6.S897 Algebra and Computation

April 1, 2015

Lecture 15

Lecturer: Madhu Sudan Scribe: Tianren Liu

Today's Topic

- Homogenization
- Division Removal
- Partial Derivatives
- Width Reduction
- Depth Reduction
- Determinant

Homogenization (Low intermediate degree) Consider arithmetic circuits on field \mathbb{F} with operations $\{+,\cdot\}$. If we need an arithmetic circuit computing a low degree polynomial, does it helps to have intermediate computations of high degree?

Theorem 1. If an arithmetic circuit C compute a polynomial f that, $\deg(f) \leq d$, $\operatorname{size}(C) \leq s$, then there exists a circuit C' computing f that all intermediate polynomial of C' is of $\operatorname{degree} \leq d$, and $\operatorname{size}(C') = O(s \cdot d)$, $\operatorname{depth}(C') = O(\log s) \cdot \operatorname{depth}(C)$.

To prove this theorem, we introduce definition of homogeneous *i*-th degree component of a polynomial. Define $\operatorname{Hom}_i(f) = \operatorname{homogeneous} i$ -th degree part of f. Formally, for polynomial $f = \sum_{\mathbf{e}} c_{\mathbf{e}} x^{\mathbf{e}}$, define

$$\operatorname{Hom}_{i}(f) = \sum_{\mathbf{e}: \sum_{j} e_{j} = i} c_{\mathbf{e}} x^{\mathbf{e}}.$$

The Theorem 1 follows from the following lemma as $f = \sum_{i < d} \text{Hom}_i(f)$.

Lemma 2 (Homogenization Lemma). If f has circuit C of size s, then $\{\text{Hom}_i(f)\}_{i\leq d}$ can be computed by a circuit of size $O(s\cdot d)$, depth $O(\text{depth}(C)\cdot \log s)$.

Proof The new circuit will compute the homogeneous *i*-th degree component of each intermediate polynomial in C ($i \le d$). By simple induction, if $f = f_1 + f_2$,

$$\operatorname{Hom}_{i}(f) = \operatorname{Hom}_{i}(f_{1}) + \operatorname{Hom}_{i}(f_{2}),$$

if $f = f_1 \cdot f_2$,

$$\operatorname{Hom}_{i}(f) = \sum_{j \leq i} \operatorname{Hom}_{j}(f_{1}) \cdot \operatorname{Hom}_{i-j}(f_{2}).$$

So for each intermediate polynomial, given the homogeneous components of lower layers, its homogeneous components can be computed in O(d) space and $O(\log s)$ extra depth.

Division Removal Division gates is not necessary for an arithmetic circuit. If an arithmetic circuit computing a low degree polynomial with division gates, then we could remove the division without blowing up size or depth.

Lemma 3. If $f \in \mathbb{F}[x_1, \dots, x_n]$ can be computed by a depth Δ , size s circuit over $\{+, \cdot, \div\}$ and $\deg(f) = d$. Then f can be computed by a circuit of depth $O(\log s) \cdot \Delta$ and size $\operatorname{poly}(s, d)$ over $\{+, \cdot\}$.

Proof Notice that each intermediate computation is a rational function $f_i = g_i/h_i$. Which O(1) loss in size and depth, we can compute the numerator and denominator of each node separately.

$$\begin{split} f &= f_1 + f_2 \implies \frac{g}{h} = \frac{g_1}{h_1} + \frac{g_2}{h_2} = \frac{g_1 h_2 + g_2 h_1}{h_1 h_2}, \\ f &= f_1 \cdot f_2 \implies \frac{g}{h} = \frac{g_1}{h_1} \frac{g_2}{h_2} = \frac{g_1 g_2}{h_1 h_2}. \end{split}$$

This would produce an arithmetic circuit computing g, h over $\{+, \cdot\}$. such that $f = \frac{g}{h}$ Assume w.l.o.g. h(0) = 1

$$f = \frac{g}{h} = \frac{g}{1 - (1 - h)} = \sum_{i > 0} g(1 - h)^i$$

$$\operatorname{Hom}_{j}(f) = \operatorname{Hom}_{j}\left(\sum_{i>0} g(1-h)^{i}\right) = \operatorname{Hom}_{j}\left(\sum_{i>0}^{j} g(1-h)^{i}\right)$$

By Homogenization Lemma, the homogeneous components of g, h can be computed by a depth $O(\log s) \cdot \Delta$ size $\operatorname{poly}(s,d)$ circuit over $\{+,\cdot\}$.

Partial Derivatives [Baur Strassen]

Theorem 4. Given circuit computing $f(x_1, ..., x_n) \in \mathbb{F}[x_1, ..., x_n]$ of size s. There exists circuit of size O(s) computing

$$\left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right).$$

As a corollary if computing $\phi: \mathbb{F}^n \to \mathbb{F}^m$ need size s, then

$$\hat{\phi}: \mathbb{F}^n \times \mathbb{F}^m \to \mathbb{F} \qquad \hat{\phi}(\mathbf{x}, \mathbf{y}) = \sum y_i \phi(\mathbf{x})$$

needs a $\Omega(s)$ size circuit to compute.

Proof It's prove by induction. Instead of a naive approach computing the partial derivative of each gate wrt to input, we compute the partial derivative of output wrt to each gate.

A circuit can be formalized as a straight line program,

$$x_1$$

$$\vdots$$

$$x_n$$

$$y_1 \leftarrow x_1 + x_2$$

$$\vdots$$

$$y_s \leftarrow y_{s-1} \cdot y_{s-2}$$

A circuit can also be viewed a series of substitutions.

$$\Psi_{s}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{s}) = y_{s}$$

$$\Psi_{s}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{s-1}) = \Psi_{s}|_{y_{s} \leftarrow y_{s-1} \cdot y_{s-2}}$$

$$\vdots$$

$$\Psi_{0}(x_{1}, \dots, x_{n}) = \Psi_{1}|_{y_{1} \leftarrow x_{1} + x_{2}}$$

Use induction, Ψ_s is the base case, in which the partial derivatives of Ψ_s can be trivially computed in O(1) size

$$\frac{\partial \Psi_s}{\partial x_i} = 0 \qquad \frac{\partial \Psi_s}{\partial y_i} = \delta_{js}$$

Assume for some index i, we have a circuit computing

$$\frac{\partial \Psi_i}{\partial x_j}, \frac{\partial \Psi_i}{\partial y_j}.$$

Let $y_i \leftarrow y_l + y_k$ or $y_i \leftarrow y_l \cdot y_k$, we want to compute

$$\frac{\partial \Psi_{i-1}}{\partial x_j}, \frac{\partial \Psi_{i-1}}{\partial y_j}$$

As $\Psi_{i-1}(\ldots,y_{i-1})=\Psi_i(\ldots,y_{i-1},y_i(y_l,y_k))$, the partial derivatives of $\{x_j\},\{y_j\}$ besides y_l,y_k are the same

$$\frac{\partial \Psi_{i-1}}{\partial x_j}(x_1, \dots, x_n, y_1, \dots, y_{i-1}) = \frac{\partial \Psi_i}{\partial x_j}(x_1, \dots, x_n, y_1, \dots, y_{i-1}, y_i(y_l, y_k))$$

$$\frac{\partial \Psi_{i-1}}{\partial y_j}(x_1, \dots, x_n, y_1, \dots, y_{i-1}) = \frac{\partial \Psi_i}{\partial y_j}(x_1, \dots, x_n, y_1, \dots, y_{i-1}, y_i(y_l, y_k)) \qquad j \notin \{l, k\}$$

for y_l, y_k

$$\begin{split} &\frac{\partial \Psi_{i-1}}{\partial y_l}(x_1,\ldots,x_n,y_1,\ldots,y_{i-1})\\ &=\frac{\partial \Psi_i}{\partial y_l}(x_1,\ldots,x_n,y_1,\ldots,y_{i-1},y_i(y_l,y_k)) + \frac{\partial \Psi_i}{\partial y_i}(x_1,\ldots,x_n,y_1,\ldots,y_{i-1},y_i(y_l,y_k)) \frac{\partial y_i(y_l,y_k)}{\partial y_l}. \end{split}$$

If
$$y_i \leftarrow y_l + y_k$$
, $\frac{\partial y_i(y_l, y_k)}{\partial y_l} = 1$; if $y_i \leftarrow y_l \cdot y_k$, $\frac{\partial y_i(y_l, y_k)}{\partial y_l} = y_k$.

If $y_i \leftarrow y_l + y_k$, $\frac{\partial y_i(y_l, y_k)}{\partial y_l} = 1$; if $y_i \leftarrow y_l \cdot y_k$, $\frac{\partial y_i(y_l, y_k)}{\partial y_l} = y_k$. The circuit computing the derivatives of Ψ_{i-1} has O(1) more gates than the circuit computing derivatives of Ψ_i . Therefore, there exists circuit of size O(s) computing the derivatives of $f = \Psi_0$.

Width Reduction When the memory is limited, consider a register machine model of computation. Memory is a set of registers $M = \{R_1, \dots, R_m\}$. Unlikely previous model where all intermediate result is stored and can be later used, the machine could only remember m intermediate results. The arithmetic computation can be considered as a straight line program

$$R_1 \leftarrow X_1 + \gamma X_2$$

$$R_2 \leftarrow \alpha R_1 + \beta X_5$$

$$R_1 \leftarrow \dots$$

Theorem 5 (Barrington). If boolean ϕ has formula size s implies ϕ can be computed with $\log_2 s$ bits of memory in size s^2 .

Theorem 6 (Ben-Or-Clere). If polynomial f has formula size s, then f can be computed by 3-register machine in size s^2 .

Proof If $f \leftarrow f_1 \cdot f_2$, then $\operatorname{size}(f) = \operatorname{size}(f_1) + \operatorname{size}(f_2)$. First we should applies ... to balance the formula, so that the formula, viewed as a binary tree, is balanced. This would introduce an O(1)-factor on the size (NEED VERIFY).

In Ben-Or-Clere, we are looking for a computation sequence that

$$R_1 \rightarrow R_1$$
 $R_2 \rightarrow f$
 $R_3 \rightarrow R_3 \rightarrow R_3 + f(x_1, \dots, x_n)R_2$

The sequence takes the initial values stored in the registers as a part of the inputs. If the registers is initialized as $R_2 = 1$, $R_3 = 0$, then such sequence will compute f(x).

Assuming we've found such computation sequence for f_1 and f_2 , to compute $f = f_1 + f_2$,

to compute $f = f_1 f_2$,

$$R_1 \rightarrow R_2 \rightarrow f_1 \rightarrow R_3 \rightarrow f_1 \rightarrow R_3 + f_1(x)R_2 \rightarrow f_2 \rightarrow R_3 + f_1(x)R_2 \rightarrow f_1 \rightarrow R_1 + f_2(x)R_3 \rightarrow F_1 \rightarrow R_1 + f_2(x)R_3 \rightarrow F_1 \rightarrow R_1 + f_2(x)R_2 \rightarrow F_2 \rightarrow R_2 \rightarrow F_2 \rightarrow R_3 \rightarrow F_1(x)R_2 \rightarrow F_2 \rightarrow F_3 \rightarrow F_1(x)R_2 \rightarrow F_1(x)R_2 \rightarrow F_2 \rightarrow F_2 \rightarrow F_3 \rightarrow F_1(x)R_2 \rightarrow F_3 \rightarrow F_1(x)R_3 \rightarrow F_1(x)R_2 \rightarrow F_1(x)R_2 \rightarrow F_2 \rightarrow F_3 \rightarrow F_1(x)R_2 \rightarrow F_1(x)R_2 \rightarrow F_2 \rightarrow F_3 \rightarrow F_3 \rightarrow F_1(x)R_2 \rightarrow F_3 \rightarrow F_3 \rightarrow F_1(x)R_2 \rightarrow F_3 \rightarrow F_3$$

In either case, $\operatorname{size}_{3-\operatorname{Reg}}(f) \leq 2\operatorname{size}_{3-\operatorname{Reg}}(f_1) + 2\operatorname{size}_{3-\operatorname{Reg}}(f_2)$.

Depth Reduction (If we have a depth reduction method,) consider boolean circuit and operations $\{+,\cdot\}$ (which is complete). Then we would have a general method to reduce depth of boolean circuit. (Which is unlikely.)

Theorem 7. f computed by size s circuit, $\deg(f) = d \implies f$ can be computed in size $\operatorname{poly}(s,d)$ depth $(\log s)(\log d)$

Remark: Then s = poly(n), size s boolean circuit is $P/_{\text{poly}}$ class, size poly(s,d) depth $(\log s)(\log d)$ boolean circuit is like $\mathcal{C}NC_2$ class. The reason why we didn't prove $P/_{\text{poly}} \subseteq \mathcal{C}NC_2$ is when we transfer a boolean circuit to a boolean formula, the degree of output may blow up.

Proof Let $f_v(x_1, ..., x_n)$ be function computed by gate v, $\partial_{v,w}(x_1, ..., x_n)$ be partial derivative of gate v wrt gate w.

Set w as a variable, gives $\tilde{f}_v(x_1,\ldots,x_n,w)$, then

$$\partial_{v,w}(x_1,\ldots,x_n) = \frac{\partial \tilde{f}_v}{\partial w}(x_1,\ldots,x_n,f_w)$$

In i-th stage, compute

- all f_w that $\deg(f_w) \in \{2^i, \dots, 2^{i+1} 1\}$
- all $\partial_{v,w}$ that $\deg(\partial_{v,w}) \in \{2^i, \dots, 2^{i+1} 1\}$

(from previous stage) in $\log s$ depth. \blacksquare