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For any set of priorities for a message, we de�ne a natural quan-tity called the girth of the priorities. We develop systems for imple-menting any given set of priorities such that the total length of theencoding packets is equal to the girth. On the other hand, we givean information-theoretic lower bound that shows that for any set ofpriorities the total length of the encoding packets must be at least thegirth. Thus, the system we introduce is optimal in terms of the totalencoding length.This work has immediate applications to multi-media and highspeed networks applications, especially in those with bursty sourcesand multiple receivers with heterogeneous capabilities. Implementa-tions of the system show promise of being practical.1 IntroductionIn many multi-media applications, long messages are to be transmitted inreal-time across multiple network links. A message is not sent as one unit,but broken into packets that are sent through the medium. Bit corruptionmay occur in packets due to transmission, but these can be handled on alink-by-link basis using error correcting techniques. Thus, we can assumethat packets are indivisible units that arrive intact if they arrive at all. Oncethe packets are sent, some of the packets may arrive promptly, but arbitrarysubsets of packets may be lost or delayed beyond the point of usefulnessdue to global conditions in the network such as congestion, bu�er over
owsand other causes. We hereafter call media with this property lossy media.At some point in time, the receiver cannot wait for packets any longer andmust recover as much of the original message as possible from the packetsreceived.It seems highly plausible that packet loss as described will be an or-dinary phenomena for reasonably priced networks that connect millions ofusers spread around the world simultaneously running a multitude of highbandwidth real-time applications. Furthermore, packet losses will not bespread uniformly over the network, but may vary between di�erent sitesand may 
uctuate over time. Thus, it could be argued that, analogousto noise being the nemesis of analog communication, and error being thenemesis of digital communication, loss will be the nemesis of packet-basedwide-area real-time communication.This paper proposes a general and 
exible method to cope with packet2



loss, which we call Priority Encoding Transmission (PET). The user parti-tions the message into segments and assigns each segment a priority value.Based on their priority values, the segments are encoded into a set of pack-ets. The priority value of a segment speci�es the fraction of packets su�cientto decode it. The system guarantees that a segment can be decoded fromany subset of packets as long as the fraction of packets in the subset is atleast equal to the segment priority value.In the networking community encoding systems which allow recoveryof the message from only a subset of packets of the encoding have beenproposed, for example a system based on Reed-Solomon-codes was suggestedby [16, McAuley] and empirically evaluated by [8, Biersack]. A similarencoding system has been proposed by [16, Rabin]. He uses essentially thesame coding techniques that are used in this paper. However, these systemsallow only one priority level for the entire message.[17, Shacham] also suggests methods for sending prioritized messagesover networks. The basic idea is to partition the message into di�erentpriority levels and then use a di�erent channel to send each level. Then, eachreceiver attaches to as many of these channels as possible, in order of theirpriority, up to the channel capacity between the sender and that particularreceiver. However, this method requires computation of channel capacitiesfrom the sender to each receiver, which may be impractical for large networkswith capacities that vary quickly because of congestion. Furthermore, thiswork does not handle packet losses.Section 2 describes potential applications of the PET system to trans-mit multicast video images over heterogeneous lossy networks. Section 3gives the formal requirements of both deterministic and probabilistic PETsystems. A PET system is described in Section 4. We also review erasure-resilient codes in this section, as these are one of the main building blocksof our constructions. Section 5 gives an information-theoretic lower boundproof on the total length of the encoding packets produced by a PET sys-tem. Section 6 describes a (weak) lower bound on the packet length for anyPET system.Little e�ort is made to make the systems e�cient. [9, Bl�omer et al.]describes an e�cient implementation of the main building block of any PETsystem. A preliminary version of this paper appeared in [1].3



2 Video MulticastingInformation from the sender must be received by all users participating in themulticast session. Present applications use protocols that retransmit missinginformation when communicating with multiple receivers. Consequently, theinformation rate is determined by the worst case receiver. Thus, there aredi�culties when these protocols operate using lossy networks.Priority Encoding Transmission is especially suited to implementing mul-ticast protocols on lossy networks. For example, consider a straightforwardvideo conferencing multicast protocol using either JPEG or MPEG. It turnsout that the quality of the displayed video degrades rapidly for both JPEGand MPEG as a function of the number of packets lost in transmission, andthis degradation is much more dramatic for MPEG than the less highly com-pressed JPEG. Both JPEG and MPEG apply a discrete cosine transform tothe video image to produce what is hereafter called a message [21, Wallace],[14, Le Gall]. Besides allowing a highly compressed representation of theimage, this message has a nice property. Consider ordering the informationin the message so that the lowest frequency coe�cients come �rst followedby successively higher frequency coe�cients. The nice property is that thequality of the image that can be reconstructed from a pre�x of this orderedmessage improves gracefully as a function of the length of the pre�x. Thus,the information at the beginning of the message is more important than thatat the end. A PET system can be used to protect the di�erent parts of themessage from losses according to their importance.A simpler way to protect MPEG using a PET system is by prioritizingover the di�erent types of frames used in MPEG. An MPEG stream consistsof a sequence of so-called I-,P-, and B-frames. Each I-frame can be displayedindependently of the other frames. A P-frame needs information of the pre-vious I-frame to be displayed correctly. Each B-frame refers to the previousand the following I- or P-frame. This de�nes a natural priority order forthe di�erent types of frames, I-frames are the most important frames, thencome the P-frames. The B-frames are the least important frames. A PETsystem can be used to protect I-frames more against losses than P-frames,which in turn are protected more than B-frames. This approach has beentaken in [13]. The results are promising.4



3 Requirements of a PET systemWe assume throughout this paper that there is a basic word size w whichis long enough to implement all of the encoding schemes we describe. Forall the schemes, w � log(e), where e is the total number of words in theencoding, is more than su�cient. In practice, a normal computer word oflength 32 is more than enough to support all reasonable length encodings,i.e., encodings of up to over four billion words. In the sequel, all informationis implicitly speci�ed in units of words of length w unless otherwise stated.3.1 Deterministic PET systemsIn this system the encoding and decoding is done deterministically. A guar-antee is given that once a certain fraction of the encoding is received thedecoding of certain pieces of the message is always successful.De�nition 3.1 (PET system) A PET system with message length m,packet size `, n packets, and encoding length e = n` consists of the fol-lowing:(i) An encoding function E that maps a message M of length m ontoan encoding E(M) of total length e consisting of n packets of ` wordseach, i.e. e = n`.(ii) A decoding function D that maps sets of at most n packets onto mwords.(iii) A priority function � that maps f1; : : : ; mg to the interval (0; 1].The guarantee of the system is that, for all messages of length m and forall i 2 f1; : : : ; mg; D is able to decode the ith message word from any �ifraction of the n encoding packets.Convention: Throughout this paper we assume that each packet has aunique identi�er written in its header. The number of bits necessary torepresent this identi�er is not considered as part of the packet size.5



This convention is justi�ed because packets usually contain such an iden-ti�er in the header information anyway, and in any case the identi�er istypically very small compared to the rest of the packet. The identi�er isused in the decoding process to identify which portions of the encoding havebeen received.Throughout this paper we assume without loss of generality that thepriority function is monotonically increasing, i.e., �1 � �2 � � � � � �m.Thus, �i can also be thought of as the fraction of encoding packets neededto recover the �rst i words of the message.In our implementations of PET systems ([2], [13]) the user speci�es themessage length m, the packet length `; and the priority function �, andthe system computes the number of encoding packets n and implements theencoding and decoding procedures that achieve the guarantees as speci�edin De�nition 3.1.An important measure of a priority function is the following.De�nition 3.2 (Girth of a priority function/PET system) Let � bea function mapping f1; : : : ; mg to the interval (0; 1]. The girth of � isgirth� = Xi2f1;:::;mg 1=�i:The girth of a PET system is the girth of its priority function.In a PET system with priority function �; each �i fraction of the encodingmust determine the i-th message wordMi. Intuitively, this implies that each�i fraction of the encoding must contain at least one word of informationabout Mi, and thus the entire coding must contain at least 1=�i words ofinformation aboutMi. Therefore, intuitively the encoding contains girth� =Pi2f1;:::;mg 1=�i words in total about the message. Hence, it is reasonable toexpect that such a system is possible only if the total length of the encodingis at least girth�. The following theorem shows that this intuition is correct.Theorem 3.3 For any priority function �, if there is a PET system withpriority function � then the total encoding length is at least girth�.A formal proof of this theorem is given in Section 5.It will also be shown (Theorem 4.3) that, for a given priority function �,a PET system with a priority function �0 that closely approximates � canbe constructed with total encoding length girth�0 .6



3.2 Probabilistic PET systemsIn the model described in this section the encoding and decoding is done viarandomized algorithms. Unlike in the previous model the decoding guaran-tee is only with high probability. As mentioned at the end of Section 4.3,probabilistic PET systems based on probabilistic erasure-resilient codes (seethe end of Section 4.1) admit faster encoding and decoding algorithms thandeterministic PET systems.De�nition 3.4 (probabilistic PET system)A probabilistic PET systemwith message length m, packet size `, n packets, encoding length e = n`;failure probability p > 0 and using r random bits consists of the following:(i) A family of encoding functions ER; R 2 f0; 1gr, that map a messageM of length m onto an encoding consisting of n packets of ` wordseach, i.e. e = n` words.(ii) A family of decoding functions DR; R 2 f0; 1gr, that map sets of atmost n packets onto m words.(iii) A priority function � that maps f1; : : : ; mg to the interval (0; 1].The guarantee of the system is that, for all messages M of length m, forall i 2 f1; : : : ; mg; and for any �i fraction of the n encoding packets, if thefunction ER was used for the encoding then with probability at least 1 � pthe function DR decodes the ith word of the message from this subset. Theprobability is with respect to the uniform distribution on the random stringR 2 f0; 1gr:In the probabilistic model it is assumed that a common random stringR is used for the encoding and the decoding. Once the string R has beenselected the encoding and decoding is deterministic. We stress that thefailure probability is not over a particular distribution over the messages. Forany �xed value of R an encoding/decoding pair ER; DR succeeds or fails oncertain subsets of packets, independent of the message. This is a reasonablede�nition if in practice the set of packets that are lost is independent of theircontents, but can depend on their identi�ers in an arbitrary way.The priority function � has a similar meaning as in the deterministicmodel, except that even if more than a fraction �i of the encoding packets are7



received there may still be a chance (at most p) that the decoding functionfails to decode the i-th message word.In Section 5 we show that Theorem 3.3 can be generalized to probabilisticPET systems in the following way.Theorem 3.5 For any priority function �, if there is a probabilistic PETsystem with priority function � that achieves a failure probability p then thetotal encoding length is at least (1� p) � girth�.4 A PET SystemWe describe a general method that takes any given message length m, packetsize `, and priority function � and produces a PET system with a newpriority function �0 that closely approximates �, such that the total lengthof the encoding packets is girth�0 .The method to produce a PET system works by �rst partitioning themessage into blocks based on the priority function �, and then using thepartition to implement a PET system based on erasure-resilient codes.In the �rst subsection we describe erasure-resilient codes. In the sec-ond subsection, we assume we have the partitioned message and show howto implement a PET system based on erasure-resilient codes. Finally, wedescribe an algorithm that accepts the description of an arbitrary priorityfunction � and produces a partitioned message.4.1 Erasure-Resilient CodesAn erasure-resilient code is speci�ed by a triple hm;n; di. There is bothan encoding algorithm and a decoding algorithm. The encoding algorithmencodes an m-word message M into an n-word encoding E(M) and has theproperty that the encodings of two di�erent messages di�er in at least dwords.Note that by the de�nition of d, any messageM is uniquely distinguishedfrom any other message by any n� d+ 1 words of its encoding E(M). Thedecoding algorithms we consider are able to uniquely and e�ciently recoverM from any n� d+ 1 words of E(M). It is impossible to always be able torecover a message of length m from less than m words of the encoding, and8



thus it is always the case that m � n � d + 1. Furthermore, the larger thevalue of d the better the recovery properties of the decoding. In the best case,when d = n�m+1, the code is called in the literature a maximum distanceseparable (MDS) code (see for example [15]). In this case the message canbe recovered from any portion of the encoding (in units of words) equal tothe length of the message. In this paper, all codes are MDS unless otherwisespeci�ed.The decoding algorithm needs the indices of the words of E(M) it re-ceives to help in the decoding process. When erasure-resilient resilient codesare used to implement a PET system, this requirement is satis�ed becauseof the convention mentioned previously that each packet contains a uniqueindex.One implementation of erasure-resilient codes is the following. The mes-sageM is viewed as describing the m coe�cients of a univariate polynomialof degree m � 1 over GF[2w]. Call this polynomial G. The jth word of thecode consists of the value of the polynomial G evaluated at the �eld elementj 2 GF[2w]. Since G is of degree m � 1, any m words (together with theindices of the words) uniquely determine G. The message M , i.e., the coef-�cients of G, can be recovered from any m words by interpolation. Since weneed to evaluate the polynomial at n di�erent points this method requires2w � n:Using standard evaluation and interpolation algorithms, for this erasure-resilient code the encoding and decoding both require a quadratic number of�eld operations. Using the Discrete Fourier Transform, this can be reducedto O(n logm) �eld operations for the encoding and O(m log2m) �eld oper-ations for the decoding. The practical value of these methods is doubtful.A practically e�cient erasure-resilient code has been described in [9,Bl�omer et al.]. It is a variant of Reed-Solomon-codes that is based on so-called Cauchy matrices (see the references in [9]). This implementation takesquadratic time for both the encoding and decoding. However, it is e�cientenough to support existing real-time video applications implemented on cur-rent workstations (see [13]). This code is also systematic, i.e., the unencodedmessage is part of the encoding. This has the advantage that the decodingtime depends only on how much of the unencoded message is missing, andin particular the decoding is trivial if none of the unencoded message partof the encoding is missing. 9



A di�erent family of codes, called (1 + �)-MDS codes, that have slightlyweaker erasure-resilient properties than the MDS-code described above havebeen described and constructed in [4, Alon et al.] and [5, Alon, Luby]. Forthese codes, the requirement is that the message can be recovered fromany (1 + �)m words of the encoding. Here � is an adjustable parameterthat is used to establish a tradeo� between the erasure-resilient propertiesof the code and the e�ciency of the encoding and decoding procedures.The codes are based on expander graphs and, for constant �, admit lineartime encoding and decoding. At present their practical value is doubtful.However, probabilistic codes based on the ideas in [4],[5], on the codes usingCauchy matrices and on ideas from [18, Spielman] show promise of beingmore e�cient than deterministic codes in practice. As mentioned at the endof Section 4.3, these codes can be used directly to implement probabilisticPET systems that have faster encoding and decoding algorithms.The erasure-resilient codes based on Cauchy matrices require that theword size w satisfyw � 1 � maxflog(m=w); log(n�m=w)g: (1)Theorem 6.1 found in Section 6 proves an almost matching lower boundfor the word size of any erasure-resilient code.4.2 Block SystemsThe input parameters for a PET system are a message length m, a packetlength `, and a priority function �. The �rst step in constructing a PETsystem is to compute the total number of encoding packets n and to partitionthe message into ` blocks. This �rst step is described in the next subsection.In this subsection, we show how to implement a PET system given thisinformation.An `-partition of m consists of a sequence of positive integers hm1; : : : ; m`isuch that Pj2f1:::;`gmj = m: Let M be a message of length m, and letB1; : : : ; B` be the ` blocks of M with respective lengths m1; : : : ; m`. Wenow describe how to implement a PET system based on an `-partition ofm and on the total number n of encoding packets. The PET system putsinformation about block Bj into the jth word of each packet.10



Lemma 4.1 Given n and an `-partition hm1; : : : ; m`i of m, there is a PETsystem consisting of n encoding packets containing ` words each such thatthe priority value for all words of the message in block j is mj=n.Proof of Lemma 4.1: Let B1; : : : ; B` be the blocks of M , and thus thelength of Bj is mj . The idea is to use a separate erasure-resilient code foreach of the ` blocks of the message. The jth erasure-resilient code is usedto encode Bj into a code Ej consisting of n words. The entire encodingconsists of n packets of size ` each, where the kth packet consists of theconcatenation, for j 2 f1; : : : ; `g, of the kth word from the code Ej . Thedecoding works in the obvious way.Since we use an erasure-resilient code for each block, all words in thesame block have the same priority value. Any mj words of the code Ejsu�ce to recover block Bj . Since there is one such word in each packet, itfollows that a fraction mj=n of the n packets are su�cient to recover Bj .Thus, the priority value of all words in block Bj is as claimed.In the system described above, each packet needs to contain an identi�er.Although this is part of the packet, we did not include it in the packet sizebecause of the convention stated in Section 3.We give two examples of block systems.Example 1: This is an example where the fraction of the packets needed torecover a message word is linear in its index. For a given message length m,let the packet length be ` = log(m). For all j 2 f1; : : : ; `g, let Bj be the nextmj = 2j consecutive words of the message, and let the number of packets ben = 2m. Note that all words in Bj can be recovered from a fraction 2j�1=mof the packets. Also, the total encoding length is 2m log(m).Example 2: Suppose the message length is 800, the packet length is 10,and the 10-partition of the message is h60; 60; 75; 75; 75; 75; 95; 95; 95; 95i,and the number of packets is 100. Note that the �rst two blocks can berecovered from any 60% of the packets, the next four blocks from any 75%of the packets, and the remaining four blocks from any 95% of the packets.The total encoding length in this example is 1000 words, and thus the totalmessage length is an 80% fraction of the total encoding length.11



4.3 Partitioning a MessageWe assume that the priority function � for a message of length m speci�esd di�erent priority levels, where d is smaller than the packet length `. Thisis not a big assumption in practice, as IP packets for transferring data atreasonably high rates are typically between 500 and 1500 bytes long (whichis between 125 and 375 words assuming 4 bytes per word), and usually 10priority levels is more than su�cient. Let h�1; : : : ; �di be a d-partition of m,and let � = h�1; : : : ; �di be the corresponding priority values of the blocks,i.e., all words in block i of the partition have priority value �i.Our goal is to produce an `-partition of m and the number of encodingpackets n that can be directly used to implement a PET system based onLemma 4.1. The basic idea is to re�ne the original d-partition in a simpleway, although we must take care of some technical details due to round-o�errors.Re�nement Procedure:(1) Compute g = girth� =Pi2f1;:::;dg �i=�i.(2) Compute n = l g`�dm.(3) For all i 2 f1; : : : ; dg, compute �i = d�ine.(4) For all i 2 f1; : : : ; dg, subpartition �i into at most d�i=�ie pieces oflength at most �i each.Lemma 4.2 On input m, `, a d-partition h�1; : : : ; �di of m, and corre-sponding priority values h�1; : : : ; �di, the Re�nement Procedure producesa re�ned partition and n with the following properties:(i) The re�ned partition has at most ` parts.(ii) The value of n satis�es n � g`�d + 1.(iii) Each part in the re�nement of the ith part of the d-partition has lengthat most �in + 1.Proof of Lemma 4.2: To prove (i), note that the number of parts in there�ned partition is at most d+Pi2f1;:::;dg �i=�i. Because �i�i � �i�in � �i�i � `�dg ,12



and by de�nition of g, it follows thatPi2f1;:::;dg �i=�i � `� d, and thus thetotal number of parts is at most d+(`�d) = `. The proofs of parts (ii) and(iii) follow directly from the de�nitions.Theorem 4.3 On input message length m, packet length `, a d-partitionh�1; : : : ; �di of m, and corresponding priority values h�1; : : : ; �di, there is ane�cient procedure that produces a PET system with priority function �0 andn encoding packets with the following properties:(i) The total encoding length is n` � girth�1�d=` + `.(ii) All words of the message in the ith block of the d-partition have priorityvalue �0i � �i + `=m.Proof of Theorem 4.3: The proof follows by a direct combination ofLemma 4.2 and Lemma 4.1. The only detail missing in the proof of part (ii)is that since n` � g � m, n � m=`, and thus 1=n � `=m.Example: Suppose the packet length is 250, and a message of total length100K is partitioned into �ve priority levels described by the �ve partitionh10K; 10K; 20K; 30K; 30Kiwith associated priority valuesh:50; :60; :65; :80; :95i :The girth of the priorities g computed in step (1) of the Re�nement Pro-cedure is 136:5K, and thus the total number of packets n computed in step(2) is 558. In step (3), the computed lengths of the pieces areh279; 335; 363; 447; 531i ;and the number of pieces of each is at mosth36; 30; 56; 68; 57i ;13



respectively, for a total of 247 pieces (recall that 250 is the target value).The total length of the encoding is 139:5K, which is only 2% more than thegirth of the original priorities. The priority values for the resulting PETsystem are h:500; :600; :651; :801; :952i ;i.e., extremely close to the speci�ed priorities. Note that if there were onlyone priority level with the same amount of overall redundancy then it wouldbe possible to recover the message from any :72 = 100=139:5 fraction of theencoding, i.e., a fraction that is somewhere in the middle of the �ve priorityvalues.The re�nement procedure implemented in [2] is based on the re�ne-ment procedure described above, except that it doesn't necessarily producea re�nement of the d-partition. It alleviates the e�ect of the round-o�sby moving through the d-partition from the beginning to end, re�ning thepartition as described above, except that the last block of the `-partitionassociated with a particular part of the d-partition may be padded out withsome words of the subsequent block of the d-partition. It also adjusts thenumber of packets downwards until all the words of the packet are used (inthe example above, three words of the packet were left unused, and thus thetotal encoding length is slightly more than the girth of the new priorities).A probabilistic PET system with theoretically more e�cient encodingand decoding times can be constructed similar to the deterministic schemedescribed above, where the theoretically more e�cient (1 + �)-MDS prob-abilistic erasure-resilient codes of [4], [5] are used in place of deterministicMDS erasure-resilient codes.5 Lower Bound on the Encoding LengthThis section proves Theorem 3.3, i.e., for any priority function �, any PETsystem with priority function � has total encoding length at least girth�.Using similar methods, we also prove Theorem 3.5, i.e., for any priorityfunction �, any probabilistic PET system with priority function � and failureprobability p has total encoding length at least girth� � (1� p).The proofs we give here are alternatives of our original proofs of the sameresults. The alternate proofs were found by Noga Alon and independentlyby Stephan Boucheron. They follow the same basic outline as the original14



proofs, but they are more elegant than the originals because they use entropymeasures instead of geometric measures of information.Theorem 5.1 Let �1; : : : ; �m be m �nite alphabets and let �1; : : : ; �n be n�nite alphabets. Suppose we have a (deterministic) scheme that encodeseach possible vector M = hM1; : : : ;Mmi, where Mi 2 �i, by a vector E =hE1; : : : ; Eni, where Ej 2 �j. Suppose that 0 < �1 � �2 � : : : � �m � 1,and the value of Mi can be correctly recovered from the values of any set ofat least �in of the coordinates of E. Then,mXi=1 log j�ij�i � nXi=1 log j�ij:Here, and in what follows, all the logarithms are in base 2. In our appli-cations to PET systems, M is the message and E is its encoding. In thisapplication, �1 = � � � = �m = f0; 1gw are the possible encodings of messagewords, �1 = � � � = �n = f0; 1g`w are the possible encodings of packets, and� = h�1; : : : ; �mi are the priority values of the message words.This theorem immediately implies Theorem 3.3 in even the more generalcase where each message word and each packet is allowed to have a di�erentnumber of symbols. We prove Theorem 5.1 after �rst introducing some ideasused in the proof.5.1 Preliminaries for the Lower BoundFor any random variable Y with density function Pr,H(Y ) = Exp[� log(Pr[Y ])]denotes the binary entropy of Y . Let X1; : : : ; Xn be random variables takingvalues in �1; : : : ; �n, respectively and let X = hX1; : : : ; Xni. For a subsetI of f1; : : : ; ng, let XI denote the random variable hXiii2I . With thesenotations, the following proposition is proved in [10] for the case �i = f0; 1gfor all i. The general case, mentioned in [3], can be proved analogously.Proposition 5.2 Let X = hX1; : : : ; Xni be as above. If I is a family ofsubsets of f1; : : : ; ng and each i 2 f1; : : : ; ng belongs to at least r membersof I then r �H(X) � XI2IH(XI):15



For 1 � q � n, de�neHq(X) = 1�n�1q�1� XQ � f1; : : : ; ngjQj = q H(XQ):The following lemma is due to Han [11]. For the sake of completeness wepresent a short proof.Lemma 5.3 For any random variable X = hX1; : : : ; Xni,H1(X) � H2(X) � : : :� Hn(X) = H(X):Proof of Lemma 5.3: By Proposition 5.2, for any q, 1 < q � n,(n � q + 1) n� 1q � 2!Hq�1(X) = XQ � f1; : : : ; ngjQj = q XQ0 � QjQ0 j = q � 1 H(XQ0)� XQ � f1; : : : ; ngjQj = q (q � 1)H(XQ) = (q � 1) n � 1q � 1!Hq(X):5.2 Deterministic Lower Bound ProofProof of Theorem 5.1: Let M = hM1; : : : ;Mmi attain each value in�1 � : : : � �m with equal probability. Put �0 = 1=n and, for each i 2f1; : : : ; ng, de�ne hi = log j�ij = H(Mi). Let J = f1; : : : ; jg, and thusMJ = hM1; : : : ;Mji. We prove, by induction on j � m, thatH1(E) � H�jn(EjMJ) + jXi=1 hi�i : (2)For j = 0 there is nothing to prove. Assuming the above holds for j,(0 � j < m), we prove it for j+1. De�ne q = �j+1n and �x Q � f1; : : : ; ng,jQj = q. Then,H(EQjMJ ;Mj+1) = H(EQ;Mj+1jMJ)�H(Mj+1jMJ) (3)16



But, because Mj+1 is independent of MJ ,H(Mj+1jMJ) = H(Mj+1) = hj+1: (4)Furthermore, since the value of EQ determines that of Mj+1,H(Mj+1jEQ;MJ) = 0; (5)and thus, H(EQ;Mj+1jMJ) = H(EQjMJ) +H(Mj+1jEQ;MJ) (6)= H(EQjMJ):From Equation (3), Equation (4), and Equation (6), it follows thatH(EQjMJ ;Mj+1) = H(EQjMJ)� hj+1: (7)By summing over all possible subsets Q and dividing by �n�1q�1� we concludethat Hq(EjMJ ;Mj+1) = Hq(EjMJ)� nq hj+1 = Hq(EjMJ)� hj+1�j+1 :By Lemma 5.3, since q = �j+1n � �jn,Hq(EjMJ) � H�jn(EjMJ);and this, together with the induction hypothesis, implies the assertion of (2)for j + 1, completing the proof of the induction step. SinceH1(E) = nXi=1H(Ei) � nXi=1 log j�ij;the assertion of the theorem follows by taking j = m in (2).5.3 Probabilistic Lower Bound ProofTheorem 5.4 Let �1; : : : ; �k be m �nite alphabets and let �1; : : : ; �n be n�nite alphabets. Let R be a random string that takes on all possible valuesin a set S with equal probability. Suppose we have a scheme that uses R to17



encode each possible vector M = hM1; : : : ;Mmi, where Mi 2 �i, by a vectorE = hE1; : : : ; Eni, where Ej 2 �j . Suppose that 0 < �1 � �2 � : : : � �m � 1,and, for any set of at least �in of the coordinates of E, the value of Mi canbe correctly recovered from the values of these coordinates and from the valueof R with probability at least 1� p with respect to R. Then,(1� p) � mXi=1 log j�ij�i � nXi=1 log j�ij:Proof of Theorem 5.4: The proof is analogous to the proof of Theo-rem 5.1, except that all quantities are conditioned on R, e.g., H(E) becomesH(EjR). The only signi�cant di�erence is that because a particular set ofpackets indexed by Q determines Mj+1 with probability at least 1 � p (asopposed to always determining Mj+1 before), Equation (5) becomesH(Mj+1jEQ;MJ ; R) � p;and Equation (7) becomesH(EQjMJ ;Mj+1; R) � H(EQjMJ ; R)� (1� p)hj+1:The remainder of the proof is identical, except that the loss in the 1 � pfactor remains throughout the rest.This theorem immediately implies Theorem 3.5 in even the more generalcase where each message word and each packet is allowed to have a di�erentnumber of symbols.6 Lower Bound on the Size of a PacketIn this section a lower bound for the word size of erasure-resilient codes.These bounds imply weak bounds on the packet size of a PET system.Theorem 6.1 Let C be a hn;m; di erasure-resilient code with word lengthw. Then, 2w + 1 � n �m+ 2n�m� d+ 2 :18



Equivalently, if any k words of the encoding determine the message, then2w + 1 � n �m+ 2k �m+ 1 :Proof of Theorem 6.1: Since k = n � d + 1, we only need to provethe second assertion of the theorem. View each word as an element of theset Q = f0; : : : ; 2w � 1g with 2w elements, and view each message as anelement of the set T = Qm. For a message M 2 T , denote by E(M) =hE1(M); : : : ; En(M)i its encoding. Here each Ei is a function from T toQ. For each encoding E(M) consider its su�x hEn�m+3(M); : : : ; En(M)iconsisting of the last m � 2 words. Since there are at most 2w(m�2) suchsu�xes, and since there are 2wm possible messages, there must be a setS � T of 22w messages all of which have the same encoding su�x of lengthm� 2.For a �xed i 2 f1; : : : ; n � m + 2g and for any k 2 Q, let nk be thenumber of messages M 2 S such that Ei(M) = k: The number of pairs ofmessages hM;M 0i 2 S2 such that Ei(M) = Ei(M 0) is2w�1Xk=0  nk2 !:This sum is minimized if nk = 2w for all k in which case its value is 2w�2w2 �.Hence for each i 2 f1; : : : ; n � m + 2g there are at least 2w�2w2 � pairs ofmessages (M;M 0) 2 S2 such that Ei(M) = Ei(M 0).Any two messagesM;M 0 2 S must be distinguishable from the lastm�2words and any other k �m+ 2 words of their encodings E(M); E(M 0):If n�m+2k�m+1 > 2w + 1 then 22w2 ! < n �m+ 2k �m+ 12w 2w2 !:By the previous calculations this implies that there are two di�erentmessages M;M 0 2 S whose encodings agree in at least k � m + 2 of the�rst n �m + 2 words. Since the encodings already agree in the last m � 2words, the encodings of these two messages agree in at least k words. Thiscontradicts the assumption of the theorem and shows 2w + 1 � n�m+2k�m+1 .19



There are two interesting special cases for this theorem. If the code is anMDS erasure-resilient code then k = m. Hence the theorem yields w �log(n�m+ 1):Secondly, assume that the system has encoding length cm for some con-stant c and that k = (1 + �)m: E�ciently encodable and decodable codeswith these parameters and with one priority level have been constructed in[4],[5]. For these codes the theorem gives a lower bound on the word sizeof approximately log((c � 1)=�): The bound is asymptotically tight. Thealgebraic-geometric codes achieve these bounds (see for example [19]).Notice that if k is cm; c > 1 then the theorem can only yield constantlower bounds. In particular, for a PET system with two priority levels ofequal length, where the �rst level has priority 50% and the second one haspriority strictly larger than 50%; the theorem only provides a constant lowerbound on the packet size.7 AcknowledgmentWe thank Richard Karp for help in the original proofs of Section 5, and bothNoga Alon and Stephan Boucheron for pointing out the alternative proofsto Theorem 3.3 and Theorem 3.5.References[1] A. Albanese, J. Bl�omer, J. Edmonds, M. Luby, M. Sudan, Priority En-coding Transmission, Proc. 35th Symposium on Foundations of Com-puter Science (FOCS), 1994, pp. 604-613.[2] A. Albanese, M. Kalfane, B. Lamparter, M. Luby, Application Pro-grammer Interface for PET, internal ICSI document.[3] N. Alon, Probabilistic methods in extremal �nite set theory, in: Ex-tremal Problems for Finite Sets, (G. O. H. Katona et al. Eds.), BolyaiSociety Mathematical Studies, Visegr�ad, Hungary, 1991, 25-43.[4] N. Alon, J. Edmonds, M. Luby, Linear time erasure codes with nearlyoptimal recovery , in Proc. 36th Symposium on Foundations of ComputerScience, 1995, pp. 512-519. 20
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