Lecture 15

Lecturer: Madhu Sudan

Today's Topic

- Homogenization
- Division Removal
- Partial Derivatives
- Width Reduction
- Depth Reduction
- Determinant

Homogenization (Low intermediate degree) Consider arithmetic circuits on field \mathbb{F} with operations $\{+, \cdot\}$. If we need an arithmetic circuit computing a low degree polynomial, does it helps to have intermediate computations of high degree?

Theorem 1. If an arithmetic circuit C compute a polynomial f that, $\operatorname{deg}(f) \leq d$, $\operatorname{size}(C) \leq s$, then there exists a circuit C^{\prime} computing f that all intermediate polynomial of C^{\prime} is of degree $\leq d$, and $\operatorname{size}\left(C^{\prime}\right)=O(s \cdot d)$, $\operatorname{depth}\left(C^{\prime}\right)=O(\log s) \cdot \operatorname{depth}(C)$.

To prove this theorem, we introduce definition of homogeneous i-th degree component of a polynomial. Define $\operatorname{Hom}_{i}(f)=$ homogeneous i-th degree part of f. Formally, for polynomial $f=\sum_{\mathbf{e}} c_{\mathbf{e}} x^{\mathbf{e}}$, define

$$
\operatorname{Hom}_{i}(f)=\sum_{\mathbf{e}: \sum_{j} e_{j}=i} c_{\mathbf{e}} x^{\mathbf{e}} .
$$

The Theorem 1 follows from the following lemma as $f=\sum_{i \leq d} \operatorname{Hom}_{i}(f)$.
Lemma 2 (Homogenization Lemma). If f has circuit C of size s, then $\left\{\operatorname{Hom}_{i}(f)\right\}_{i \leq d}$ can be computed by a circuit of size $O(s \cdot d)$, depth $O(\operatorname{depth}(C) \cdot \log s)$.

Proof The new circuit will compute the homogeneous i-th degree component of each intermediate polynomial in $C(i \leq d)$. By simple induction, if $f=f_{1}+f_{2}$,

$$
\operatorname{Hom}_{i}(f)=\operatorname{Hom}_{i}\left(f_{1}\right)+\operatorname{Hom}_{i}\left(f_{2}\right)
$$

if $f=f_{1} \cdot f_{2}$,

$$
\operatorname{Hom}_{i}(f)=\sum_{j \leq i} \operatorname{Hom}_{j}\left(f_{1}\right) \cdot \operatorname{Hom}_{i-j}\left(f_{2}\right)
$$

So for each intermediate polynomial, given the homogeneous components of lower layers, its homogeneous components can be computed in $O(d)$ space and $O(\log s)$ extra depth.

Division Removal Division gates is not necessary for an arithmetic circuit. If an arithmetic circuit computing a low degree polynomial with division gates, then we could remove the divsision without blowing up size or depth.

Lemma 3. If $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ cna be computed by a depth Δ, size s circuit over $\{+, \cdot, \div\}$ and $\operatorname{deg}(f)=d$. Then f can be computed by a circuit of depth $O(\log s) \cdot \Delta$ and size poly (s, d) over $\{+, \cdot\}$.

Proof Notice that each intermediate computation is a rational function $f_{i}=g_{i} / h_{i}$. Which $O(1)$ loss in size and depth, we can compute the numerator and denominator of each node seperately.

$$
\begin{aligned}
& f=f_{1}+f_{2} \Longrightarrow \frac{g}{h}=\frac{g_{1}}{h_{1}}+\frac{g_{2}}{h_{2}}=\frac{g_{1} h_{2}+g_{2} h_{1}}{h_{1} h_{2}}, \\
& f=f_{1} \cdot f_{2} \Longrightarrow \frac{g}{h}=\frac{g_{1}}{h_{1}} \frac{g_{2}}{h_{2}}=\frac{g_{1} g_{2}}{h_{1} h_{2}} .
\end{aligned}
$$

This would produce an arithmetic circuit computing g, h over $\{+, \cdot\}$. such that $f=\frac{g}{h}$
Assume w.l.o.g. $h(0)=1$

$$
\begin{gathered}
f=\frac{g}{h}=\frac{g}{1-(1-h)}=\sum_{i \geq 0} g(1-h)^{i} \\
\operatorname{Hom}_{j}(f)=\operatorname{Hom}_{j}\left(\sum_{i \geq 0} g(1-h)^{i}\right)=\operatorname{Hom}_{j}\left(\sum_{i \geq 0}^{j} g(1-h)^{i}\right)
\end{gathered}
$$

By Homogenization Lemma, the homogeneous components of g, h can be computed by a depth $O(\log s) \cdot \Delta$ size poly (s, d) circuit over $\{+, \cdot\}$.

Partial Derivatives [Baur Strassen]

Theorem 4. Given circuit computing $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of size s. There exists circuit of size $O(s)$ computing

$$
\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) .
$$

As a corollary if computing $\phi: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ need size s, then

$$
\hat{\phi}: \mathbb{F}^{n} \times \mathbb{F}^{m} \rightarrow \mathbb{F} \quad \hat{\phi}(\mathbf{x}, \mathbf{y})=\sum y_{i} \phi(\mathbf{x})
$$

needs a $\Omega(s)$ size circuit to compute.
Proof It's prove by induction. Instead of a naive approach computing the partial derivative of each gate wrt to input, we compute the partial derivative of output wrt to each gate.

A circuit can be formalized as a straight line program,

x_{1}	
\vdots	
x_{n}	
y_{1}	$\leftarrow x_{1}+x_{2}$
\vdots	
y_{s}	$\leftarrow y_{s-1} \cdot y_{s-2}$

A circuit can also be viewed a series of substitutions.

$$
\begin{aligned}
\Psi_{s}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{s}\right) & =y_{s} \\
\Psi_{s}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{s-1}\right) & =\left.\Psi_{s}\right|_{y_{s} \leftarrow y_{s-1} \cdot y_{s-2}} \\
\vdots & \\
\Psi_{0}\left(x_{1}, \ldots, x_{n}\right) & =\left.\Psi_{1}\right|_{y_{1} \leftarrow x_{1}+x_{2}}
\end{aligned}
$$

Use induction, Ψ_{s} is the base case, in which the partial derivatives of Ψ_{s} can be trivially computed in $O(1)$ size

$$
\frac{\partial \Psi_{s}}{\partial x_{j}}=0 \quad \frac{\partial \Psi_{s}}{\partial y_{j}}=\delta_{j s}
$$

Assume for some index i, we have a circuit computing

$$
\frac{\partial \Psi_{i}}{\partial x_{j}}, \frac{\partial \Psi_{i}}{\partial y_{j}} .
$$

Let $y_{i} \leftarrow y_{l}+y_{k}$ or $y_{i} \leftarrow y_{l} \cdot y_{k}$, we want to compute

$$
\frac{\partial \Psi_{i-1}}{\partial x_{j}}, \frac{\partial \Psi_{i-1}}{\partial y_{j}}
$$

As $\Psi_{i-1}\left(\ldots, y_{i-1}\right)=\Psi_{i}\left(\ldots, y_{i-1}, y_{i}\left(y_{l}, y_{k}\right)\right)$, the partial derivatives of $\left\{x_{j}\right\},\left\{y_{j}\right\}$ besides y_{l}, y_{k} are the same

$$
\begin{aligned}
\frac{\partial \Psi_{i-1}}{\partial x_{j}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{i-1}\right) & =\frac{\partial \Psi_{i}}{\partial x_{j}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{i-1}, y_{i}\left(y_{l}, y_{k}\right)\right) \\
\frac{\partial \Psi_{i-1}}{\partial y_{j}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{i-1}\right) & =\frac{\partial \Psi_{i}}{\partial y_{j}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{i-1}, y_{i}\left(y_{l}, y_{k}\right)\right) \quad j \notin\{l, k\}
\end{aligned}
$$

for y_{l}, y_{k}

$$
\begin{aligned}
& \frac{\partial \Psi_{i-1}}{\partial y_{l}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{i-1}\right) \\
= & \frac{\partial \Psi_{i}}{\partial y_{l}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{i-1}, y_{i}\left(y_{l}, y_{k}\right)\right)+\frac{\partial \Psi_{i}}{\partial y_{i}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{i-1}, y_{i}\left(y_{l}, y_{k}\right)\right) \frac{\partial y_{i}\left(y_{l}, y_{k}\right)}{\partial y_{l}} .
\end{aligned}
$$

If $y_{i} \leftarrow y_{l}+y_{k}, \frac{\partial y_{i}\left(y_{l}, y_{k}\right)}{\partial y_{l}}=1$; if $y_{i} \leftarrow y_{l} \cdot y_{k}, \frac{\partial y_{i}\left(y_{l}, y_{k}\right)}{\partial y_{l}}=y_{k}$.
The circuit computing the derivatives of Ψ_{i-1} has $O(1)$ more gates than the circuit computing derivatives of Ψ_{i}. Therefore, there exists circuit of size $O(s)$ computing the derivatives of $f=\Psi_{0}$.

Width Reduction When the memory is limited, consider a register machine model of computation. Memory is a set of registers $M=\left\{R_{1}, \ldots, R_{m}\right\}$. Unlikely previous model where all intermediate result is stored and can be later used, the machine could only remember m intermediate results. The arithmetic computation can be considered as a straight line program

$$
\begin{aligned}
& R_{1} \leftarrow X_{1}+\gamma X_{2} \\
& R_{2} \leftarrow \alpha R_{1}+\beta X_{5} \\
& R_{1} \leftarrow \ldots
\end{aligned}
$$

Theorem 5 (Barrington). If boolean ϕ has formula size simplies ϕ can be computed with $\log _{2} s$ bits of memory in size s^{2}.

Theorem 6 (Ben-Or-Clere). If polynomial f has formula size s, then f can be computed by 3-register machine in size s^{2}.

Proof If $f \leftarrow f_{1} \cdot f_{2}$, then $\operatorname{size}(f)=\operatorname{size}\left(f_{1}\right)+\operatorname{size}\left(f_{2}\right)$. First we should applies \ldots to balance the formula, so that the formula, viewed as a binary tree, is balanced. This would introduce an $O(1)$-factor on the size (NEED VERIFY).

In Ben-Or-Clere, we are looking for a computation sequence that

$$
\begin{aligned}
& R_{1} \rightarrow \\
& R_{2} \rightarrow \\
& R_{3} \rightarrow
\end{aligned} \quad f \quad \begin{aligned}
& \rightarrow R_{1} \\
& \rightarrow R_{2} \\
& \rightarrow R_{3}+f\left(x_{1}, \ldots, x_{n}\right) R_{2}
\end{aligned}
$$

The sequence takes the initial values stored in the registers as a part of the inputs. If the registers is initialized as $R_{2}=1, R_{3}=0$, then such sequence will compute $f(x)$.

Assuming we've found such computation sequence for f_{1} and f_{2}, to compute $f=f_{1}+f_{2}$,

$$
\begin{aligned}
& R_{1} \rightarrow \\
& R_{2} \rightarrow \\
& R_{3} \rightarrow
\end{aligned} f_{1} \begin{array}{ll}
\rightarrow R_{1} & \rightarrow \\
\rightarrow R_{2} & \rightarrow \\
\rightarrow R_{3}+f_{1}(x) R_{2} & \rightarrow
\end{array} \quad f_{2} \quad \begin{aligned}
& \rightarrow R_{1} \\
& \rightarrow R_{2} \\
& \rightarrow R_{3}+f_{1}(x) R_{2}+f_{2}(x) R_{2}
\end{aligned}
$$

to compute $f=f_{1} f_{2}$,

In either case, $\operatorname{size}_{3-\operatorname{Reg}}(f) \leq 2 \operatorname{size}_{3-\operatorname{Reg}}\left(f_{1}\right)+2 \operatorname{size}_{3-\operatorname{Reg}}\left(f_{2}\right)$.

Depth Reduction (If we have a depth reduction method,) consider boolean circuit and operations $\{+, \cdot\}$ (which is complete). Then we would have a general method to reduce depth of boolean circuit. (Which is unlikely.)

Theorem 7. f computed by size s circuit, $\operatorname{deg}(f)=d \Longrightarrow f$ can be computed in size poly (s, d) depth $(\log s)(\log d)$

Remark: Then $s=\operatorname{poly}(n)$, size s boolean circuit is $P /$ poly class, size poly (s, d) depth $(\log s)(\log d)$ boolean circuit is like $\mathcal{C} N C_{2}$ class. The reason why we didn't prove $P /$ poly $\subseteq \mathcal{C} N C_{2}$ is when we transfer a boolean circuit to a boolean formula, the degree of output may blow up.
Proof Let $f_{v}\left(x_{1}, \ldots, x_{n}\right)$ be function computed by gate $v, \partial_{v, w}\left(x_{1}, \ldots, x_{n}\right)$ be partial derivative of gate v wrt gate w.

Set w as a variable, gives $\tilde{f}_{v}\left(x_{1}, \ldots, x_{n}, w\right)$, then

$$
\partial_{v, w}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial \tilde{f}_{v}}{\partial w}\left(x_{1}, \ldots, x_{n}, f_{w}\right)
$$

In i-th stage, compute

- all f_{w} that $\operatorname{deg}\left(f_{w}\right) \in\left\{2^{i}, \ldots, 2^{i+1}-1\right\}$
- all $\partial_{v, w}$ that $\operatorname{deg}\left(\partial_{v, w}\right) \in\left\{2^{i}, \ldots, 2^{i+1}-1\right\}$
(from previous stage) in $\log s$ depth.

