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1 Circuits Wrap-up

Let us review the lower bounds we have for algebraic circuits. First, there are results analogous to Shannon’s
counting argument for boolean circuits. Counting polynomials directly will not work over an infinite field,
but slightly more sophisticated techniques can be made to work.

Theorem 1 There exist degree d polynomials over C in n variables that require circuits of size Ω
(
n+d
n

)
.

This is a purely existential result, and does not provide an explicit polynomial. The best bounds we have
for specific polynomials are of the form O(n log n), for instance, for the polynomial

ψ(x1, . . . , xn, y1, . . . , yn) =

n∑
i=1

xni yi,

as we saw earlier.
One can also reduce to low-depth lower bounds. Nisan and Wigderson give a method based on the

dimension of a space of partial derivatives of the function. Let ∂Sf denote the partial derivative of a
polynomial with respect to a set of variables S. Define dim(f) to be the dimension of

D(f) = {∂Sf : S ⊆ {x1, . . . , xn}},

the set of partial derivatives with respect to every set of variables (including the empty set!). The dimension
is subadditive/submultiplicative in the following sense.

Proposition 2 For all polynomials f1, . . . , fr and α 6= 0,

dim (αf) = dim(f),

dim

(∑
i

fi

)
≤
∑
i

dim(fi),

dim

(∏
i

fi

)
≤
∏
i

dim(fi).

Proof In the case of αf , observe that D(αf) = αD(f), so the space spanned by D(αf) is identical to the
space spanned by D(f) (and so are the dimensions).

The derivative of a sum, ∂S
∑

i fi, is the sum of the derivatives,
∑

i ∂S(fi), and therefore contained in
the space spanned by D(f1) ∪D(f2) ∪ · · · ∪D(fr). This space has dimension at most

∑
i dim(fi).

Finally, the partial derivative of a product is

∂S

(∏
i

fi

)
=

∑
S1t···tSr=S

∏
i

∂Si
(fi),

a sum (over all ways to partition the variables in S over the functions) of terms in D(f1)D(f2) · · ·D(fn).
Clearly D(f1) · · ·D(fn) has dimension at most

∏
i dim(fi), completing the proof.
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In particular, suppose we have a depth 3 circuit (with layers ΣΠΣ) computing a polynomial f with
multiplication gates of fan-in at most d. Any function g on the bottom layer must be linear, and therefore g
has constant derivative (with respect to any non-empty set of variables) or derivative g (with respect to the
empty set of variables), so dim(g) = 2. Then the multiplication gates produce functions h with dim(h) ≤ 2d,
since the fan-in is d, and each bottom layer gate computes a function of dimension 2. Finally, we conclude
that

dim(f) ≤ size(f) · 2d,

since the final layer is the sum of fewer than size(f) second layer gates.
Nisan and Wigderson use this approach to give bounds for the iterated matrix multiplication problem.

Problem 3 (Iterated Matrix Multiplication) Given m matrices M1, . . . ,Md of n×n as input, compute
the upper left entry of their product, M1M2 · · ·Md.

They show that this problem has a large space of partial derivatives and, under various restricted kinds of
circuits, it must have large depth-3 circuits, or deep (Ω(log n log d)) circuits.

An alternative approach, proposed by Mulmuley and Sohoni, is geometric complexity theory. The idea
is to consider the automorphism group of linear functions preserving a polynomial. That is,

Aut(P ) = {A ∈ Cn×n : P (A(x1, . . . , xn)) = P (x1, . . . , xn)}.

For the determinant function, recall that

det(BM) = det(B) det(M).

For every B ∈ Cn×n with determinant 1, there is a corresponding A ∈ Cn2×n2

in Aut, acting on the n2 input
variables (representing the entries of M) to the determinant, which implements the equivalent of matrix
multiplication by B. Hence, SLn(C) is a subgroup of Aut(det). On the other hand, the permanent has
relatively few symmetries (one can permute the rows and columns of the matrix, but not much else), so

Aut(perm) ∼= Sn × Sn.

The hope is that powerful theorems from algebraic geometry and representation theory can be applied to
prove lower bounds, but it is currently a struggle to recover known results.

2 Ideal Membership and Strong Nullstellensatz

We have seen that finding roots of polynomials is tractable. What about finding simultaneous roots of several
polynomial equations? For instance, what is the complexity of the following problem?

Problem 4 Given polynomials f1, . . . , fm, g1, . . . , gn, does there exist x such that

f1(x), . . . , fm(x) = 0, and

g1(x), . . . , gn(x) 6= 0?

Observe that this reduces to checking two parts.

1. There is some common zero of f1, . . . , fm. It is known that the polynomials have a common zero if
and only if the ideal I := (f1, . . . , fm) generated by the polynomials is nontrivial. The easy direction
is that if 1 ∈ (f1, . . . , fm) then

1 = f1q1 + . . .+ fmqm,

and at any common zero we would have 1 = 0, a contradiction. The converse is a deep result of Hilbert
called the weak Nullstellensatz.
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2. The product of the gis is not in the radical of the ideal I. Clearly if the product is in the ideal then
there can be no solution, since any common zero of f1, . . . , fm is a common zero of the product, and
hence a zero of some gi. Conversely, if for every common zero of f1, . . . , fm there is some gi which is
zero, then the product of the gis vanishes at every common zero, so

Both of these reduce to some form of the following problem.

Problem 5 (Radical Ideal Membership Problem) Given polynomials f1, . . . , fm and g, do there exist
polynomials q1, . . . , qm and an integer d > 0 such that

gd =
∑
i

fiqi?

In other words, is g in the radical of (f1, . . . , fm)?

We can also consider membership in the ideal itself.

Problem 6 (Ideal Membership Problem) Given polynomials f1, . . . , fm and g, do there exist polyno-
mials q1, . . . , qm such that

g =
∑
i

fiqi?

In other words, is g in (f1, . . . , fm)?

The two problems are decidable because there exist effective upper bounds on the degree of the qi. For
instance, for Problem 5 we have the following upper bound.

Theorem 7 Given polynomials f1, . . . , fm and some g ∈ Rad(f1, . . . , fm), there exist polynomials q1, . . . , qm
and an integer d > 0 such that

gd =

m∑
i=1

fiqi

with d,deg(q1), . . . ,deg(qm) ≤ D, where D =
∏m

j=1 deg(fj).

This gives an exponential (D = 2O(n)) upper bound on the degree of q1, . . . , qm. Now write each qi as a
sum of (at most exponentially many) monomial terms:

qi =
∑
t≤D

ai,tx
t.

Then the equation gd =
∑m

i=1 fiqi can be expressed as an exponentially large system of linear equations in
the variables {ai,t}i,t. Since we can test whether a linear system has a solution in polylogarithmic space, we
can check if the required q1, . . . , qm exist (for each d ≤ D) using polynomial space. Hence, Problem 5 is in
PSPACE. We do not believe it to be PSPACE-complete, since the special case g = 1 is known to be in Σp

2,
assuming the generalized Riemann hypothesis.

On the other hand, Problem 6 is known to be EXPSPACE-complete, as shown by Mayr and Meyer. The
same kind of algorithm can be used to show Problem 6 is in EXPSPACE, since we have the following effective
upper bound due to Hermann.

Theorem 8 Given polynomials f1, . . . , fr over variables X, and some g ∈ (f1, . . . , fr), then there exist
polynomials q1, . . . , qm of degree at most

D = deg(g) + (rd)2
|X|
,

such that g =
∑r

i=1 fiqi.

In this case, the problem reduces to a doubly-exponential linear system, which we solve in (singly) exponential
space.
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3 Quantified Theory of K
Assume we are in an algebraically closed field K for this section. The problem of finding a common zero of
polynomials f1, . . . , fn is equivalent to the following logical expression:

∃x1∃x2 · · · ∃xn(f1(x1, . . . , xn) = 0) ∧ · · · ∧ (fr(x1, . . . , xn) = 0)

It turns out that this is a special case of a more general problem:

Problem 9 Suppose f1, . . . , fr are polynomials in variables x1, . . . , xn . Given a boolean formula ψ(z1, . . . , zr).
Is it the case that

∃x1∀x2 · · ·Qnxn ψ(f1(x1, . . . , xn) = 0, . . . , fr(x1, . . . , xn) = 0)?

This problem is decidable.
Furthermore, if some of the variables are left unquantified, e.g.,

∃x1∀x2 · · ·Qnxn ψ(f1(x1, . . . , xn, y1, . . . , yk) = 0, . . . , fr(x1, . . . , xn, y1, . . . , yk) = 0)

then the result, Φ(y1, . . . , yk), depends on y1, . . . , yk. Surprisingly, Φ is itself of the form

∃y1 · · · ∃ykφ(q1(y1, . . . , yk), . . . , qN (y1, . . . , yk)),

for polynomials q1, . . . , qN in k variables, and where φ is a boolean formula.

19-4


