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Abstract

We introduce a new method, called Priority Encoding Transmis-
sion, for sending messages over lossy packet-based networks. When
a message 1s to be transmitted, the user specifies a priority value for
each part of the message. Based on the priorities, the system encodes
the message into packets for transmission and sends them to (possi-
bly multiple) receivers. The priority value of each part of the message
determines the fraction of encoding packets sufficient to recover that
part. Thus, even if some of the encoding packets are lost enroute, each
receiver 1s still able to recover the parts of the message for which a
sufficient fraction of the encoding packets are received.
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For any set of priorities for a message, we define a natural quan-
tity called the girth of the priorities. We develop systems for imple-
menting any given set of priorities such that the total length of the
encoding packets is equal to the girth. On the other hand, we give
an information-theoretic lower bound that shows that for any set of
priorities the total length of the encoding packets must be at least the
girth. Thus, the system we introduce is optimal in terms of the total
encoding length.

This work has immediate applications to multi-media and high
speed networks applications, especially in those with bursty sources
and multiple receivers with heterogeneous capabilities. Implementa-
tions of the system show promise of being practical.

1 Introduction

In many multi-media applications, long messages are to be transmitted in
real-time across multiple network links. A message is not sent as one unit,
but broken into packets that are sent through the medium. Bit corruption
may occur in packets due to transmission, but these can be handled on a
link-by-link basis using error correcting techniques. Thus, we can assume
that packets are indivisible units that arrive intact if they arrive at all. Once
the packets are sent, some of the packets may arrive promptly, but arbitrary
subsets of packets may be lost or delayed beyond the point of usefulness
due to global conditions in the network such as congestion, buffer overflows
and other causes. We hereafter call media with this property lossy media.
At some point in time, the receiver cannot wait for packets any longer and
must recover as much of the original message as possible from the packets
received.

It seems highly plausible that packet loss as described will be an or-
dinary phenomena for reasonably priced networks that connect millions of
users spread around the world simultaneously running a multitude of high
bandwidth real-time applications. Furthermore, packet losses will not be
spread uniformly over the network, but may vary between different sites
and may fluctuate over time. Thus, it could be argued that, analogous
to noise being the nemesis of analog communication, and error being the
nemesis of digital communication, loss will be the nemesis of packet-based
wide-area real-time communication.

This paper proposes a general and flexible method to cope with packet



loss, which we call Priority Encoding Transmission (PET). The user parti-
tions the message into segments and assigns each segment a priority value.
Based on their priority values, the segments are encoded into a set of pack-
ets. The priority value of a segment specifies the fraction of packets sufficient
to decode it. The system guarantees that a segment can be decoded from
any subset of packets as long as the fraction of packets in the subset is at
least equal to the segment priority value.

In the networking community encoding systems which allow recovery
of the message from only a subset of packets of the encoding have been
proposed, for example a system based on Reed-Solomon-codes was suggested
by [16, McAuley] and empirically evaluated by [8, Biersack]. A similar
encoding system has been proposed by [16, Rabin]. He uses essentially the
same coding techniques that are used in this paper. However, these systems
allow only one priority level for the entire message.

[17, Shacham] also suggests methods for sending prioritized messages
over networks. The basic idea is to partition the message into different
priority levels and then use a different channel to send each level. Then, each
receiver attaches to as many of these channels as possible, in order of their
priority, up to the channel capacity between the sender and that particular
receiver. However, this method requires computation of channel capacities
from the sender to each receiver, which may be impractical for large networks
with capacities that vary quickly because of congestion. Furthermore, this
work does not handle packet losses.

Section 2 describes potential applications of the PET system to trans-
mit multicast video images over heterogeneous lossy networks. Section 3
gives the formal requirements of both deterministic and probabilistic PET
systems. A PET system is described in Section 4. We also review erasure-
resilient codes in this section, as these are one of the main building blocks
of our constructions. Section 5 gives an information-theoretic lower bound
proof on the total length of the encoding packets produced by a PET sys-
tem. Section 6 describes a (weak) lower bound on the packet length for any
PET system.

Little effort is made to make the systems efficient. [9, Blémer et al.]
describes an efflicient implementation of the main building block of any PET
system. A preliminary version of this paper appeared in [1].



2 Video Multicasting

Information from the sender must be received by all users participating in the
multicast session. Present applications use protocols that retransmit missing
information when communicating with multiple receivers. Consequently, the
information rate is determined by the worst case receiver. Thus, there are
difficulties when these protocols operate using lossy networks.

Priority Encoding Transmission is especially suited to implementing mul-
ticast protocols on lossy networks. For example, consider a straightforward
video conferencing multicast protocol using either JPEG or MPEG. It turns
out that the quality of the displayed video degrades rapidly for both JPEG
and MPEG as a function of the number of packets lost in transmission, and
this degradation is much more dramatic for MPEG than the less highly com-
pressed JPEG. Both JPEG and MPEG apply a discrete cosine transform to
the video image to produce what is hereafter called a message [21, Wallace],
[14, Le Gall]. Besides allowing a highly compressed representation of the
image, this message has a nice property. Consider ordering the information
in the message so that the lowest frequency coefficients come first followed
by successively higher frequency coefficients. The nice property is that the
quality of the image that can be reconstructed from a prefix of this ordered
message improves gracefully as a function of the length of the prefix. Thus,
the information at the beginning of the message is more important than that
at the end. A PET system can be used to protect the different parts of the
message from losses according to their importance.

A simpler way to protect MPEG using a PET system is by prioritizing
over the different types of frames used in MPEG. An MPEG stream consists
of a sequence of so-called I-,P-, and B-frames. Each I-frame can be displayed
independently of the other frames. A P-frame needs information of the pre-
vious I-frame to be displayed correctly. Each B-frame refers to the previous
and the following I- or P-frame. This defines a natural priority order for
the different types of frames, I-frames are the most important frames, then
come the P-frames. The B-frames are the least important frames. A PET
system can be used to protect I-frames more against losses than P-frames,
which in turn are protected more than B-frames. This approach has been
taken in [13]. The results are promising.



3 Requirements of a PET system

We assume throughout this paper that there is a basic word size w which
is long enough to implement all of the encoding schemes we describe. For
all the schemes, w > log(e), where e is the total number of words in the
encoding, is more than sufficient. In practice, a normal computer word of
length 32 is more than enough to support all reasonable length encodings,
i.e., encodings of up to over four billion words. In the sequel, all information
is implicitly specified in units of words of length w unless otherwise stated.

3.1 Deterministic PET systems

In this system the encoding and decoding is done deterministically. A guar-
antee is given that once a certain fraction of the encoding is received the
decoding of certain pieces of the message is always successful.

Definition 3.1 (PET system) A PET system with message length m,
packet size [, n packets, and encoding length e = nl consists of the fol-
lowing:

(i) An encoding function E that maps a message M of length m onto
an encoding E(M) of total length e consisting of n packets of { words
each, i.e. e = nl.

(ii) A decoding function D that maps sets of at most n packets onto m
words.

(iii) A priority function p that maps {1,...,m} to the interval (0,1].

The guarantee of the system is that, for all messages of length m and for
all i € {1,...,m}, D is able to decode the i'" message word from any p;
fraction of the n encoding packets.

Convention: Throughout this paper we assume that each packet has a
unique identifier written in its header. The number of bits necessary to
represent this identifier is not considered as part of the packet size.



This convention is justified because packets usually contain such an iden-
tifier in the header information anyway, and in any case the identifier is
typically very small compared to the rest of the packet. The identifier is
used in the decoding process to identify which portions of the encoding have
been received.

Throughout this paper we assume without loss of generality that the
priority function is monotonically increasing, i.e., p1 < p3 < -+ < pp.
Thus, p; can also be thought of as the fraction of encoding packets needed
to recover the first ¢ words of the message.

In our implementations of PET systems ([2], [13]) the user specifies the
message length m, the packet length ¢, and the priority function p, and
the system computes the number of encoding packets n and implements the
encoding and decoding procedures that achieve the guarantees as specified
in Definition 3.1.

An important measure of a priority function is the following.

Definition 3.2 (Girth of a priority function/PET system) Let p be
a function mapping {1,...,m} to the interval (0,1]. The girth of p is
girth, = Z 1/p;.
te{l,...m}

The girth of a PET system is the girth of its priority function.

In a PET system with priority function p, each p; fraction of the encoding
must determine the ¢-th message word M;. Intuitively, this implies that each
p; fraction of the encoding must contain at least one word of information
about M;, and thus the entire coding must contain at least 1/p; words of
information about M;. Therefore, intuitively the encoding contains girth,, =
> ie(t,..,m} 1/pi words in total about the message. Hence, it is reasonable to
expect that such a system is possible only if the total length of the encoding
is at least girth ;. The following theorem shows that this intuition is correct.

Theorem 3.3 For any priority function p, if there is a PET system with
priority function p then the total encoding length is at least girth ,.

A formal proof of this theorem is given in Section 5.

It will also be shown (Theorem 4.3) that, for a given priority function p,
a PET system with a priority function p’ that closely approximates p can
be constructed with total encoding length girth .



3.2 Probabilistic PET systems

In the model described in this section the encoding and decoding is done via
randomized algorithms. Unlike in the previous model the decoding guaran-
tee is only with high probability. As mentioned at the end of Section 4.3,
probabilistic PET systems based on probabilistic erasure-resilient codes (see
the end of Section 4.1) admit faster encoding and decoding algorithms than
deterministic PET systems.

Definition 3.4 (probabilistic PET system) A probabilistic PET system
with message length m, packet size £, n packets, encoding length e = nl,
failure probability p > 0 and using r random bits consists of the following:

(i) A family of encoding functions E¥, R € {0,1}", that map a message
M of length m onto an encoding consisting of n packets of { words
each, i.e. e = nl words.

(ii) A family of decoding functions D¥, R € {0,1}", that map sets of at
most n packets onto m words.

(iii) A priority function p that maps {1,...,m} to the interval (0,1].

The guarantee of the system is that, for all messages M of length m, for
alli € {1,...,m}, and for any p; fraction of the n encoding packets, if the
function ER was used for the encoding then with probability at least 1 — p
the function DT decodes the it" word of the message from this subset. The
probability is with respect to the uniform distribution on the random string

R €{0,1}".

In the probabilistic model it is assumed that a common random string
R is used for the encoding and the decoding. Once the string R has been
selected the encoding and decoding is deterministic. We stress that the
failure probability is not over a particular distribution over the messages. For
any fixed value of R an encoding/decoding pair E¥, D succeeds or fails on
certain subsets of packets, independent of the message. This is a reasonable
definition if in practice the set of packets that are lost is independent of their
contents, but can depend on their identifiers in an arbitrary way.

The priority function p has a similar meaning as in the deterministic
model, except that even if more than a fraction p; of the encoding packets are



received there may still be a chance (at most p) that the decoding function
fails to decode the i-th message word.

In Section 5 we show that Theorem 3.3 can be generalized to probabilistic
PET systems in the following way.

Theorem 3.5 For any priority function p, if there is a probabilistic PE'T
system with priority function p that achieves a failure probability p then the
total encoding length is at least (1 — p) - girth,,.

4 A PET System

We describe a general method that takes any given message length m, packet
size ¢, and priority function p and produces a PET system with a new
priority function p’ that closely approximates p, such that the total length
of the encoding packets is girth .

The method to produce a PET system works by first partitioning the
message into blocks based on the priority function p, and then using the
partition to implement a PET system based on erasure-resilient codes.

In the first subsection we describe erasure-resilient codes. In the sec-
ond subsection, we assume we have the partitioned message and show how
to implement a PET system based on erasure-resilient codes. Finally, we
describe an algorithm that accepts the description of an arbitrary priority
function p and produces a partitioned message.

4.1 Erasure-Resilient Codes

An erasure-resilient code is specified by a triple (m,n,d). There is both
an encoding algorithm and a decoding algorithm. The encoding algorithm
encodes an m-word message M into an n-word encoding /(M) and has the
property that the encodings of two different messages differ in at least d
words.

Note that by the definition of d, any message M is uniquely distinguished
from any other message by any n —d + 1 words of its encoding F(M). The
decoding algorithms we consider are able to uniquely and efficiently recover
M from any n — d+ 1 words of F(M). It is impossible to always be able to
recover a message of length m from less than m words of the encoding, and



thus it is always the case that m < n — d + 1. Furthermore, the larger the
value of d the better the recovery properties of the decoding. In the best case,
when d = n — m+ 1, the code is called in the literature a maximum distance
separable (MDS) code (see for example [15]). In this case the message can
be recovered from any portion of the encoding (in units of words) equal to
the length of the message. In this paper, all codes are MDS unless otherwise
specified.

The decoding algorithm needs the indices of the words of F(M) it re-
ceives to help in the decoding process. When erasure-resilient resilient codes
are used to implement a PET system, this requirement is satisfied because
of the convention mentioned previously that each packet contains a unique
index.

One implementation of erasure-resilient codes is the following. The mes-
sage M is viewed as describing the m coefficients of a univariate polynomial
of degree m — 1 over GF[2*]. Call this polynomial . The j** word of the
code consists of the value of the polynomial GG evaluated at the field element
Jj € GF[2*]. Since G is of degree m — 1, any m words (together with the
indices of the words) uniquely determine . The message M, i.e., the coef-
ficients of G, can be recovered from any m words by interpolation. Since we
need to evaluate the polynomial at n different points this method requires
2% > n.

Using standard evaluation and interpolation algorithms, for this erasure-
resilient code the encoding and decoding both require a quadratic number of
field operations. Using the Discrete Fourier Transform, this can be reduced
to O(nlogm) field operations for the encoding and O(mlog? m) field oper-
ations for the decoding. The practical value of these methods is doubtful.

A practically efficient erasure-resilient code has been described in [9,
Blomer et al.]. It is a variant of Reed-Solomon-codes that is based on so-
called Cauchy matrices (see the references in [9]). This implementation takes
quadratic time for both the encoding and decoding. However, it is efficient
enough to support existing real-time video applications implemented on cur-
rent workstations (see [13]). This code is also systematic, i.e., the unencoded
message is part of the encoding. This has the advantage that the decoding
time depends only on how much of the unencoded message is missing, and
in particular the decoding is trivial if none of the unencoded message part
of the encoding is missing.



A different family of codes, called (1 + €)-MDS codes, that have slightly
weaker erasure-resilient properties than the MDS-code described above have
been described and constructed in [4, Alon et al.] and [5, Alon, Luby]. For
these codes, the requirement is that the message can be recovered from
any (1 4 €)m words of the encoding. Here € is an adjustable parameter
that is used to establish a tradeoff between the erasure-resilient properties
of the code and the efficiency of the encoding and decoding procedures.
The codes are based on expander graphs and, for constant ¢, admit linear
time encoding and decoding. At present their practical value is doubtful.
However, probabilistic codes based on the ideas in [4],[5], on the codes using
Cauchy matrices and on ideas from [18, Spielman] show promise of being
more efficient than deterministic codes in practice. As mentioned at the end
of Section 4.3, these codes can be used directly to implement probabilistic
PET systems that have faster encoding and decoding algorithms.

The erasure-resilient codes based on Cauchy matrices require that the
word size w satisfy

w — 1 > max{log(m/w),log(n — m/w)}. (1)

Theorem 6.1 found in Section 6 proves an almost matching lower bound
for the word size of any erasure-resilient code.

4.2 Block Systems

The input parameters for a PET system are a message length m, a packet
length £, and a priority function p. The first step in constructing a PET
system is to compute the total number of encoding packets n and to partition
the message into £ blocks. This first step is described in the next subsection.
In this subsection, we show how to implement a PET system given this
information.

An (-partition of m consists of a sequence of positive integers (mq, ..., my)
such that > .crq sy m; = m. Let M be a message of length m, and let
By,...,B; be the { blocks of M with respective lengths mq,...,ms. We
now describe how to implement a PET system based on an (-partition of
m and on the total number n of encoding packets. The PET system puts
information about block B; into the jt" word of each packet.

10



Lemma 4.1 Given n and an (-partition (mq,...,me) of m, there is a PET
system consisting of n encoding packets containing £ words each such that
the priority value for all words of the message in block j is m;/n.

Proof of Lemma 4.1: Let By,..., By be the blocks of M, and thus the
length of B; is m;. The idea is to use a separate erasure-resilient code for
each of the ¢ blocks of the message. The j** erasure-resilient code is used
to encode B; into a code F; consisting of n words. The entire encoding
consists of n packets of size ¢ each, where the k' packet consists of the
concatenation, for j € {1,...,£}, of the k* word from the code E;. The
decoding works in the obvious way.

Since we use an erasure-resilient code for each block, all words in the
same block have the same priority value. Any m; words of the code F;
suffice to recover block B;. Since there is one such word in each packet, it
follows that a fraction m;/n of the n packets are sufficient to recover B;.
Thus, the priority value of all words in block B; is as claimed.

In the system described above, each packet needs to contain an identifier.
Although this is part of the packet, we did not include it in the packet size
because of the convention stated in Section 3.

We give two examples of block systems.

Example 1: This is an example where the fraction of the packets needed to
recover a message word is linear in its index. For a given message length m,
let the packet length be ¢ = log(m). Forall j € {1,...,(}, let B; be the next
m; = 27 consecutive words of the message, and let the number of packets be
n = 2m. Note that all words in B, can be recovered from a fraction 2/~ /m
of the packets. Also, the total encoding length is 2m log(m).

Example 2: Suppose the message length is 800, the packet length is 10,
and the 10-partition of the message is (60,60,75,75,75,75,95,95,95,95),
and the number of packets is 100. Note that the first two blocks can be
recovered from any 60% of the packets, the next four blocks from any 75%
of the packets, and the remaining four blocks from any 95% of the packets.
The total encoding length in this example is 1000 words, and thus the total
message length is an 80% fraction of the total encoding length.

11



4.3 Partitioning a Message

We assume that the priority function p for a message of length m specifies
d different priority levels, where d is smaller than the packet length ¢. This
is not a big assumption in practice, as IP packets for transferring data at
reasonably high rates are typically between 500 and 1500 bytes long (which
is between 125 and 375 words assuming 4 bytes per word), and usually 10
priority levels is more than sufficient. Let (aq, ..., aq) be a d-partition of m,
and let p = (p1,...,pa) be the corresponding priority values of the blocks,
i.e., all words in block ¢ of the partition have priority value p;.

Our goal is to produce an (-partition of m and the number of encoding
packets n that can be directly used to implement a PET system based on
Lemma 4.1. The basic idea is to refine the original d-partition in a simple
way, although we must take care of some technical details due to round-off
errors.

Refinement Procedure:

(1) Compute g = girth, = Seq...y i/
(2) Compute n = hf;dw.

(8) Forall i € {1,...,d}, compute 3; = [p;n].

(4) Yor all ¢ € {1,...,d}, subpartition «; into at most [a;/53;] pieces of

length at most 3; each.

Lemma 4.2 On input m, {, a d-partition {oq,...,aq) of m, and corre-
sponding priority values (p1, ..., pq), the Refinement Procedure produces
a refined partition and n with the following properties:

(1) The refined partition has at most { parts.

(ii) The value of n satisfies n < 725 + 1.

(iii) Each part in the refinement of the i'" part of the d-partition has length
al most pn + 1.

Proof of Lemma 4.2: To prove (i), note that the number of parts in the

St i i i t=d
refined partition is at most d+3 ;e g4 @i/ Bi- Because 3t < AL < 2o =28,

12



and by definition of g, it follows that 37,c(; 5 ai/B8; < {—d, and thus the
total number of parts is at most d + ({ — d) = {. The proofs of parts (ii) and
(iii) follow directly from the definitions.

Theorem 4.3 On input message length m, packet length {, a d-partition
(a1, ...,aq) of m, and corresponding priority values (p1, ..., pd), there is an
efficient procedure that produces a PET system with priority function p’ and
n encoding packets with the following properties:

(1) The total encoding length is nl < —fi_rtdl}% 4 /.

(ii) All words of the message in the i*" block of the d-partition have priority
value p < p; + /m.

Proof of Theorem 4.3: The proof follows by a direct combination of
Lemma 4.2 and Lemma 4.1. The only detail missing in the proof of part (ii)
is that since nl > g > m, n > m/{, and thus 1/n < {/m.

Example: Suppose the packet length is 250, and a message of total length
100K is partitioned into five priority levels described by the five partition

(10K,10K,20K,30K,30K)
with associated priority values
(.50, .60,.65,.80,.95).

The girth of the priorities ¢ computed in step (1) of the Refinement Pro-
cedure is 136.5 K, and thus the total number of packets n computed in step
(2) is 558. In step (3), the computed lengths of the pieces are

(279,335,363,447,531),
and the number of pieces of each is at most

(36,30,56,68,57),

13



respectively, for a total of 247 pieces (recall that 250 is the target value).
The total length of the encoding is 139.5K, which is only 2% more than the
girth of the original priorities. The priority values for the resulting PET
system are

(.500,.600,.651,.801,.952),

i.e., extremely close to the specified priorities. Note that if there were only
one priority level with the same amount of overall redundancy then it would
be possible to recover the message from any .72 = 100/139.5 fraction of the
encoding, i.e., a fraction that is somewhere in the middle of the five priority
values.

The refinement procedure implemented in [2] is based on the refine-
ment procedure described above, except that it doesn’t necessarily produce
a refinement of the d-partition. It alleviates the effect of the round-offs
by moving through the d-partition from the beginning to end, refining the
partition as described above, except that the last block of the (-partition
associated with a particular part of the d-partition may be padded out with
some words of the subsequent block of the d-partition. It also adjusts the
number of packets downwards until all the words of the packet are used (in
the example above, three words of the packet were left unused, and thus the
total encoding length is slightly more than the girth of the new priorities).

A probabilistic PET system with theoretically more efficient encoding
and decoding times can be constructed similar to the deterministic scheme
described above, where the theoretically more efficient (1 + €)-MDS prob-
abilistic erasure-resilient codes of [4], [5] are used in place of deterministic
MDS erasure-resilient codes.

5 Lower Bound on the Encoding Length

This section proves Theorem 3.3, i.e., for any priority function p, any PET
system with priority function p has total encoding length at least girth,.
Using similar methods, we also prove Theorem 3.5, i.e., for any priority
function p, any probabilistic PET system with priority function p and failure
probability p has total encoding length at least girth, - (1 — p).

The proofs we give here are alternatives of our original proofs of the same
results. The alternate proofs were found by Noga Alon and independently
by Stephan Boucheron. They follow the same basic outline as the original

14



proofs, but they are more elegant than the originals because they use entropy
measures instead of geometric measures of information.

Theorem 5.1 Let 7q,...,7, be m finite alphabets and let o1,...,0, be n
finite alphabets. Suppose we have a (deterministic) scheme that encodes
each possible vector M = (M, ..., M,,), where M; € 7;, by a vector F =
(Eq,..., L), where I; € 0. Suppose that 0 < py < ps < ... < p, <1,
and the value of M; can be correctly recovered from the values of any set of
at least p;n of the coordinates of . Then,

ZM <> loglayl.
=1 Pi =1

Here, and in what follows, all the logarithms are in base 2. In our appli-
cations to PET systems, M is the message and F is its encoding. In this

application, 71 = -+ = 7, = {0,1}" are the possible encodings of message
words, 0y = --+ = 0, = {0,1}"" are the possible encodings of packets, and
p={p1,...,pm) are the priority values of the message words.

This theorem immediately implies Theorem 3.3 in even the more general
case where each message word and each packet is allowed to have a different
number of symbols. We prove Theorem 5.1 after first introducing some ideas
used in the proof.

5.1 Preliminaries for the Lower Bound

For any random variable Y with density function Pr,
H(Y) = Exp[—log(Pr[Y])]

denotes the binary entropy of Y. Let X1,..., X,, be random variables taking
values in o1,...,0,, respectively and let X = (Xy,...,X,). For a subset
I of {1,...,n}, let X; denote the random variable (X;), ;. With these
notations, the following proposition is proved in [10] for the case o; = {0,1}
for all 7. The general case, mentioned in [3], can be proved analogously.

Proposition 5.2 Let X = (Xq,...,X,) be as above. If T is a family of
subsets of {1,...,n} and each i € {1,...,n} belongs to at least r members
of T then
reH(X)< Y H(X)).
IeT

15



For 1 < ¢ < mn, define

The following lemma is due to Han [11]. For the sake of completeness we
present a short proof.

Lemma 5.3 For any random variable X = (X1,..., X,),
H{(X)>Hy(X)>...>2 H,(X)= H(X).

Proof of Lemma 5.3: By Proposition 5.2, for any ¢, 1 < g < n,

(n—q+ 1>(Zj2)ﬂq_1<x> D> Y H(Xg)

5.2 Deterministic Lower Bound Proof

Proof of Theorem 5.1: Let M = (My,..., M,,) attain each value in
7L X ... X T, with equal probability. Put py = 1/n and, for each ¢ €
{1,...,n}, define h; = log|r| = H(M;). Let J = {1,...,7}, and thus
My = (My,...,M;). We prove, by induction on j < m, that
iy
Hy(E) > Hyn(BIMy)+ ) — (2)
=1 1"
For j = 0 there is nothing to prove. Assuming the above holds for j,
(0 < j < m), we prove it for j+ 1. Define ¢ = p;41n and fix @ C {1,...,n},
QI = g. Then,

H(EQIMy,Mjy1) = H(Eq,Mjw1[My)— H(M;1|My) (3)
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But, because M;; is independent of My,
H(Mj1|My) = H(Mj11) = hjya. (4)

Furthermore, since the value of Fg determines that of M;4,

H(M]+1|EQ7MJ) = 07 (5)
and thus,
H(Eqg, Mj41|My) = H(Eg|My)+ H(M;j41|Eq, M) (6)
— H(Eg|My).

From Equation (3), Equation (4), and Equation (6), it follows that
H(EQ\My, Mja) = H(EQ|My) = hjyr. (7)

By summing over all possible subsets ¢} and dividing by (Zj) we conclude
that

n h:
Hy(E\Mj, Mj1) = Hy(E|My) — ghj-l-l = H,(FE|My) - p7+1-
j+1

By Lemma 5.3, since