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Abstract

We consider the task of reconstructing algebraic functions
given by black boxes. Unlike traditional settings, we are
interested in black boxeswhich represent several algebraic
functions- f1, ..., fr, where a each input z, the box arbi-
trarily chooses a subset of fi(z), ..., fr(z) to output. We
show how to reconstruct the functions f, . . ., fi fromthe
black box. This allows usto group the sample points into
sets, such that for each set, all outputsto pointsinthe set are
from the same a gebraic function. Our methods are robust
in the presence of errorsin the black box. Our model and
techniques can be applied in the areas of computer vision,
machine learning, curve fitting and polynomial approxi-
mation, self-correcting programs and bivariate polynomial
factorization.

1 Introduction

Supposeyou are given alarge set of pointsin the plane and
you are told that an overwhelming mgjority of these points
lie on one of & different algebraic curves of degree bound
d (but you are not told anything else about the curves).
Given the parameters k& and d, your task is to determine
or “reconstruct” these algebraic curves, or aternatively, to
group the points into sets, each of which is on the same
degree d curve. Related versions of this problem are also
of interest, such as extensions to higher dimensions, and a
setting where instead of the points being given in advance,
one is allowed to make queries of the form “what is the

*Princeton University, Supported by Dept. of Navy Grant
#N00014-85-C-0456, by NSF PY| grant CCR-9057486 and a
grant from MITL.

T Princeton University. Part of this research was donewhile at
Matsushita Information Technology L abs.

{Cornell University. Part of this research was done while at
Hebrew University and Princeton University and supported by
DIMACS, NSF-STC88-09648.

$U.C. Berkeley. Supported in part by NSF Grant No. CCR
88-96202.

Ronitt Rubinfeld*

Madhu Sudan?

value of one of the curves at point 2?'%. This problem
seems to be fundamental and its solution has a variety of
applications:

Computer Vision Consider a computer vision system for
a robot that picks parts out of a bin. The input to the
system contains an intensity map of the scene. The robot
can distinguish between the parts by extracting edges from
the image. Current edge detection algorithms use discre-
tised differential operators to extract edges (e.g. [23][9]).
These agorithms produce output consisting of a bit map,
where for every image point (z,y), the bit value of the
point, e(z, y), is set to 1 if and only if this point lies on
an edge. For many vision applicationsit is then desired
to connect between neighboring points to achieve a more
compact representation of the edge map. This problem,
known as “the grouping problem”, is complicated by the
fact that the parts are cluttered, they may be nonconvex,
they may contain holes, and the edges are distributed along
theimage creating nonconti nuous sequences of curves. No
polynomial timeal gorithm has been found for thisproblem.

Under the assumption that the edges of the parts are given
by piecewise algebraic curves, and that the edge detection
process produces results which are free of precision error,
our algorithmtransforms edge maps into piecewise polyno-
mial curvesin polynomial time. The second assumptionis
unredlisticin real computer vision applications. However,
we fedl that it may be possible to make a simple modifica
tion to our algorithm so that it worksin areal setting.

Learning Our mechanism can be used to extend some
well-known results on learning boolean functions to the
setting of learning real-valued functions. Here, we present
two specific instances of such situations:

e Inthe study of economics, the price-demand curveis
often considered to be well-described by an algebraic
function (eg. f(z) = ¢/z or f(z) = —a -z + b).
However, itisal so the case that thiscurve may change
[17]. In particular, there may be severa unknown
price-demand curves which apply in various situa-
tions - one may correspond to the behavior found

1 The answer to such a query will not specify which of the k
curves was used to compute the value.



when the country is at war, another may correspond
totypical behavior on a Sunday, athird may apply af-
ter astock market crash, and yet another behavior may
be found after a change in the tax structure. Some of
thefactorsthat determine which curve appliesmay be
obvious, however others (such as a change in behav-
ior due to the day of the week) may occur because of
more subtle reasons. The task of learning the price-
demand rel ationship may be decomposed intothetwo
subtasksof first determining the unknown curves, and
then learning what determines the move from one
curve to another. Our algorithm gives a solution for
thefirst task.

e A polynomial-valued decision list given by alist of
terms (conjuncts of literals), (D;)f_, over boolean
variables yy, ..., yn, and alist of univariate polyno-
mials, (f;)i4! in ared variable z, represents a real
valued function f asfollows:

f(:cayla .. '7yn) = fz(cc)

(where? istheleast index such that D;(y1, . .
true)

S Yn)iS

If thetermsarerestricted to being conjuncts of at most
c literals, we call it a polynomial-valued c-decision
list. Thisisan extension of the boolean decision list
model defined by Rivest in [24], where the polyno-
mials f; arerestricted to being the constants 0 or 1.

In [24], Rivest shows that the class of boolean c-
decision lists are learnable in polynomia time un-
der the Vaiant model of PAC learning. Using our
techniques, in combination with Rivest’s algorithm,
we can extend this result to show that the class of
polynomial-valued c-decision lists can be learned in
polynomial time.

Ingeneral, our resultsimply that any function oninput z and
boolean attributes (1, . . ., ym ) Whichuses(y1, . .., ym ) tO
select f; fromaset of polynomial functions f4, .. ., fr and
then computes and outputs f;(z), can be learned, as long
as the selector function can be learned.

Independent of our work, Blum and Chaasani [6] also
consider a model of learning from examples where the
examples may be classified according to one of several
different concepts. In their model an adversary controls
the decision of which concept would be used to classify
the next example. Under this model they study the task
of learning bool ean-val ued concepts such as k-term DNF's
and probabilistic decision lists.

Curve Fitting A typical curve fitting problem takes the
following form: Given aset of points {(z;, ;) };_, onthe

plane, give asimple curve that “fits’ the given points. De-
pending on the exact specification of the “fit” the problem
takes on different flavors: for instance, if the curve isto
pass closeto al the points, then thisbecomes a uniformap-
proximation problem [25], while if the curve is supposed
to pass through most of the points, then it resembles prob-
lemsfrom coding theory. Here, we consider a problem that
unifiesthe above two instances over discrete domains. For
example, given aset of ¢ points, with integral coordinates,
we consider the task of finding a polynomial with integer
coefficients, so that it is A-closeto al but an e fraction of
the points (if such a polynomial exists), where e need only
belessthan 1/2.

Self-Correcting Programs One motivation for this work
comesfrom theareaof self-correcting programsintroduced
independently in[7][21]. For many functions, one can take
programs that are known to be correct on most inputs and
apply a ssimple transformation to produce a program that
is correct with high probability on each input. But, how
bad can a program be, and till alow for such a transfor-
mation? There is previous work addressing this question
when the functions in question are polynomials (see for
example [21],[10],[11]). The results we achieve apply to
polynomialsas well asto more general forms of algebraic
functions, and subsume the best previously known results.

One particular situation where thisis useful isin the com-
putation of the permanent of a matrix, over a finite field.
Results of Cai and Hemachandra ([8]), when used in com-
bination with our results, imply that if there is an effi-
cient program which computes the permanent correctly on
anon-negligiblefraction of the input and computes one of
asmall number of other algebraic functions on the rest of
the inputs, then the permanent can be computed efficiently
everywhere.

Factoring Bivariate Polynomials In [4] Berlekamp gave
arandomized polynomial time agorithm for factoring uni-
variate polynomials over finite fields. In [18] and [13] it
is shown that the problem of bivariate factoring can also
be solved in polynomia time by reduction to univariate
factoring, using fairly deep methods from algebra. Our
techniques give a simple method to reduce the problem of
factoring bivariate polynomialsto that of factoring univari-
ate polynomials over finite fieldsin the specia case when
the bivariate polynomial splitsintofactorswhich aremonic
and of constant degree in one of the variables. Though the
results are not new, nor as strong as existing results, the
methods are much simpler than those used to obtain the
previously known results.



The k-Algebraic Black Box Modél

In most of the above situations, the difficulty isin grouping
the sample points, to determine which sample pointsarere-
lated - i.e. come from the same algebraic function. In order
to abstract this, we introduce a black box “reconstruction”
problem. The problem may be stated as follows.

Given a black box B, such that theinput/output
pairs (z,y) of the black box aways satisfy a
relationship of the form Q(z,y) = 0, where
@ is a bivariate polynomial of total degree %,
find an algebraic function? which describes a
rel ationship between the input and the output on
anon-trivia fraction of the points.

We call thisnew model of ablack box a k-algebraic black
box. This model captures situations where on any given
input, the black box may output one or more of the severa
algebraic functionsit represents. As a particular example,
Q(z,y) = Mi<i<i(y — fi(x)) would mean that the black
box choosesto output one (or more) of I different functions
fi(z), ..., fi(z) a every input z (thoughit isnot specified
which ones). This is a generdization of the black box
model used in [3],[15],[16],[28] and [29], where on input
z, theblack box outputs f(z) for f polynomia or rational
function. Whilethetarget we set for our analysisisthat we
recover at least one function f; such that many of the y's
satisfy y = f;(z), wecaniteratethisprocess, after stripping
off points from f;, to extract the remaining functions as
well.

The notion naturally extendsto multivariate functions, and
we describe it in terms of polynomials and rational func-
tions. In the case of multivariate functions the description
of thetarget polynomial or rational function might be very
large. In order to prevent this from requiring too much
running time (to produce the output function), we instead
reconstruct the function implicitly by giving a mechanism
to computeit: we give an efficient algorithm, which isal-
lowed to make queriesto the black box. Thus our problem
here is defined as follows:

Given a black box B, such that the input
z1,...,2, and the output y of the black

Z\We usethewords* algebraic function” to describe either poly-
nomials or rational functions. Both the notion and our techniques
of reconstructing extend to the more general case of algebraic
relations where the (z, y) pairs satisfy an irreducible polynomial
identity.

box always satisfy a relationship of the form
Q(z1,---,2n,y) = 0, where Q isan (n + 1)-
variate polynomia of total degreek, find, or pro-
vide a mechanism to compute a polynomial or
rational function which describes a relationship
between theinput and the output on anon-trivial
fraction of the points.

In addition, for both the univariate and the multivariate
cases, we consider extensions to noisy situations: e-noisy
k-algebraic black boxes, where the black box is allowed
to output arbitrary answers on an e fraction of the inputs.

Inthecasethat all thel functions, f1, . . ., fi, represented by
the black box are polynomials of degree at most d, we call
the black boxes (1, d)-polynomial black boxes, or e-noisy
(1,d)-polynomial black boxes.

Previous Work and Our Results

The setting where the black box represents a single poly-
nomial or rationa function, without noise, is the classic
interpolation problem and is well studied. Efficient algo-
rithmsfor sparse multivariate polynomial interpolation are
given in [28], [16], [3] and [29], and for sparse rational
functionsin[15].

The case where the black box represents a single function
with some noise has also been studied previously. In[5] it
isshown how to reconstruct aunivariate polynomial froma
(3 — 6)-noisy 1-polynomial black box and in [10] and [11]
it shown how to do the same for multivariate polynomials.
Reconstructing functions from a black box representing
morethan onefunction seemsto beapreviously unexplored
subject.

Our agorithmic results include the following: We give an
efficient algorithm for explicitly reconstructing univariate
polynomials and rational functions, over finite fields, Z
and @, from an e-noisy k-algebraic black box. The only
constraint imposed on e isthat our algorithmis only guar-
anteed to find an f; if the fraction of inputs for which the
black box answers according to f; is more than e. This
result is described in Theorem 2 for the case of recon-
structing a polynomial, but applies essentiadly as it is to
the case of extracting a rational function. The result can
also be extended to the case of other agebraic functions
(9. y = +/f/g, with f and ¢ polynomids), while still
tolerating a non-negligiblefraction of noise?.

3 The fraction of points from the good curve must outweigh
thefraction of noise by a multiplicative factor of d where d isthe



To reconstruct a polynomial, we first construct a bivariate
polynomial @’(z, y) whichis zero at all the sample points
and then use bivariate polynomia factorization to find a
factor of theform (y— f(z)). If itexists, f(z) then becomes
our candidate for output. We then show that if the number
of pointson f islargein the sample we see, theny — f(z)
has to be a factor of any @’ which al the sample points
satisfy.

For the general problem of implicitly reconstructing mul-
tivariate polynomials, we show how to reconstruct multi-
variate polynomials(or rational functions) over sufficiently
large finite fields, under the same restrictions on noise as
in the univariate case. Our technique here is to reduce the
multivariate reconstruction problem into a univariate re-
construction problem using a careful sampling technique.
We then use the univariate technique described earlier to
solve the new univariate problem.

A note about the specific representation of the output in
the case of multivariate polynomias: Thefact that we only
reconstruct the output implicitly should not be considered
a weakness, but rather a strength. In the particular case
that the target function isa sparse multivariate polynomial,
thisalowsfor the reconstruction of asmall set of explicitly
represented multivariate polynomials, by the interpolation
mechanisms of [16],[3],[28] or [15]. On the other hand, by
using the techniques of [ 19] we can a so continueto manip-
ulate the black boxes as they are for whatever purposes?.

Organization The rest of this paper is organized as fol-
lows. In Section 2, we describe our results for univariate
polynomias. These results, although presented in terms
of polynomials, can be applied directly to rational func-
tionsand other algebraic functions. In Section 3, we show
how to extend our results to multivariate functions. Here
too, the results are presented in terms of polynomials. Fi-
nally, in Section 4, we describe in more detail some of the
applications of our work.

maximum degree of y in the algebraic relation relating z and y -
Q(z,y).

£The mechanism of manipulating multivariate polynomials
and rational functions represented by black boxes was proposed
by Kaltofen and Trager in [19]. They show that it is possible
to factor and compute g.c.d.’s for polynomials given by such a
representation and to separatethe numerator from the denominator
of rational functions given by such a representation.

2 UnivariateBlack Boxes

In this section, we consider the problem of explicitly re-
congtructing the univariate polynomias fi, ..., fi, each
of degreeat most d, froma(k, d)-polynomial black box for
them. As mentioned earlier, these results apply to rationa
functions and extend to algebraic functions.

2.1 An Intermediate Mod€

As an intermediate step towards solution, we assume that
the black box outputs all of fi(z),..., fx(z) on any in-
put z. These are output in arbitrary order, which is not
necessarily the same for each z. We further assume that
there are no errorsin the output. We reduce the problem of
extracting the polynomialsto that of bivariate polynomial
factorization.

If on z the black box outputs {y1, .. ., yx }, we know that
Vi, 1 < i<k 3j,1<j<ksuchthay = fi(z).
Therefore, one relation satisfied by the input/output of the
black box is:

v(:cayla .. '7yk) EzH] (yz - f](:c)) =0

We can construct a related polynomia which will enable
usto recover the f;’s.

Consider thefunctionso; : F — F, i € [k] defined as

> I i)

SClk],|S|=i jeS

oi(z) =

(these are the primitive symmetric functionsof fq, ..., fz).

Observe that o;(z) can be evaluated at any input =z using
thegiven (k, d)-polynomial black box (in O(k log k) time).
Observe further that o, is a polynomial of degree at most
id. Hence evaluating it a id + 1 points suffices to find all
the coefficients of thispolynomial (if the black box outputs
every f;(z) for every z).

Now to find the functions f; from the functions o;, we
congtruct the following polynomial, in z and a new inde-
terminate y:

Q(z,y) = H(y + fi(=z))

Observe that @ can also be written as

Qz,y) = vE+ Ul(fc)yk_l + - +or(z)



Thus we can describe @ explicitly (in terms of its coeffi-
cients). To recover the f;’s now al we haveto do is find
the factors of the bivariate polynomia ). Bivariate fac-
torization can be done efficiently over the rationals ([13],
[18], [22]), and can be done efficiently (probabilistically)
over finitefields[12],[18].

We have shown the following:

Theorem 1 Let fy,..., fi be degree d polynomials over
Q, Z or afinite fild. Given a black box which on in-
put = outputs {fi(z),..., fx(2)} in arbitrary order, we
can recongtruct all the polynomials that it computes with
O(kd + 1) queries.

2.2 Noisy (k, d)-Polynomial Black Boxes

We build on the methods of the previous section to re-
construct information from a (k, d)-polynomial black box
which outputsthe value of one of k£ univariate polynomials
fi,--+, fx, On every input. Our method extends imme-
diately to the case where the black box sometimes out-
puts a value corresponding to none of the f;'s, an e-noisy
(k, d)-polynomial black box, and we present this result di-
rectly. The technique used to achieve this aso builds on
a procedure of Berlekamp and Welch [5], which (in our
notation) reconstructs a polynomial from a (1 — 6)-noisy
(1, d)-polynomial black box, where § can be arbitrarily
small.

Given an e-noisy (k, d)-polynomia black box B for the
polynomids fi, ..., fr, each of degree a most d, over a
finitefield F', let p; be defined as

p; = 12%[3 outputs f;(z) oninput z].

We show that with high probability, we can reconstruct
a polynomia f; from the e-noisy black box B, in time
polynomia ink, d and -1 providedp; > e.

Theorem 2 Let B be an e-noisy (k, d)-polynomial black
box representing the polynomials fi, ..., fi in z over a
finite field F (| F| > O(max{k?d?, ﬁ})). Ifp1 > €
then (with high probability) a set of at most & polynomials
of degree d can be reconstructed from B, such that f; is
amongst them, with O(max{k’d?, ;213 }) queries.

Our problem of reconstructing fi, ..
following problem:

., fr reduces to the

Problem 1
Given: ¢t pairsof points{(z1, 1), - - -, (@1, y:) }, such that

there exist polynomials fi, . . ., fi satisfying

Videg(f;) < d,andfor all but!valuesof j € [t],31 € [k]
st. fl(:c]) =Y.

(I isthe number of noise pointsin our sample.)

Problem: Find f4,..., fx.

Let S; be the subset of theindices j € [t] such that y; =
fi(z;) and let E be the set of indices of the error points,
i.e, E = [t]\ (UE_,S;). (By our definition |E| = 1.)

For every index j € S;, wehave y; — fi(z;) = 0. Thus
forindicesj ¢ E we have

(yj — fulzj)) * - (y; — frulzy)) =0

We can construct apolynomial W, of degree at most /, such
that W # 0, but for dl indicesj € E, W(z;) =0. Wis
simply the polynomid W (z) = [[;cg(z — ;).

Thus we get
Vielt], W(z)*(yj—fulz;))**(y— falz;)) =0

Expanding the product aboveto represent it asapolynomial
in y, we see that there are polynomiasin z, Ao,..., A,
deg(Am) <1+ mxd, 49 #0, st.

Vi€, Ao(:cj)*y;c—i—Al(:cj)*yf_l—l—---—I—Ak(:cj) =0

We now consider the following problem:

Problem 2

Given: ¢t pairsof points{(z1, y1), - - -, (#+, y:) }, and given
d, and I, such that there exist polynomials Ao, ..., A,
Ao #0,deg(Ap) <1+ m=*d,and

k
Viel, > Am(z;)*xyi ™ =0

m=0

Problem: Find Ao, ..., 4z.

We can obtain a solution to Problem 2 by substituting un-
knowns for the coefficients of the 4,,’s and solving the
linear system of equations that is obtained by the con-
straints of the problem statement above. If the solution to
Problem 2 were known to be unique, then by factoring the
bivariate polynomia Q(z, v), defined as

k
Q)= Y An(a) syt (1)

m=0

we could get a solution to problem 1. (Noticethat Q(z, v)
is effectively the same here asin Section 2.1 except that it
ismultiplied by afactor of W (z) here.)



Unfortunately, the solution to Problem 2 might not be
uniqueand the parti cular solutionto Problem 2 that we may
end up finding could be one that will not yield a solution
to Problem 1. The following lemma guarantees that under
certain constraints on the sizes of the sets Sy, .. ., Sk, the
solution to Problem 2 satisfies invariants which guarantee
aunigque solution to Problem 1.

Lemmal If |S;| > kd+1 then (y— fi(z)) | Q(z,v)

Proof: ~ Consider the univariate polynomia Q;(z) =
Q(z, fi(z))-

For all indicesj € S; wehavethat @;(z;) = 0. But Q;(z)
isapolynomia of degree a most kd + [ in z and hence if
itiszeroat |S;| > kd + 1 places, then it must beidentically
zero, implying that (y — £i(2))|Q(z, v) O

The lemma above guarantees that under certain circum-
stances, thefactorsof Q(z, y) do giveususeful information
about the f;'s, leading us to the proof of the theorem:

Proof: [of Theorem 2] We sample from the black box
t = O(max{k?d?, ;-1 }) times and then solve for the
polynomia @ as defined in Equation 1. We find all the
factorsof @ that arelinear and monicfactorsiny and output

the set of polynomiasg(z) suchtha (y — ¢(z))|@(z, v).

By Lemma 1 the output set will include f; if |S1| > kd +
|E|. By using Chernoff bounds we can show that, if the
z;'s are picked independently and at random then

Pr [(|51| < pit — cx/z_f) or |E| > et + cx/z_f] < 2¢=¢/2

Thus if t = ©(max{k?d?, -15}), we have that with
high probability |S1| > kd + | E| and hence our agorithm
performs correctly. |

3 Multivariate Black Boxes

In this section, we extend Theorem 2 to multivariate poly-
nomial black boxes over finite fields. Once again, we note
that this extends to more general cases. The methods of
Section 2 do not seem to extend directly to the general
multivariate case. Thisisdue to the possibly large explicit
representation of the function extracted from theblack box,
which makes it inefficient to work with. Instead, we use
techniques of pairwise independent sampling to reduce the
problem to aunivariate situation and then apply Theorem 2
to the new univariate problem.

Theorem 3 Given an e-noisy (k, d)-polynomial black box
innvariableszy, . . ., z,, over asufficientlylargefinitefield

F (|F| > max{4k2d?, ﬁ}) ablack box representation
of a polynomial f, which describes the output of the black
box on a fraction p (p > ¢) of the input space, can be
congtructed in time polynomial in &, d, n and ﬁ' if such
a polynomial exists.

Proof (sketch): Fix any candidate polynomia f which
describes the output of the black box on a fraction p of the
input space. We show how to reconstruct a small set of
polynomiaswhich includes f.

We use the techniques of [1] and [11] to probabilistically
construct asmall subdomain D of F™, parameterized by z,
such that the following properties hold:

1. D containsany two given points é and b. (In particu-
lar, we can ensure D(0) = é and D(1) = b.)
2. Overthedomain D, thepolynomial Q(z1, . . ., Zn, ¥)

can beexpressed asabivariatepolynomia inz, yi.e,
the function Q% (z,y) = Q(D(z),y) is a bivariate
polynomial.

3. D resembles a randomly and independently chosen
sample of F" of size |D|. In particular, with high
probability, the fraction of points from D where the

black box respondswith f(z1, ..., z,), isvery close
tothefraction of pointsfrom F™ where the black box
responds with f.

D can be constructed by substituting random cubic equa-
tionsin z for each variable, z;. The construction works
for large finite fields. The details of such constructions
are standard and omitted here. A description of a similar
construction appears for examplein [11].

Claim 2 For any two pointsa, be Fm, given adomain D
containing & and b with properties (2) and (3) listed above,
a et {(f1(a), A1(8)), .- -, (fi(@), £(5))} of values can be
reconstructed efficiently such that for some ¢, 1 < ¢ < [,

f:(a) = f(a) and fi(b) = £(b).

Proof: Reconstruct ! (! < k) univariate polynomials
fP,..., fP, inz, that represent al the candidates for f
restricted to the domain D. Due to Property (3) and Theo-
rem 2, thisis possiblein time polynomial in &, d and pie.
Evaluating these ! polynomialsat D(0) and D(1) givesthe
desired set of values. O

We are not quite done yet because we wish to some-
how sdlect the correct value from this set so as to
always output the value of the polynomial f. We
would like a method to consistently order the values

{(f1(a), f1(B)), ..., (£1(&), f1(b))} so that thesth valuein



the ordering always comes from f;. In order to achieve a
global ordering of this form we pick a reference point 7,
such that f;(7) # f;(#) if ¢ # 5. Thefollowing definition
and claim show that such a point exists.

DerINITION 3.1 For a multivariate polynomial
Q(z1,...,zn,y) of degreek iny, andtotal degree kd, with
no repeated factors, a reference point is a point # =<
r1,...,7, > such that the polynomial f:+(y) given by Q
restricted to 2 = + has no repeated factors®.

Claim 3 A random point in F™ is a reference point with
probability > 1/2.

Proof (sketch): Let A(zy,...,z,) be the discriminant
(see [26], for instance, for a definition of discriminant) of
thepolynomia Q(z1, - . ., z», y) when viewed asapolyno-
mial in y with coefficients that are degree kd polynomials
inzy,...,z,. Observethat the discriminant satisfies the
following properties:

e A isnotidenticaly zero, because @ has no repeated
factors.

e A isapolynomid in zy,...,z, of total degree a
most 2k2d (sinceit isapolynomial in the coefficients
of y of total degree at most 2k).

Thusif |F| > 4k2d, then

N —

Precomm[A(F) # 0] >

But this implies that the polynomia f:(y) = Q(#,y) has
a non-zero discriminant, implying f:(y) has no repeated
factors, and 7 isareference point. |

The values of the & polynomiason #, {s1,..., sz}, can
now be used to fix a “globa” ordering of the candidate
polynomids fi, . .., fi asfollows: Fix an arbitrary order-
ing sy, ...,s; and let f; be the (unique) polynomia that
evaluatesto s; a #. Now, on inputE € F™, the black box
for f; doesthefollowing:

e Construct a domain D, such that D(0) = # and
D(1) = b and properties (2) and (3) hold.

e Usetheunivariate reconstruction technique to recon-
struct the univariate polynomias 2, .. ., f2.

e Findj suchthat f7(0) = ;.

®Note that if Q(&,y) = TTX, (y — f:(z)), thisis equivalent
to the condition that f;(#) # f;(#) wheni # j.

e Output £ (1).

4 Applications

Inthissection, wedescribetheapplication of our techniques
to some of the areas mentioned in the introduction. The
other applications are more straightforward, and we will
givethe complete detailsin alater version.

41 (e,A) Interpolation Problems over Discrete
Domains

Consider the task of fitting a low degree polynomia on
a given set of points, so that the majority of the points
are “closg” to the polynomial, while some fraction of the
pointscan bevery far away. Welook at such computations
over discrete domains. For example, over Z, (or over the
integers) the problem can be formulated as:

Problem 3

Given: t pairs of points, {(z1,¥1),.-., (2 %)}, and e,
such that there exists a polynomial f, of degree at most d,
so that

for all but et values of j in [¢]

T € [—A, A] st y; = f(CC]) +1

Problem: Find f.

This is exactly a (2A + 1, d)-polynomial black box re-
construction problem and the reconstruction procedure of
Section 2.2 can be used to find one of the polynomials
fi(z) = f(=) + 4 (or asmall set of polynomias which
includes f).

We know that there exists a bivariate polynomial Q(z, v)
such that Q(z;,y;) = 0 fordl ¢ = 1,...,¢. Thisisthe
polynomial: Q(z,y) = W () - TI; (y — fi(x)), where f; is
the polynomia given by f;(z) = f(z) +14, ¢ € [-A, A],
and W (=) isdefined by all the pointswherethey coordinate
ismorethan A away from f(z) (asin Section 2.2), so that
deg(W) < et.

From Theorem 2 we get the following claim:

Claim 4 If there exists an ¢ such that the fraction of points
for whichy = f;(z) isbigger than e, then we can find f;.



A small set of polynomialsthat is guaranteed to contain f,
is{fi +J : j € [-A, A]} wherethe f;’s are the outputs
of the reconstruction algorithm.

Wewant to be ableto handlesituationswheree isarbitrarily
closeto 1/2. Using our mechanism directly means that the
e that our agorithm can handle depends on A. Thisis
because there must bean s € [—A, A] such that more than
et of thepointsareon f(z) + . Animportant point to note
isthat we can artificially decrease the influence of the bad
points. This is due to the role of these pointsin defining

Q(:cvy)'

To do this, vxe look at the following set of points:

i i\t 2 i _ - ;
{(=3, yj)}jzl’i_zo,_where z; = =, andy; =y; — A+
(From each point in the original sample, we generate 2A
additiona points, by adding and subtracting up to A to the
y coordinate of each point.)

Observethat thefollowing conditionshold for the(2A+1)¢
points so constructed:

e There existsapolynomia @(z,y) of degree at most
et+(4A+1)dsuchthat Q(z, y) = 0foral thepoints.
Thisisthe polynomia: Q(z,y) = W(z) -4, (y —
fi(z)), where W (z) isasbefore, and f;(z) = f(z)+
1 — 2A.

e Atleast (1 —€)t of thepointssatisfy y = f(z). This
isbecause for every pointintheoriginal (z;, y;) such
that y; iswithin A of f(z;) (and therewere (1 — €)t
such points), one of the new (z%,y:) pairs satisfies

y; = f(z}).

Claim5 Ife < % then we can find all functions f such that
f isA-closeto all but an e fraction of the points, provided
¢~ (4a41)d
1-2¢

Proof: Findapolynomia Q'(z, y) suchthat @' (z,y) =0
for all thepointsand degree of Q' isat most et + (4A +1)d.
Ifet+(4A+1)d < (1—e)t thenby Lemma 1 weknow that
for every candidate function f whichformsan (e, A) fiton
the given points, (y — f(z)) divides@’. Thusfactoring @
will give usal the candidates. |

4.2 Reducing Bivariate Factoring to Univariate
Factoring

In Section 2.1, we saw how to reduce the problem of recon-
structing polynomial black boxes to the problem of factor-
ing bivariate polynomials. Inthe specific case of univariate
polynomial black boxes, we can a so reduce thereconstruc-
tion problem to that of factoring univariate polynomiasto

theirirreduciblefactors. Asaninteresting consequence, we
find asimple way of showing that over finite fields, factor-
ing special bivariate polynomialsis reducible to factoring
univariate polynomias. There are known methods to re-
ducefactoring of bivariate polynomia stothat of univariate
polynomials[18], however this result is interesting in the
sense that the reduction, as well as the proof of its cor-
rectness, are extremely simple and use very basic algebraic
tools.

Suppose, as in Section 2.1, we want to know fi, ..., fx,
univariatepolynomials, each of degree at mostd. However,
all we haveisablack box - B, that a any given point - z
- outputs the unordered set {f;(z)}. Sampling from the
black box, and interpolating, we can find the polynomial
t(z) = Hle fi(=) explicitly (in terms of its coefficients).
If somehow we could guarantee that at least one of the f;'s
isirreducible, we could factor ¢ tofind f;. Such aguarantee
isnot available, but we simulate it via randomization.

Let a(z) € F[z] be a random degree d polynomial.
We can convert the given set of sample points so
that on each input z we have the (still unordered) set
{g1(2),...,gr(z) g:(z) = fi(z) + a(z)}. Each of
the polynomias g; is a random degree d polynomid (but
they are not necessarily independent). We then use the fact
that random polynomials over finite fields have a reason-
able chance of being irreducible.

Lemma6 ([20], p.84) The probability P,(d) that a ran-
dom polynomial, of degree d, is irreducible over F,, isat

1 1

We can thusinterpolate (after sampling at enough - kd + 1
- points) and explicitly compute ¢'(z) = Hle g:(z). We
factor ¢’ intoirreduciblefactorsry - - - - - r;. For each factor
r; of ¢/, we verify whether or not »; — « isa candidate for
one of the f;’s by checking that it evaluates to one of the
outputs of the black box B on all the sampled points. By
Lemma 6 we know that with non-negligible probability g,
isirreducible and if this happens, we find g; as one of the
factors of ¢’ (one of ther;’s). Subtracting « from g; gives
us f;, which will pass the candidacy verification.

Lemma?7 If a degree d polynomial p agrees with one of
the outputs of the black box on kd + 1 different z's, then p
agrees with one of the outputs of the black box on all z’s.

Proof: If p agrees with one of the outputsof the black box
on kd + 1 different z's, then by the pigeonhole principle
there is a polynomial f; which agrees with p on at least
d + 1 different z’s. Thusp = f;. a

Thus, nor; whichisnot equal to oneof theg;’swill passthe
candidacy verification. By repeating thisprocedure enough



times and outputting al the candidates, we can reconstruct
al thepolynomias{ fi, ..., fr }. Straghtforward analysis
shows that the expected number of times that we need to
repest the process (choose random «) is O( k/P,(d) ) to
be ableto reconstruct al of the f;’s. Refining the analysis,
we can show that O( ln k/ P, (d) ) times suffice.

From the above, we get thefollowing algorithmfor finding
the monic linear factors of a bivariate polynomial Q(z, y).

pr ogr am SimpleFactor
repeat O( lnk/P,(d) ) tines
pi ck a random degree d pol ynom al
a(z) over F
factor Q(z,a(z))
for every factor g(z) of Q(z,a(z))
if (y+9(z) —a(z)) divides Q(z,y)
out put (y + g(z) — a(z))
end

Claim 8 Given a bivariate polynomial Q(z, y), over a fi-
nitefield F', of total degreeat most kd, thealgorithmSimple
Factor findsall thelinear and monic factors of Q(z, y).

We next extend this mechanism, and apply the reconstruc-
tion mechanism of Section 2.2 to the problem of findingthe
factors of @(z, y) which are monic and of constant degree
iny. Our mechanism tries to isolate some factor A(z, y)
of Q(z, y) of theform

A(CC, y) = yc + al(:c)yc_l + ce + ac(:c)

where the a;’s are polynomias in z of degree at most d
(and ¢ is aconstant).

For each ¢ € [¢] we construct a program P; for a;, such
that the output of this program on any z isfrom asmall set
of polynomias, and is guaranteed to contain a;(z). This
program can be thought of as a black box for a;. We then
use our reconstruction procedure (Theorem 2) to produce,
foreach ¢ € [¢], asmall list of polynomialswhich contains
a;. This,inturn, givesasmall set of polynomiasinz and y
which contains A(z, y). A(z,y) can beisolated from this
set by exhaustive search.

The program P; for a; worksasfollowsoninput z;:
e P; constructs the polynomid Q.,(y) = Q(z1,y)
(whichisapolynomial in y) and factors @, .

e Let S bethe set of factors of Q,,. (S contains poly-
nomiasiny.)

e Let 5S¢ bethe set of polynomialsof degree ¢ obtained
by taking products of polynomiasin S.

e P; picksarandom polynomia f in S¢ and outputsthe
coefficient of ¢* in f.

To see that P; computes a; on some inputs, observe that
Az, (y) = A(z1,y) divides @, and hence appears in the
set 5S¢ (whichistheset of all degreec factorsof Q.;,). Thus
with non-negligible probability, when P; picks a random
element of 5S¢, itislikely to be 4., (y) and hence when P;
outputsthe coefficient of 4* fromthispolynomial it outputs
a;(z1) correctly.

On the remaining inputs, P;’s output isin error, but isthe
value of some polynomial, so that the value output in this
case isobtained from an a gebrai c combination of e ements
y; which satisfy Q(z1,y) = 0, and this corresponds to
situationsfor which we can solve.
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