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Lecture 21
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1 Introduction

In this lecture, we will see that the Ideal Membership problem is EXPSPACE-complete, which was shown
by Mayr and Meyer [1]. Next, we will see weak and strong statements of the Hilbert’s Nullstellensatz.

2 Ideal Membership

The ideal membership question is defined as follows,

Problem 1 (Ideal-Membership). Given polynomials f, f1, · · · , fm ∈ K[x], decide whether f ∈ 〈f1, · · · , fm〉,
or in other words, does there exist polynomials g1, · · · , gm ∈ K[x] such that, f =

∑
i figi

It turns out (due to [1]) that Ideal-Membership is EXPSPACE-complete! This is contrast with Radical-
Ideal-Membership that we saw in last lecture to be in PSPACE.

2.1 EXPSPACE-hardness of Ideal-Membership

We show that Ideal-Membership is EXPSPACE-hard by obtaining a reduction from Commutative Word
Equivalence Problem (CWEP), which is known to be EXPSPACE-complete. It is formulated as follows:

Problem 2. We have an alphabet Σ (assume |Σ| = n) along with an implicit equivalence rule,

∀ σ, τ ∈ Σ : στ ≡ τσ

and a set of m equivalence rules of the type,

αi ≡ βi where i ∈ [m] and αi, βi ∈ Σ∗ (1)

Given two strings α, β ∈ Σ∗, we need to decide if α ≡ β.

Informally, the problem is to start with the string α ∈ Σ∗, and we can do a series of operations which
include either swapping two consecutive symbols or substituting a substring αi by βi or vice-versa for some
i. Due to commutativity, the order of the symbols in α don’t matter, and thus α is completely determined
by d = (d1, · · · , dn), where the i-th symbol in Σ appears di times in α, that is, we can think of α as
σd11 σ

d2
2 · · ·σdnn . The relationship between the CWEP and the ideal membership problem becomes clear once

we interpret the substitution rules in Equation 1 as relations that generate an ideal.

Hard instance of Ideal-Membership

We get a reduction from CWEP as follows. Consider a CWEP instance, where αi’s (resp. βi’s) correspond
to the vectors di (resp. ei’s), and α (resp. β) corresponds to the vector d (resp. e).
Let the polynomials f1, · · · , fm be given by fi = xdi − xei and let f = xd − xe. It is easy to see that
f ∈ 〈f1, · · · , fm〉 if and only if α ≡ β under the equivalence rules of αi ≡ βi. And thus, we conclude that
Ideal-Membership is EXPSPACE-hard.
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2.2 EXPSPACE algorithm for Ideal-Membership

To show that Ideal-Membership is in EXPSPACE, we will prove the following theorem (originally due to
Hermann [2]) as follows,

Theorem 1 (Degree bound in Ideal-Membership [2]). Consider an instance of Ideal-Membership as
defined in Problem 1. Suppose that deg(fi) ≤ d for all i and deg(f) ≤ d. Then for any f ∈ 〈f1, · · · , fm〉, it

is possible to write f =
∑
i gifi where deg(gi) ≤ (md)2

O(n)

.

Assuming the above theorem, it is easy to see that Ideal-Membership is in EXPSPACE. Namely, since

we know that deg(gi) ≤ deg(f) + (md)2
O(n) def

= D, we can set up f =
∑
i gifi as a linear system in

m ·
(
n+D
n

)
variables. In particular, if f =

∑
β f

[β]xβ , and fi =
∑
β f

[β]
i xβ . We want to know if there

exist gi =
∑
α g

[α]
i xα such that the following is true,

∀ β s.t. |β| ≤ D + d : fβ =

m∑
i=1

∑
α�β

g
[α]
i f

[β−α]
i

This linear system can be solved in EXPSPACE. Note that we cannot do this by explicitly computing the
entries because the linear system is doubly-exponentially large in n. However, we can still solve the system
in EXPSPACE, by only implicitly dealing with the values involved in the linear system.

If we were allowed to formulate linear equations over a ring, instead of a field, then we can expressed the
ideal membership as a single linear equation over the ring R = K[x], namely,

f =
∑

gifi where gi ∈ R

However, in a ring, this problem is hard since we cannot do inversions like we could in a field. We wish to
bridge the gap between the two views, namely the huge linear system over K and the single linear equation
over R = K[x]. We will do this by a hybrid-type inductive argument over the number of variables n.

Define Π(j) to be the problem obtained by looking at f , fi’s and gi’s as polynomials in Rj [xj+1, · · · , xn],
where Rj = (K[x1, · · · , xj ]). Note that Π(n) is the single linear equation over Rn = K[x], whereas Π(0) is
the original linear system over K.

Our inductive claim is: If Π(j+1) has M equations with each variable of degree D then, Π(j) has poly(M,D)
equations with constants of degree poly(M,D). To this end, we prove the following lemma,

Lemma 2. Suppose Ax = b is a M × M linear system, where the entries in A and b are univariate
polynomials in R[z], and each entry in A has degree ≤ D, and A has full rank minor with monic determinant1.
Then if Ax = b has a solution, then it has a solution x where for all i, deg(xi) ≤ poly(MD).

Proof. Without the loss of generality we write

A =

[
Ã B
C D

]
where Ã is full rank and det(Ã) is monic. Suppose the solution looks like

x =

[
x1

x2

]
and b =

[
b1

b2

]
1here, we mean that A has a minor Ã such that rank(A) = rank(Ã) and Det(Ã) is a monic polynomial in z
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Note, since the rows of
[
C D

]
are contained in the linear span of the rows of

[
Ã B

]
, we have that if a

solution to Ax = b exists, then in fact

[
Ã B

] [x1

x2

]
=
[
b1

]
=⇒

[
C D

] [x1

x2

]
=
[
b2

]
Therefore we can ignore the second constraint of

[
C D

]
x =

[
b2

]
, and only focus on the first constraint.

Thus, we want to show that if a solution to
[
Ã B

]
x =

[
b1

]
exists, then in fact there exists a solution x

such that deg(x) ≤ poly(M,D).
We start with any solution to

[
Ã B

]
x =

[
b1

]
. Since Ã has non-trivial determinant, we can write,

x1 =
Adj(Ã)

Det(Ã)
(b1 −Bx2)

so deg(xi) ≤ [deg(Adj(A))+deg(b1)+deg(B)+deg(x2)]. So it suffices to show that we can obtain a solution
where deg(x2) is bounded by poly(M,D).

Now we use the observation that if
[
x1 x2

]T
is a solution to the linear system then

[
(x1 + Adj(Ã)By) (x2 −Det(Ã)y)

]T
is also a solution. Therefore by the division algorithm, we can make deg(x2) ≤ deg(Det(Ã)) ≤ MD. Thus,
we can obtain a solution x where deg(x) ≤ poly(MD).

To show that our original problem satisfies the condition of having a full rank minor with monic determinant,
we use the technique of applying a generic/random invertible linear transform. It allows us to use Lemma 2
and to ensure Det(Ã) is monic.

Lemma 3. Given Ax = b with A,b ∈ K[x1, · · · , xj ], let T : Kj → Kj be an invertible affine transform.
Then

1. x is a solution to Ax = b if and only if x(T ) is a solution to A(T )x(T ) = b(T ) and deg(x(T )) = deg(x).

2. With high probability over choices of T , Det(Ã(T )) is monic in xj.

Proof of Theorem 1: We start by writing a linear system in Π(n), with a single equation f =
∑m
i=1 gifi.

We successively apply the inductive step to convert the linear system in Π(j + 1) to a linear system in Π(j).
Lemma 2, in addition to Lemma 3 guarantees that if the degrees of polynomials in number of equations in
Π(j + 1) in Mj+1, then the degrees of the solution in Π(j) can be made to be less than poly(Mj+1, d) (since
the enties in the linear system have degree at most d = maxi deg(fi)). Also, going from Π(j + 1) to Π(j)
increases the number of linear equations to Mj = poly(Mj+1, d) (with degree at least 2 in Mj+1). Thus

finally when we get to Π(0), the degrees of the solution can be brought down to (md)2
O(n)

.

3 Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz deals with the problem of finding common roots to a given set of polynomials.

Problem 3. Given polynomials f1, · · · , fm ∈ K[x] (where K is algebraically closed), decide whether there
exists (α1, · · · , αn) = α ∈ Kn such that fj(α) = 0 for all j ∈ [m].

A more generalized version of this problem is as follows,

Problem 4. Given polynomials f1, · · · , fm, f ′1, · · · , f ′m′ ∈ K[x] (where K is algebraically closed), decide
whether there exists (α1, · · · , αn) = α ∈ Kn such that fj(α) = 0 for all j ∈ [m] and f ′j(α) 6= 0 for all
j ∈ [m′].
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We note that Problem 4 in fact reduces to Problem 3. Firstly, observe that f ′j(α) 6= 0 for all j ∈ [m′] if and

only if F (α)
def
=
∏
j∈[m′] f

′
j(α) 6= 0. Next we can reduce this to Problem 3 by adding an extra variable y and

noting that the polynomials f1, · · · , fm, (1− yF (x)) ∈ K[x, y] have a common root if and only if there exists
α ∈ Kn such that fj(α) = 0 for all j ∈ [m] and F (α) 6= 0.

The statement of Hilbert’s Weak Nullstellensatz is as follows,

Theorem 4 (Weak Hilbert Nullstellensatz (WHN)). For any ideal I in K[x],

V (I) = ∅ ⇔ 1 ∈ I

(Note that 1 ∈ I ⇔ I = K[x1, . . . , xn].)
In other words, polynomials f1, · · · , fm do not have a common zero iff there exist g1 · · · gm such that 1 =∑
i figi.

The statement of the Strong Nullstellensatz is defined in terms of the Radical Ideal, which is defined as
follows,

Definition 5 (Radical Ideal). For any ideal I ⊆ K[x], the radical ideal of I is Rad(I) =
{
f : ∃d fd ∈ I

}
.

Theorem 6 (Strong Hilbert Nullstellensatz (SHN)). For any ideal I in K[x1, . . . , xn],

I(V (I)) = Rad(I)

In other words, the following are equivalent,

• polynomials f1, · · · , fm, F ∈ K[x] are such that for every α ∈ Kn, if fi(α) = 0 for all i ∈ [m], then
F (α) = 0

• there exists d ≥ 1 such that F d ∈ 〈f1, · · · , fm〉

Lemma 7. SHN and WHN are equivalent.

Proof. Both the SHN and the WHN have trivial directions (namely, I(V (I)) ⊇ Rad(I) and V (I) = ∅ ⇐ 1 ∈ I
respectively). So we only need to prove the equivalence of the non-trivial directions of the SHN and the
WHN (namely, I(V (I)) ⊆ Rad(I) and V (I) = ∅ ⇒ 1 ∈ I respectively).
[SHN =⇒ WHN] So suppose that V (I) = ∅. Then, by the SHN, Rad(I) = I(∅) = K[x]. Hence,
1 ∈ Rad(I) and thus 1 ∈ I, as claimed in the WHN.
[WHN =⇒ SHN] Let F ∈ I(V (I)); we need to show that F ∈ Rad(I). If F is identically 0, we are
done; so assume that F is not identically 0. Consider the ideal J in K[x1, . . . , xn, y], where y is an auxiliary
variable, defined by J = 〈I, 1− yF 〉.

Notice that V (J) = ∅. Indeed, suppose by way of contradiction that there is (a1, . . . , an, b) ∈ V (J); then
(a1, . . . , an) ∈ V (I) and thus f(a1, . . . , an) = 0, and thus 1 − bF (a1, . . . , an) = 1 − 0 = 1 6= 0; we conclude
that V (J) must indeed be empty.

By the WHN, since V (J) = ∅, we know that 1 ∈ J , so that there must exist p ∈ K[x1, . . . , xn, y] and

q1, . . . , qd ∈ I such that 1 = p(1− yF ) +
∑d
i=0 y

iqi. This polynomial identity holds in K[x, y], and thus also
in K(x)[y]; furthermore, since F is not identically 0, 1/F is a well defined element in K(x1, . . . , xn). By

setting y = 1/F , we deduce that 1 =
∑d
i=0 F

−iqi, and thus F d =
∑d
i=0 F

d−iqi, which means that F d ∈ I,
and thus F ∈ Rad(I), as we wanted to show.

3.1 Remarks on the Nullstellensatz

Brownawell [3] showed that in the statement of Weak Nullstellensatz [Theorem 4] we can have deg(gi) ≤∏
i deg(fi). Note that one can try to invoke Theorem 1 (due to Hermann) here, since we are trying to solve
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an ideal membership problem here of writing 1 =
∑
i gifi. However, the bound we get is doubly-exponential

in n, whereas Brownawell’s result gives a much stronger bound.

This suggests that perhaps finding witnesses gi’s such that 1 =
∑
i gifi should not be a very hard problem.

In particular, it is clear that it is in PSPACE. More strongly though, Koiran showed that assuming the
Generalized Riemann Hypothesis, Hilbert Nullstellensatz is in RPNP [4].
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