6.S897 Algebra and Computation

Lecture 16

April 6, 2015

Lecturer: Madhu Sudan Scribe: James Hirst

1 Today

1. Depth reduction in arithmetic circuits

2. Lower bounds on circuit size

2 Depth Reduction in Arithmetic Formulae
Recall the theorem of Ben-Or and Cleve [BOC92] from last time.

Theorem 1 If f is computed by a polynomial size formula, then f can also be
computed by a polynomial size register machine using only 3 registers.

Let us write BP-size(f) (for branching process size) to denote the size of
the smallest such 3 register machine computing f.
We essentially proved Theorem 1 by noting that

f = f1+ fo = BP-size(f) < BP-size(f1) + BP-size(f2)

and
f=f1 x fo = BP-size(f) < 2[BP-size(f;) + BP-size(f2)].

This is not quite enough to prove the theorem, however, since it is not clear at
this point how many times we will incur this factor 2 blow-up in the BP-size.
In particular, this will only imply the result if we can argue that f is in fact
computed by a low depth formula.

The idea for depth reduction in arithmetic formulae is essentially the same
as in the boolean case, which goes as follows. First, find an interior gate v such
that (2/3)size(f) > size(v) > (1/3)size(f). This is always possible due to
the tree structure of the circuit. Intuitively, the size conditions ensure that the
sub-formula computing v and the sub-formula computing f conditioned on the
value of v are of comparable size, and so we should try to compute these in
parallel.

To be precise, we create two copies of the sub-circuit computing f condi-
tioned on the value of v: one hard-wired with the value v = 0, and the other
with v = 1. To compute f, then, we compute v along with the conditional
values of f in parallel and output the correct value once v is observed.

We cannot apply this program directly in the arithmetic setting, since the
gate v may take an infinite set of values, but the idea is essentially the same.

16-1

If we condition on knowing the value of v, then f is a linear function of v,
ie., f = Av + B for polynomials A and B. Now we can compute A, v, and
B in parallel as before to achieve the depth reduction. Thus, in the setting
of Theorem 1, we may assume that the formula computing f has logarithmic
depth, and hence we incur only a polynomial blow-up in the BP-size.

Things will be much more difficult with arithmetic circuits (as opposed to
formulae) because in this case f may depend on a gate v in a significantly
non-linear fashion.

3 Depth Reduction in Arithmetic Circuits
The main result here is the following theorem from [VSBRS83].

Theorem 2 If f is a polynomial of degree < d and is computed by a circuit of
size < s, then f can also be computed by a circuit of size poly(s,d) with depth
< (log s)(log d).

We would like to proceed analagously to the case of arithmetic formulae, but
in order to do this, we need a way to quantify how useful the partial functions f,
are for computing f. The key here is to introduce a notion of partial derivative.

Definition 3 Given an arithmetic circuit computing a function f, and two
gates v and w, we write

afv w
19) = :
w(U) aw 9
w=fuw
where fu7w(x1, ..., Tp,w) denotes the partial function f, as a function of the

value of the gate w.

Tt is instructive to think of 9,,(v) as a measure of the number of paths from
w to v in the circuit. We will not make this statement entirely precise, but one
useful fact is that if there are no paths from w to v, then we do indeed have
0w (v) = 0.

Now, to compute f, we will compute all the f,, and all the 9,,(v) in some
order. In particular, at stage i, we will compute:

1. all the f,, with 2; < deg(f,,) < 2i*1

2. all the 0, (v) with v and w satisfying 2¢ < deg(f,,) — deg(fw) < 2¢T! and
deg(fu) < deg(v) < 2deg(w).

If we can manage to do this, it is clear we will have computed f by stage log d
since f has degree < d. Before we can specify the details of this computation,
we need one more definition.

Definition 4 We write
Gm = {t | deg(fe) >m, fo = fi, X fi, deg(fr,) < m Vi}.
Now, Theorem 2 will follow from the following claim.
Claim 5 For all v, w such that m < deg(f,) < 2m and deg(fy,) < m <

deg(fy) < 2deg(fw), we have

16-2

1 fo =2 g, fiOi(v)
2. 0uw(v) = 1eg. Ouw(t)0r(v)

Notice that, if we have computed all the values f,, and 9,,(v) from stage ¢
above, then it follows from Claim 5 that we can compute all the values in stage
1+ 1 using a circuit of depth at most log s (this is to compute a sum of at most
s values). Hence, since there can be at most logd stages, the theorem follows.

Proof The proof will be by a fairly simple induction on the depth of the
circuit. Also, note that it will suffice to prove (1), since (2) follows by applying
Oy to both sides.
An easy case to pick off is when v itself lies in G,,. In this case, we can write
(1) as
fo=Ff0u)+ Y. fidi(v).

teGm \{v}

But since there are no paths among elements of G,,, 9;(v) = 0 for every ¢, and
further, 9,(v) = 1, and so (1) reduces simply to f, = f.

Now, there are two distinct cases to check for the induction, depending on
whether gate v is an addition or a multiplication gate.

First, if f, = fu; + fu,, then by induction on v; and ve (here we assume that
the circuit is suitably homogenized so that f,, and f,, both satisfy the degree
conditions)

fo=Ffor+ foo = D Fi0) + D fidi(v2) = D fidi(v),

tEGm t€EGm teEGm

since Oy is a linear operator when we conflate v with f,.

Next, if f, = fu, X fu,, then either v; and ve both have degree < m, in which
case v € Gy, and we are done (see above), or one of the two gates (say, v1) has
degree > m which in turn implies that vo has degree < m. Thus, by induction

we have
for =Y fi0u(v1).

teEGm

However, by the product rule for partial derivatives, for any t € G,,, we have

8t(v) = fvlat(v2) + at(vl)fvg = at(vl)fv27

since there are certainly no paths from ¢ to vy (by considering degrees). Hence,
(1) follows from f,, = 3,c5 fi0i(v1) by multiplying through by f,,. B

4 Lower Bounds

At this point, we have seen some upper bounds on circuit size and depth by
explicitly constructing or manipulating a circuit. On the other hand, it is gen-
erally much more difficult to give super-linear lower bounds for any reasonably
expressive model of computation. For arithmetic circuits, at least, we will see
that it is not so hard.

Consider a circuit computing the function f : F* — F™ that maps (z1,...,2n)
to (a7,...,2]) for some fixed integer r. One of the main results of Strassen

16-3

[Str75] is that this function has no arithmetic circuit of size smaller than nlogr.
From this result, one can also show (see [BS83]) that the function sending
(T1,. o Ty Y1y, Yr) 1O i, ys@? has no size nlogr circuit.

The proof of Strassen is almost trivial, although it does rely on some (still
reasonably easy) results from algebraic geometry. The idea is to write the gates
of a circuit computing f as polynomial constraints that equate their input to
their output. Precisely, for an addition gate v = u + w we add the constraint

Yo — (yu+yw) =0,

and for a multiplcation gate v" = v’ x w’ we add the constraint

Yo' — Yu Yt = 0.

Finally we add constraints enforcing the values of the output gates (to some
fixed values).

If a circuit of size s can compute f, then in this manner we obtain a system
of s polynomial equations that are either linear or quadratic. Now consider a
primitive r-th root of unity w in the field (this is essentially the only assumption
that needs to be made on the field). The powers 1,w,w?,...,w" ! are all dis-
tinct, and taking any n of these (with replacement) as inputs to f will evaluate
to (1,...,1). Hence, if we set all of the output gates to 1 in our polynomial con-
straints, the resulting system of polynomial equations has at least r™ common
ZEros.

However, it follows from a result in algebraic geometry known as Bézout’s
Theorem that a system of s polynomial equations of degree < 2 has either
< 2% common zeros, or else has an infinite number. Since all the solutions to
flx1,...,z,) = (1,...,1) are roots of unity, of which there are a finite number,
the former case of Bézout’s Theorem applies and we obtain

r" <2° = s>mnlogr.

References

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas
using a constant number of registers. SIAM J. Comput., 21(1):54-58,
1992.

[BS83] Walter Baur and Volker Strassen. The complexity of partial deriva-
tives. Theoret. Comput. Sci., 22(3):317-330, 1983.

[Str75) Volker Strassen. Die Berechnungskomplexitét der symbolischen Dif-
ferentiation von Interpolationspolynomen. Theor. Comput. Sci.,
1(1):21-25, 1975.

[VSBR&3] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel
computation of polynomials using few processors. SIAM J. Comput.,
12(4):641-644, 1983.

16-4

