
6.S897 Algebra and Computation March 30, 2015

Lecture 14
Lecturer: Madhu Sudan Scribe: Govind Ramnarayan

1 Today: Arithmetic Circuits

• Models of computation

• Basic results

In order to begin to talk about arithmetic complexity, we’ll need to talk about some arithmetic problems.

2 Problems

We’ll be interested in two problems in particular:

1. Computing some function φ : Fn → Fm of the form φ = (φ1, . . . , φm), where each φi ∈ F[x1, . . . , xn] is
a polynomial.
Examples include computing the determinant or permanent of an n×n matrix, which are both functions
from Fn×n → F. This problem can also be phrased as the following: Given some x ∈ Fn, compute
φ(x).
Note that it’s not too easy to see how to express various natural problems, like gcd or division, as
problems of this form. This class is fairly restricted. The next class is a bit more general.

2. Solving Polynomial Relations:
φ : Fn × Fm → F
Given: x ∈ Fn find y s.t. φ(x, y) = 0.

• This class covers root finding.

• A complete problem for this class: Given p1, . . . , pm ∈ F[x1, . . . , xn], find a common zero.

3 Blum-Shub-Smale Model of Computation

FSMα1

αc
The Blum-Shub-Smale model of computation is quite similar to that of a Turing Machine. We have a

finite state machine that gets to use a tape, where the tape contents are elements of a field rather than bits.
The machine can add, subtract, multiply, and divide, and it can branch on 0 (i.e. it can make a query “Is
this 0?” and branch based on the result). Furthermore, the machine can have a constant number of internal
constants α1, . . . , αc. Note that for a finite field, this is comparable to a Turing Machine. However, for an

14-1

infinite field, this model may have more power.

• Example: Complex Numbers

– Model of computation has infinite precision.

– But at the end, can only check if something is 0 or not.

– A related aside: over the reals, we cannot even check inequalities in this model! Doing so could
give us a lot more power.

Given such a machine M , let L(M) denote the language of strings from our finite field F that are ac-
cepted. Formally:

L(M) ⊆ {Fn}n≥0
= {x|M accepts x}

What about L(M) ∩ {0, 1}∗? Can we say anything about that? In fact, we think that anything taking
poly-time in this model is contained in BPP.

Below we give a visualization of the kind of computation done by the BSS model. Arithmetic operations
do not branch, and we branch when we check if something is equal to 0.

φ1(x) = 0?

φ2(x′) = 0?

The depth of the computation tree above gives the number of operations you perform. Note that the fan
out can be exponential in the depth, as we could branch on every step. Furthermore, note that, if you chose
to compute a polynomial, what you get is a circuit computing that polynomial. Finally, note that each step
of computation can be represented by a low degree polynomial equation. For example, take the following gate:

z

∗

x y

14-2

This can be represented as the polynomial equation z − xy = 0. This will be notable in the later section
on Hilbert-Nullstellensatz.

3.1 P and NP in the BSS Model

• BSS-P consists of all boolean functions φn : F → {0, 1}, {φn}n≥0 that are computable in polynomial
time.

• BSS-NP consists of ψn such that ψn = {x|∃y s.t. φn,m(x, y) = 0}, where φn,m : Fn × Fm → {0, 1} is
computable in polynomial time in the BSS model.

4 Hilbert-Nulstellensatz (HN)

• Input: Polynomials p1, . . . , pm ∈ F[x1, . . . , xn]. Wlog we can take the pi’s to have degree 2.

• Accept if ∃α1, . . . , αn ∈ F such that pi(α1, . . . , αn) = 0 for all i.

We assert that this problem is NPF-complete. Furthermore, note that in a large field, the αi’s may be very
complicated to represent in bits! In fact, it is open if NPC ∩ {0, 1}∗ ⊆ NP , though this is expected to be
false. However, we do know that NPC∩{0, 1}∗ ⊆ PSPACE, and that, under the general Riemann hypothesis,
NPC ∩ {0, 1}∗ ⊆ AM (in other words, NPC has a 2-round interactive proof).

4.1 A Notable Tangent: Expressing Problems in HN Form

Consider the following problem: Given P1, . . . , Pn, Q1, . . . , Qn polynomials from Fm → F, does there exists
x ∈ Fm such that Pi(x) = 0, Qi(x) 6= 0?
Note that we want the condition Qi(x) 6= 0. However, we can still express this in HN form. Let Q =

∏
iQi.

We can now rephrase our problem as: does there exist x ∈ Fm and y ∈ F such that Pi(x) = 0 and
1− y ·Q(x) = 0?

5 Arithmetic Circuits and Valiant’s Classes

Here, we will just look at the circuits that compute polynomials. Arithmetic circuits are also known as
straight-line programs.

Definition 1 (Informal) An arithmetic circuit C over a field F consists of:

• Input Variables: x1, . . . , xn

• Gates: Gates of the form U ← V �W , where � ∈ {+,−, ∗,÷}, and V and W are outputs of previous
gates, and U is the output of this gate.

• Output Variables: Some outputs of gates y1, . . . , ym.

Definition 2 The class “Valiant P”, or VP, is as follows. VP = {φn : Fn → Fm(n) :deg(φn) ≤poly(n), φn
is computed by circuits of size poly(n)}

Some notes about VP:

• The restriction of low degree on the polynomial φn does not explicitly prevent the circuit that computes
it from computing high degree polynomials in intermediate steps, but it turns out we can assume we
have low degree polynomials in intermediate steps as well.

14-3

• This definition excludes the high degree polynomials we can compute in polynomial time, e.g. by
repeated squaring.

• Turns out we can exclude division!

– It’s easy to see that we need at most 1 division in such a computation – we can keep the numerator
and denominator separate, then divide at the end. Intuitively, the reason we can exclude division
completely is that we are okay with doing a number of calculations proportional to the degree of
the output, so we can substitute a division with the other operations using this computational
power.

• Depth does not help. Every function in VP can be computed with a log2 n depth circuit.

• Consider φi : Fn → Fm, such that φ1, . . . , φm ∈ F[x1, . . . , xn].
The complexity of computing these m polynomials is linearly related to the complexity of computing
φ̂ : Fn × Fm → F, where

φ̂(x1, . . . , xn, y1, . . . , ym) =
m∑
j=1

yjφj(x1, . . . , xn)

Now, we will define the equivalent of NP in the arithmetic complexity world. As intuition for this
definition, note that the natural analog to the existential quantifier in the arithmetic world is the sum
operation.

Definition 3 The class “Valiant NP”, or VNP, is as follows. VNP = {φn : Fn → Fs.t.∃ψn,m : Fn × Fm →
F ∈ V Ps.t.φn(x) =

∑
y∈{0,1}m

ψn,m(x, y)}.

This class is motivated by the Permanent function:

Perm(M) =
∑
σ∈Sn

n∏
i=1

Miσ(i)

A priori it is not clear that VNP includes the Permanent, as we are summing over n! terms, while the

definition of VNP only has us summing over 2n terms. However, note that
n∏
i=1

m∑
j=1

Mij includes all the terms

of the permanent, and more! This motivates a smaller, inclusion-exclusion type formula for the permanent.
Indeed, such a formula exists, with each of the terms in the sum being in VP, proving that the permanent
is in VNP:

Perm(M) =
∑
T⊆[n]

(−1)n−|T |
n∏
i=1

∑
j∈T

Mij

Next lecture, we will prove some of the claims listed in this class, and perhaps do some super-linear lower
bounds for arithmetic circuits.

14-4

