
6.S897 Algebra and Computation April 1, 2015

Lecture 15
Lecturer: Madhu Sudan Scribe: Tianren Liu

Today’s Topic

• Homogenization

• Division Removal

• Partial Derivatives

• Width Reduction

• Depth Reduction

• Determinant

Homogenization (Low intermediate degree) Consider arithmetic circuits on field F with operations {+, ·}.
If we need an arithmetic circuit computing a low degree polynomial, does it helps to have intermediate
computations of high degree?

Theorem 1. If an arithmetic circuit C compute a polynomial f that, deg(f) ≤ d, size(C) ≤ s, then there
exists a circuit C ′ computing f that all intermediate polynomial of C ′ is of degree ≤ d, and size(C ′) = O(s·d),
depth(C ′) = O(log s) · depth(C).

To prove this theorem, we introduce definition of homogeneous i-th degree component of a polynomial.
Define Homi(f) = homogeneous i-th degree part of f . Formally, for polynomial f =

∑
e cex

e, define

Homi(f) =
∑

e:
∑

j ej=i

cex
e.

The Theorem 1 follows from the following lemma as f =
∑

i≤d Homi(f).

Lemma 2 (Homogenization Lemma). If f has circuit C of size s, then {Homi(f)}i≤d can be computed by
a circuit of size O(s · d), depth O(depth(C) · log s).

Proof The new circuit will compute the homogeneous i-th degree component of each intermediate poly-
nomial in C (i ≤ d). By simple induction, if f = f1 + f2,

Homi(f) = Homi(f1) + Homi(f2),

if f = f1 · f2,

Homi(f) =
∑
j≤i

Homj(f1) ·Homi−j(f2).

So for each intermediate polynomial, given the homogeneous components of lower layers, its homogeneous
components can be computed in O(d) space and O(log s) extra depth.

15-1

Division Removal Division gates is not necessary for an arithmetic circuit. If an arithmetic circuit
computing a low degree polynomial with division gates, then we could remove the divsision without blowing
up size or depth.

Lemma 3. If f ∈ F[x1, . . . , xn] cna be computed by a depth ∆, size s circuit over {+, ·,÷} and deg(f) = d.
Then f can be computed by a circuit of depth O(log s) ·∆ and size poly(s, d) over {+, ·}.

Proof Notice that each intermediate computation is a rational function fi = gi/hi. Which O(1) loss in
size and depth, we can compute the numerator and denominator of each node seperately.

f = f1 + f2 =⇒ g

h
=
g1
h1

+
g2
h2

=
g1h2 + g2h1

h1h2
,

f = f1 · f2 =⇒ g

h
=
g1
h1

g2
h2

=
g1g2
h1h2

.

This would produce an arithmetic circuit computing g, h over {+, ·}. such that f = g
h

Assume w.l.o.g. h(0) = 1

f =
g

h
=

g

1− (1− h)
=
∑
i≥0

g(1− h)i

Homj(f) = Homj

(∑
i≥0

g(1− h)i
)

= Homj

(j∑
i≥0

g(1− h)i
)

By Homogenization Lemma, the homogeneous components of g, h can be computed by a depth O(log s) ·∆
size poly(s, d) circuit over {+, ·}.

Partial Derivatives [Baur Strassen]

Theorem 4. Given circuit computing f(x1, . . . , xn) ∈ F[x1, . . . , xn] of size s. There exists circuit of size
O(s) computing (

∂f

∂x1
, . . . ,

∂f

∂xn

)
.

As a corollary if computing φ : Fn → Fm need size s, then

φ̂ : Fn × Fm → F φ̂(x,y) =
∑

yiφ(x)

needs a Ω(s) size circuit to compute.
Proof It’s prove by induction. Instead of a naive approach computing the partial derivative of each gate
wrt to input, we compute the partial derivative of output wrt to each gate.

A circuit can be formalized as a straight line program,

x1

...

xn

y1 ← x1 + x2

...

ys ← ys−1 · ys−2

15-2

A circuit can also be viewed a series of substitutions.

Ψs(x1, . . . , xn, y1, . . . , ys) = ys

Ψs(x1, . . . , xn, y1, . . . , ys−1) = Ψs|ys←ys−1·ys−2

...

Ψ0(x1, . . . , xn) = Ψ1|y1←x1+x2

Use induction, Ψs is the base case, in which the partial derivatives of Ψs can be trivially computed in
O(1) size

∂Ψs

∂xj
= 0

∂Ψs

∂yj
= δjs

Assume for some index i, we have a circuit computing

∂Ψi

∂xj
,
∂Ψi

∂yj
.

Let yi ← yl + yk or yi ← yl · yk, we want to compute

∂Ψi−1

∂xj
,
∂Ψi−1

∂yj

As Ψi−1(. . . , yi−1) = Ψi(. . . , yi−1, yi(yl, yk)), the partial derivatives of {xj}, {yj} besides yl, yk are the
same

∂Ψi−1

∂xj
(x1, . . . , xn, y1, . . . , yi−1) =

∂Ψi

∂xj
(x1, . . . , xn, y1, . . . , yi−1, yi(yl, yk))

∂Ψi−1

∂yj
(x1, . . . , xn, y1, . . . , yi−1) =

∂Ψi

∂yj
(x1, . . . , xn, y1, . . . , yi−1, yi(yl, yk)) j /∈ {l, k}

for yl, yk

∂Ψi−1

∂yl
(x1, . . . , xn, y1, . . . , yi−1)

=
∂Ψi

∂yl
(x1, . . . , xn, y1, . . . , yi−1, yi(yl, yk)) +

∂Ψi

∂yi
(x1, . . . , xn, y1, . . . , yi−1, yi(yl, yk))

∂yi(yl, yk)

∂yl
.

If yi ← yl + yk, ∂yi(yl,yk)
∂yl

= 1; if yi ← yl · yk, ∂yi(yl,yk)
∂yl

= yk.

The circuit computing the derivatives of Ψi−1 has O(1) more gates than the circuit computing derivatives
of Ψi. Therefore, there exists circuit of size O(s) computing the derivatives of f = Ψ0.

Width Reduction When the memory is limited, consider a register machine model of computation.
Memory is a set of registers M = {R1, . . . , Rm}. Unlikely previous model where all intermediate result is
stored and can be later used, the machine could only remember m intermediate results. The arithmetic
computation can be considered as a straight line program

R1 ← X1 + γX2

R2 ← αR1 + βX5

R1 ← . . .

...

15-3

Theorem 5 (Barrington). If boolean φ has formula size s implies φ can be computed with log2 s bits of
memory in size s2.

Theorem 6 (Ben-Or-Clere). If polynomial f has formula size s, then f can be computed by 3-register
machine in size s2.

Proof If f ← f1 · f2, then size(f) = size(f1) + size(f2). First we should applies ... to balance the formula,
so that the formula, viewed as a binary tree, is balanced. This would introduce an O(1)-factor on the size
(NEED VERIFY).

In Ben-Or-Clere, we are looking for a computation sequence that

R1

R2

R3

→
→
→

f

→
→
→

R1

R2

R3 + f(x1, . . . , xn)R2

The sequence takes the initial values stored in the registers as a part of the inputs. If the registers is initialized
as R2 = 1, R3 = 0, then such sequence will compute f(x).

Assuming we’ve found such computation sequence for f1 and f2, to compute f = f1 + f2,

R1

R2

R3

→
→
→

f1

→
→
→

R1

R2

R3 + f1(x)R2

→
→
→

f2

→
→
→

R1

R2

R3 + f1(x)R2 + f2(x)R2

,

to compute f = f1f2,

R1

R2

R3

→
→
→

f1

→
→
→

R1

R2

R3 + f1(x)R2

→
→
→

f2

→

→
→

R1 + f2(x)R3

+ f1(x)f2(x)R2

R2

R3 + f1(x)R2

→

→
→

−f1

→

→
→

R1 + f2(x)R3

+ f1(x)f2(x)R2

R2

R3

→

→
→

−f2

→

→
→

R1

+ f1(x)f2(x)R2

R2

R3

In either case, size3-Reg(f) ≤ 2 size3-Reg(f1) + 2 size3-Reg(f2).

Depth Reduction (If we have a depth reduction method,) consider boolean circuit and operations {+, ·}
(which is complete). Then we would have a general method to reduce depth of boolean circuit. (Which is
unlikely.)

Theorem 7. f computed by size s circuit, deg(f) = d =⇒ f can be computed in size poly(s, d) depth
(log s)(log d)

Remark: Then s = poly(n), size s boolean circuit is P/poly class, size poly(s, d) depth (log s)(log d)
boolean circuit is like CNC2 class. The reason why we didn’t prove P/poly ⊆ CNC2 is when we transfer a
boolean circuit to a boolean formula, the degree of output may blow up.
Proof Let fv(x1, . . . , xn) be function computed by gate v, ∂v,w(x1, . . . , xn) be partial derivative of gate v
wrt gate w.

Set w as a variable, gives f̃v(x1, . . . , xn, w), then

∂v,w(x1, . . . , xn) =
∂f̃v
∂w

(x1, . . . , xn, fw)

In i-th stage, compute

15-4

• all fw that deg(fw) ∈ {2i, . . . , 2i+1 − 1}

• all ∂v,w that deg(∂v,w) ∈ {2i, . . . , 2i+1 − 1}

(from previous stage) in log s depth.

15-5

