
6.S897 Algebra and Computation April 6, 2015

Lecture 16
Lecturer: Madhu Sudan Scribe: James Hirst

1 Today

1. Depth reduction in arithmetic circuits

2. Lower bounds on circuit size

2 Depth Reduction in Arithmetic Formulae

Recall the theorem of Ben-Or and Cleve [BOC92] from last time.

Theorem 1 If f is computed by a polynomial size formula, then f can also be
computed by a polynomial size register machine using only 3 registers.

Let us write BP-size(f) (for branching process size) to denote the size of
the smallest such 3 register machine computing f .

We essentially proved Theorem 1 by noting that

f = f1 + f2 ⇒ BP-size(f) ≤ BP-size(f1) + BP-size(f2)

and
f = f1 × f2 ⇒ BP-size(f) ≤ 2 [BP-size(f1) + BP-size(f2)] .

This is not quite enough to prove the theorem, however, since it is not clear at
this point how many times we will incur this factor 2 blow-up in the BP-size.
In particular, this will only imply the result if we can argue that f is in fact
computed by a low depth formula.

The idea for depth reduction in arithmetic formulae is essentially the same
as in the boolean case, which goes as follows. First, find an interior gate v such
that (2/3)size(f) ≥ size(v) ≥ (1/3)size(f). This is always possible due to
the tree structure of the circuit. Intuitively, the size conditions ensure that the
sub-formula computing v and the sub-formula computing f conditioned on the
value of v are of comparable size, and so we should try to compute these in
parallel.

To be precise, we create two copies of the sub-circuit computing f condi-
tioned on the value of v: one hard-wired with the value v = 0, and the other
with v = 1. To compute f , then, we compute v along with the conditional
values of f in parallel and output the correct value once v is observed.

We cannot apply this program directly in the arithmetic setting, since the
gate v may take an infinite set of values, but the idea is essentially the same.

16-1



If we condition on knowing the value of v, then f is a linear function of v,
i.e., f = Av + B for polynomials A and B. Now we can compute A, v, and
B in parallel as before to achieve the depth reduction. Thus, in the setting
of Theorem 1, we may assume that the formula computing f has logarithmic
depth, and hence we incur only a polynomial blow-up in the BP-size.

Things will be much more difficult with arithmetic circuits (as opposed to
formulae) because in this case f may depend on a gate v in a significantly
non-linear fashion.

3 Depth Reduction in Arithmetic Circuits

The main result here is the following theorem from [VSBR83].

Theorem 2 If f is a polynomial of degree ≤ d and is computed by a circuit of
size ≤ s, then f can also be computed by a circuit of size poly(s, d) with depth
≤ (log s)(log d).

We would like to proceed analagously to the case of arithmetic formulae, but
in order to do this, we need a way to quantify how useful the partial functions fv
are for computing f . The key here is to introduce a notion of partial derivative.

Definition 3 Given an arithmetic circuit computing a function f , and two
gates v and w, we write

∂w(v) =
∂f̃v,w
∂w

∣∣∣∣∣
w=fw

,

where f̃v,w(x1, . . . , xn, w) denotes the partial function fv as a function of the
value of the gate w.

It is instructive to think of ∂w(v) as a measure of the number of paths from
w to v in the circuit. We will not make this statement entirely precise, but one
useful fact is that if there are no paths from w to v, then we do indeed have
∂w(v) = 0.

Now, to compute f , we will compute all the fw and all the ∂w(v) in some
order. In particular, at stage i, we will compute:

1. all the fw with 2i ≤ deg(fw) ≤ 2i+1

2. all the ∂w(v) with v and w satisfying 2i ≤ deg(fv)− deg(fw) ≤ 2i+1 and
deg(fw) ≤ deg(v) ≤ 2 deg(w).

If we can manage to do this, it is clear we will have computed f by stage log d
since f has degree ≤ d. Before we can specify the details of this computation,
we need one more definition.

Definition 4 We write

Gm = {t | deg(ft) > m, ft = ft1 × ft2 , deg(fti) ≤ m ∀i}.

Now, Theorem 2 will follow from the following claim.

Claim 5 For all v, w such that m < deg(fv) ≤ 2m and deg(fw) ≤ m <
deg(fv) ≤ 2 deg(fw), we have

16-2



1. fv =
∑

t∈Gm ft∂t(v)

2. ∂w(v) =
∑

t∈Gm ∂w(t)∂t(v)

Notice that, if we have computed all the values fw and ∂w(v) from stage i
above, then it follows from Claim 5 that we can compute all the values in stage
i+ 1 using a circuit of depth at most log s (this is to compute a sum of at most
s values). Hence, since there can be at most log d stages, the theorem follows.

Proof The proof will be by a fairly simple induction on the depth of the
circuit. Also, note that it will suffice to prove (1), since (2) follows by applying
∂w to both sides.

An easy case to pick off is when v itself lies in Gm. In this case, we can write
(1) as

fv = fv∂v(v) +
∑

t∈Gm\{v}

ft∂t(v).

But since there are no paths among elements of Gm, ∂t(v) = 0 for every t, and
further, ∂v(v) = 1, and so (1) reduces simply to fv = fv.

Now, there are two distinct cases to check for the induction, depending on
whether gate v is an addition or a multiplication gate.

First, if fv = fv1 +fv2 , then by induction on v1 and v2 (here we assume that
the circuit is suitably homogenized so that fv1 and fv2 both satisfy the degree
conditions)

fv = fv1 + fv2 =
∑
t∈Gm

ft∂t(v1) +
∑
t∈Gm

ft∂t(v2) =
∑
t∈Gm

ft∂t(v),

since ∂t is a linear operator when we conflate v with fv.
Next, if fv = fv1×fv2 , then either v1 and v2 both have degree ≤ m, in which

case v ∈ Gm and we are done (see above), or one of the two gates (say, v1) has
degree > m which in turn implies that v2 has degree ≤ m. Thus, by induction
we have

fv1 =
∑
t∈Gm

ft∂t(v1).

However, by the product rule for partial derivatives, for any t ∈ Gm we have

∂t(v) = fv1∂t(v2) + ∂t(v1)fv2 = ∂t(v1)fv2 ,

since there are certainly no paths from t to v2 (by considering degrees). Hence,
(1) follows from fv1 =

∑
t∈Gm ft∂t(v1) by multiplying through by fv2 .

4 Lower Bounds

At this point, we have seen some upper bounds on circuit size and depth by
explicitly constructing or manipulating a circuit. On the other hand, it is gen-
erally much more difficult to give super-linear lower bounds for any reasonably
expressive model of computation. For arithmetic circuits, at least, we will see
that it is not so hard.

Consider a circuit computing the function f : Fn → Fn that maps (x1, . . . , xn)
to (xr

1, . . . , x
r
n) for some fixed integer r. One of the main results of Strassen

16-3



[Str75] is that this function has no arithmetic circuit of size smaller than n log r.
From this result, one can also show (see [BS83]) that the function sending
(x1, . . . , xn, y1, . . . , yr) to

∑r
i=1 yix

r
i has no size n log r circuit.

The proof of Strassen is almost trivial, although it does rely on some (still
reasonably easy) results from algebraic geometry. The idea is to write the gates
of a circuit computing f as polynomial constraints that equate their input to
their output. Precisely, for an addition gate v = u + w we add the constraint

yv − (yu + yw) = 0,

and for a multiplcation gate v′ = u′ × w′ we add the constraint

yv′ − yu′yw′ = 0.

Finally we add constraints enforcing the values of the output gates (to some
fixed values).

If a circuit of size s can compute f , then in this manner we obtain a system
of s polynomial equations that are either linear or quadratic. Now consider a
primitive r-th root of unity ω in the field (this is essentially the only assumption
that needs to be made on the field). The powers 1, ω, ω2, . . . , ωr−1 are all dis-
tinct, and taking any n of these (with replacement) as inputs to f will evaluate
to (1, . . . , 1). Hence, if we set all of the output gates to 1 in our polynomial con-
straints, the resulting system of polynomial equations has at least rn common
zeros.

However, it follows from a result in algebraic geometry known as Bézout’s
Theorem that a system of s polynomial equations of degree ≤ 2 has either
≤ 2s common zeros, or else has an infinite number. Since all the solutions to
f(x1, . . . , xn) = (1, . . . , 1) are roots of unity, of which there are a finite number,
the former case of Bézout’s Theorem applies and we obtain

rn ≤ 2s ⇒ s ≥ n log r.

References

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas
using a constant number of registers. SIAM J. Comput., 21(1):54–58,
1992.

[BS83] Walter Baur and Volker Strassen. The complexity of partial deriva-
tives. Theoret. Comput. Sci., 22(3):317–330, 1983.

[Str75] Volker Strassen. Die Berechnungskomplexität der symbolischen Dif-
ferentiation von Interpolationspolynomen. Theor. Comput. Sci.,
1(1):21–25, 1975.

[VSBR83] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel
computation of polynomials using few processors. SIAM J. Comput.,
12(4):641–644, 1983.

16-4


