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1 Lower bounds for multi-point polynomial evaluation

In this lecture we look into the lower bound problem for the multipoint polynomial evaluation problem. We
specially focus on the following problem:

f(x1, x2, . . . , xn) = (xr1, x
r
2, . . . , x

r
n)

And we show that any algebraic circuit for the above map requires size Ω(n log(r)). There are two proofs
for this fact. The first one, due to Strassen, uses techniques in algebraic geometry, namely the Bezout’s
theorem and the second one, according to Smolensky uses simple combinatorics and elementary algebra. In
this lecture we mainly focus on Strassen’s proof.

2 Strassen’s Proof

We work with and algebraic closed field K, and thereby, any non-constant polynomial over the field contains
a root in the field. Strassen views an algebraic circuit as a collection of polynomial equations of degree at
most 2. A multiplication gate (x, y)→ x ∗ y = z corresponds to the polynomial equation z − x ∗ y = 0, and
an addition gate (x, y) → x + y = z is the degree one polynomial equation z − x − y = 0. Therefore, we
work with three types of variables, the inputs (x1, x2, . . . , xn), intermediate variables (y1, y2, . . . , yn) and the
outputs (z1, z2, . . . , zn). Each gate introduces an new variable in this setting. Therefore, a circuit of size s
corresponds to a set of polynomial equation:

p1(x̃, ỹ, z̃)

p1(x̃, ỹ, z̃)

...

ps(x̃, ỹ, z̃)

Thereby, computation in the circuit corresponds to finding the set of common roots in these polynomials. In
order to prove a circuit lower bound for the discussed map (x1, x2, . . . , xn)→ (xr1, x

r
2, . . . , x

r
n), let us consider

the special case where all the outputs are ones.

Claim 1. Define V = {(α, β) ∈ Kn+m|pj(α, β, 1n) = 0, j ∈ [s]}, as the set of common zeros (x̃, ỹ) =
(α, beta), when z̃ = (1, 1, . . . , 1). If the polynomials are according to the circuit computing f , then |V | = rn

Proof. In order to see this, letX be the set of inputs (x1, x2, . . . , xn) mapped to (xr1, x
r
2, . . . , x

r
n) = (1, 1, . . . , 1).

If ω is the principal r’th root of unity, then X = {ω, ω2, . . . , ωr = 1}. So we restricted the variables to a case
where (x1, x2, . . . , xn) ∈ Xn, where Xn has cardinality rn.

Now consider the following fact from Algebraic Geometry:
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Theorem 1. (Classical Bezout’s Theorem) if p1, p2, . . . , ps are polynomials in K(x1, x2, . . . , xn), if K is an
algebraically closed field, then the number of common zeros for these polynomials is upper-bounded by the
product of the degrees

∏
j∈[s] deg(Pj).

So given the Bezout’s theorem, for the case of the discussed problem the number of common zeros, or
equivalently |V | is bounded by 2s. So any circuit computing f should satisfy rn ≤ 2s and thereby s =
Ω(n log(r)).

3 Remarks on the Bezout’s theorem

Although the statement of the Bezout’s theorem is a simple one, the rigorous proof for the statement is
not as simple. In this section we give a primitive sketch of the proof and further remarks on the classical
Bezout’s theorem.

In order to approach this problem, we need a couple of definitions. Here we introduce a stronger version of
the Bezout’s theorem in which we deal with essential elements and ideas in algebraic geometry. Then we
prove that the stronger version of the statement readily implies the classical Bezout’s theorem.

Definition 1. For a set of polynomials in K[x1, x2, . . . , xn], we define the associated veriety, as a subset of
points Kn along which the set of polynomials simultaneously vanish.

Also remember that for a commutative ring R, and ideal is a subset of the ring which is closed under addition
and multiplication by the elements of the ring. More precisely, an ideal I of the ring K[x1, x2, . . . , xn], is a
subset I ⊂ K[x1, x2, . . . , xn] such that if p, q ∈ I and r ∈ K[x1, x2, . . . , xn], then p+ q ∈ K[x1, x2, . . . , xn] and
p.r ∈ I. Now for polynomials p1, p2, . . . , ps define the following ideal.

Definition 2. The ideal of the set of polynomials p1, p2, . . . , ps in K[x1, x2, . . . , xn] is the set:

I(p1, p2, . . . , pn) =
{ s∑

i=1

qipi

∣∣∣qi ∈ K[x1, x2, . . . , xn]
}

From these two definitions we can also define veriety of an ideal V (I) for ideal I, to be the set of point in
Kn along which all the members of the ideal vanish. And also define an ideal of a variety I(V ), to be the set
of polynomials, vanishing on V . Clearly I ⊂ I(V (I)). Since I(V (I)) at least contains I but it might contain
more elements. Now we can define define dimension and degree for a variety.

Definition 3. The dimension of V is:

dim(V ) := min(k) : there exists and affine subspace A of dimension n− k such that 0 < A ∩ V <∞

From this definition one can conclude that for varieties V and W , the union satisfies:

dim(V ∪W ) = max{dim(V ), dim(W )}

Also define the degree of a veriety to be:

Definition 4. The degree of a variety V is:

deg(V ) = max
Affine subspsceA:dim(A)+dim(V )=n;|A∩V |<∞

{|A ∩ V |}
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Therefore, from this definition, if the size of V is finite the degree deg(V ) is equal to the number of elements
|V | in V . Now that we have defined the essential definitions, we can phrase the strong Bezout’s.

Theorem 2. (Strong Bezout’s Theorem) Let K to be an algebraically closed field, and V and W to be
varieties over the field. Then:

deg(V ∩W ) ≤ deg(V ).deg(W )

Given this abstract form of the Bezout’s theorem, the major step is to show:

Claim 2. Strong Bezout’s Theorem =⇒ Classical Bezout’s Theorem

Proof. Consider the polynomials p1, p2, . . . , ps to be a polynomials in K[x1, x2, . . . , xn], where K is some
algebraically closed field. Then for each polynomial we consider the variety V (pi) as the set of points in Kn

where the polynomial vanishes. Also let V = ∩i∈[s]V (pi). From the strong Bezout’s theorem:

deg(V ) ≤
∏
j∈s

deg(Vi)

Now it suffices to translate the meaning of degree in the classical Bezout’s settings. By the definition, if the
dimension of V is nonzero then the size of V is infinite. But we know that the size of V is finite, and there fore
using the definition for the degree we get that deg(V ) = |V |. Next we must show that deg(V (pi)) = deg(pi).
If this is true then we are done. First notice that the dimension of V (pi) is n− 1. Because V can be infinite
and according to the definition dim(Vi) ≤ n − 1. If we choose A to be a line, i.e., an affine subspace of
co-dimension n − 1, then because of the fundamental theorem of algebra |A ∩ V (pi)| is at most deg(pi).
Therefore Vi is finite and deg(Vi) = |Vi| = deg(pi).

4 Smolensky’s Proof

Smolensky considers an equivalent version of the circuit where the addition and multiplication gates have
fanin 2 and fanout 1, and he adds a duplicator gate which copies a wire into two wires. Namely the following
gates:

addition : (x, y) 7→ (x+ y)

multiplication : (x, y) 7→ (x ∗ y)

duplicator : (x) 7→ (x, x)

So for example the polynomial equations corresponding to such circuit looks like y1 ← x1 + x2, y2 ← y1 ∗ x3
and (y3, y4)← y2.

Strangely, Smolensky proves a lower-bound on the number of duplicators used in a circuit of the map
(x1, x2, . . . , xn) 7→ (xr1, x

r
2, . . . , x

r
n) and recovers the Ω(n log(r)) lower bound. This imposes a lower-bound

on the general circuits with arbitrary fanout. That is because any general circuit of size s can be converted
to a restricted circuit with duplicators with O(s) extra number of duplicators.

Here we phrase the main lemma:

Lemma 1. Consider any restricted circuit, with inputs x̃ = x1, x2, . . . , xn, outputs z1(x̃), z2(x̃), . . . , zm(x̃),
with duplicator gates D1, D2, . . . , Ds which duplicated the polynomials d1(x̃), d2(x̃), . . . , ds(x̃). Consider any
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polynomial T (x1, . . . , xn, z1, . . . , zn), with degree ≤ k, then there exists a polynomial τ in n+s variables such
that:

T (x1, x2, . . . , xn, z1(x̃), z2(x̃), . . . , zm(x̃)) = τ(x1, . . . , xn, d
k
1(x̃), . . . , dks(x̃))

Where τ has degree ≤ k over the first n variables and degree at most s in the last s variables.

In the next lecture we will talk about how this lemma leads to a lower bound for the function f .
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