) but a(N−1)/q 6= 1 (mod N) for all prime q dividing N−1.
We recursively give certificates that each of q is prime, so the total length of proof is polylog(N).

• [Solovay-Strassen ’77]2[Miller-Rubin ’80]3 Primality is in coRP. This result observes that if N is
not a prime, then there is a and k such that a2k = 1 (mod N) but ak 6= ±1 (mod N). Moreover, if
we pick a at random, then with probability at least half there is k such that the test holds. Under
Generalized Riemann Hypothesis, the test can be made deterministic by checking polylog(N) many
a’s.

• [Goldwasser-Kilian ’86]4[Adleman-Huang ’87]5 Primality is in RP. They used elliptic curves to
prove the result.

• In 2003, Agarwal, Kayal, and Saxena proved that Primality is in P.

2 Another proof of Primality ∈ coRP

In 2000, Agrawal and Biswas proved that Primality is in coRP using different identity6. Observe that
if N is a prime, that (x + a)N = xN + aN = xN + a (mod N) for any a. We think it as a polynomial
identity. We claim that converse is also true.

Lemma 1 If N is a composite* (here we mean that N has two distinct prime factors) then (x+ a)N 6=
xN + a (mod N) for any a which is coprime to N .

Proof Let N = P iQ where P is a prime and P i doesn’t divide Q. Then, the coefficient of xN−P i

in
(x + a)N is aP

i(N
P i

)
. But aP

i

= a (mod P ) and
(
N
P i

)
6= 0 (mod P ), so the coefficient cannot be zero.

Now we want to check the polynomial identity (x+ a)N = xN + a (mod N). It is inefficient to write
down all the coefficients of (x+ a)N , so Agrawal and Biswas proposed a probabilistic way to reduce the
degree of polynomial.

1Pratt, V. (1975), ”Every Prime Has a Succinct Certificate.” SIAM J. Comput. 4, 214-220.
2Solovay, Robert M.; Strassen, Volker (1977). ”A fast Monte-Carlo test for primality”. SIAM J. Comput. 6 (1): 8485.
3Rabin, Michael O. (1980), ”Probabilistic algorithm for testing primality”, J. Number Theory 12 (1): 128138.
4S. Goldwasser, J. Kilian (1986), Almost all primes can be quickly certified, STOC 1986, 316-329
5Leonard M. Adleman, Ming-Deh A. Huang (1987), Recognizing Primes in Random Polynomial Time. STOC 1987:

462-469
6M. Agrawal, S. Biswas (2003), Primality and Identity Testing via Chinese Remaindering. J. ACM, 50(4):429443.
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• Pick irreducible Q(x) ∈ ZN [x] with polylog(N) degree at random.

• Accept if (x + a)N = xN + a (mod N,Q(x)).

We can compute (x + a)N (mod N,Q(x)) in polylog(N) time using repeated squaring.
If N is a prime, the test will always accept. If N is composite*, then we have (x + a)N 6= xN +

a (mod N). We claim that the number of (monic) irreducible polynomial Q of degree at most polylog(N)
such that (x + a)N = xN + a (mod N,Q(x)) is at most N . This is because if we have Q1, · · · , QN+1

satisfying the identity, then the identity holds for Q = Q1 · · ·QN+1 due to Chinese Remainder Theorem.
We have deg(Q) > N , so (x + a)N = xN + a (mod N). There are roughly ≈ 2polylog(N) irreducible Q, so
with high probability the test fails.

3 Agrawal-Kayal-Saxena Primality Testing

In 2003, Agrawal, Kayal, and Saxena proved that Primality is in P7. Instead of picking Q at random,
they used Q(x) = xr−1 for some nice prime r along with polylog(N) many choices of a’s. The algorithm
is as follows.

1. Choose a prime r such that ordr(N) ≥ polylog(N).

2. For a = 1, · · · , A, test if (x + a)N = xN + a (mod N, xr − 1).

3. Accept if all tests accepts.

Prime Number Theorem implies that for any integer k ≥ 1, there is a prime r = O(k2 logN) such
that ordr(N) ≥ k. So, for k = polylog(N) we can test all r ≤ polylog(N) to find a good one. We defer
the proof to next lecture.

It is always nice to work with a ring, so let R = Z[x]/(N, xr− 1). This ring has a lot of zero divisors,
hence is not a field. Fix a prime divisor p of N and let L = Z[x]/(p, xr− 1). Moreover, fix an irreducible
factor h(x) of xr − 1 in Zp[x]. Define K = Z[x]/(p, h(x)). Then K is a field. It is immediate to see that
if f = 0 in R, then f = 0 in L and K.

From now on, we fix N and r.

Definition 2 f(x) ∈ Z[x] is introverted with respect to m ∈ Z+ if f(xm) = f(x)m (mod p, xr − 1).

Note that x + a is introverted with respect to N . From this fact, we can generate lots of introverted
polynomials with respect to many numbers.

Proposition 3 If f and g are introverted with respect to m, then fg is also introverted with respect to
m. If f is introverted with respect to m1 and m2, then f is introverted with respect to m1m2.

Proof The first part is easy, as f(xm)g(xm) = f(x)mg(x)m = (fg)(x)m (mod p, xr−1). For the second
part, note that f(xm1) = f(x)m1 (mod p, xr − 1) implies that f(xm1m2) = f(xm2)m1 (mod p, xrm2 − 1).
Since xr − 1 divides xrm2 − 1, we have f(xm1m2) = f(xm2)m1 (mod p, xr − 1). Hence, f(xm1m2) =
f(x)m1m2 (mod p, xr − 1) as desired.

Due to the proposition, we know that {
∏

da≥0(x + a)da | da ≥ 0} are introverted with respect to

{N ipj | i, j ≥ 0}.

Proposition 4 If f(x) ∈ Z[x] is introverted for distinct m1 and m2 such that m1 = m2 (mod r). Then
f(x) as in K is a zero of zm1 − zm2 ∈ K[z].

7Agrawal, M., Kayal, N., Saxena, N. (2004), PRIMES is in P. Annals of Mathematics 160 (2): 781793
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Proof In L = Z[x]/(p, xr − 1), we have f(x)m1 − f(x)m2 = f(xm1) − f(xm2) (mod p, xr − 1). Since
xm1 = xm1 (mod r) and xm2 = xm2 (mod r) in L, we have f(x)m1 − f(x)m2 = 0 (mod p, xr − 1). This
identity holds in K, so f(x) ∈ K is a root of zm1 − zm2 .

Suppose that there are distinct m1,m2 ≤ B with m1 = m2 (mod r). If there were distinct
f1(x), · · · , fB+1(x) in K such that each fi is introverted with respect to m1 and m2, then zm1 − zm2 has
B + 1 distinct roots. But this is impossible because K is a field.

The main idea of AKS primality testing is as follows. We know that any polynomial in

F :=

∏
a≤A

(x + a)da | da ≥ 0


is introverted with respect to any number of the form N ipj . For {N ipj | 0 ≤ i, j ≤

√
r}, by Pigeonhole

there are distinct m1 and m2 in this set, satisfying m1 = m2 (mod r). Moreover, m1 and m2 are at
most N2

√
r. On the other hand, the number of polynomials in F is more than 2A. If they are distinct

in K, by Proposition 4 there are 2A roots for zm1 − zm2 , so 2A ≤ N2
√
r. But if we take large enough

A = Θ(polylog(n)), this cannot happen, contradicting that N is composite*.
Here we assumed that polynomials in F are distinct enough modulo p and h(x). This is indeed true

if we restrict polynomials having degree at most the degree of h(x). But this degree could be very small,
so we need to ensure that (1) p is large, and (2) every irreducible factor of xr − 1 in Zp[x] has degree
≈ polylog(N). We will give a detailed analysis in next lecture.
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