
Computing Roots of Graphs is HardRajeev Motwani �Department of Computer SieneStanford UniversityStanford, CA 94305-2140 Madhu Sudan yIBM Thomas J. Watson Researh CenterP.O. Box 218Yorktown Heights, NY 10598AbstratThe square of an undireted graph G is the graph G2 on the same vertex set suh that thereis an edge between two verties in G2 if and only if they are at distane at most 2 in G. The k'thpower of a graph is de�ned analogously. It has been onjetured that the problem of omputingany square root of a square graph, or even that of deiding whether a graph is a square, isNP-hard. We settle this onjeture in the aÆrmative.1. IntrodutionWe onsider the problem of deiding whether a graph is a perfet square. Informally, the square ofan undireted graph is obtained by plaing an edge between two verties whih are at a distaneof two or less. It is easy to see that the adjaeny matrix of the square graph is the square(under boolean matrix multipliation) of the original adjaeny matrix. Our main result is thatthe problem of deiding whether a graph is a square graph is NP-omplete. We start by providinga formal de�nition of the power of a graph.Let G(V;E) be an undireted graph on n verties with m edges. The distane between two vertiesu and v in G is denoted by d(u; v). The k'th power of the graph G is de�ned as follows.De�nition 1.1: For any positive integer k, the graph Gk(V;Ek) has an edge (u; v) if and only ifd(u; v) � k.If we assume that G has a self-loop on all the verties, then it is lear that taking the k'th powerof the adjaeny matrix of G gives the adjaeny matrix of Gk. We will all G a k'th-root of thegraph Gk. In partiular, G2 is the square of the graph G and G is a square root of the graph G2.Powers of graphs have been studied extensively in graph theory. For example, it is well-knownthat the square of a 2-onneted graph has a Hamiltonian yle [2℄, and the Hamiltonian yle�Supported by Mitsubishi Corporation, NSF Grant CCR-9010517 and NSF Young Investigator Award CCR-9357849, with mathing funds from IBM, Shlumberger Foundation, Shell Foundation, and Xerox Corporation.yPart of this researh was done while this author was a student at the University of California at Berkeley,supported by NSF PYI Grant CCR-8896202. 1



an be found in polynomial time [6℄. Furthermore, Sekanina [11℄ showed that for any non-trivialonneted graph G, the graph G3 is Hamiltonian. Our main motivation for studying the omplexityof heking squareness of a graph omes from distributed omputing. In this appliation [8℄, the t'thpower of a graph G represents the possible ow of information during t rounds of ommuniationof a distributed network of proessors organized aording to G. Our motivation in studying thisproblem was the question posed by Nati Linial of haraterizing the lass of graphs that are t'thpowers, in the hope that this would failitate the study of distributed algorithms for graph problems.Our result implies that there does not exist any good (polynomially veri�able) haraterization ofeven the square graphs.Several attempts have been made at haraterizing the lass of square graphs. Mukhopadhyay [9℄showed that a graph H is a square if and only if there exists a omplete indued subgraph Hiorresponding to eah vertex vi in H suh that� vi 2 Hi.� vi 2 Hj if and only if vj 2 Hi.� [iHi = H.This is not a polynomial haraterization in that it does not lead to a polynomial time algorithmfor reognizing square graphs. Similar haraterizations were provided for the squares of diretedgraphs [4℄ and the k'th powers [1℄.Several results have been obtained on the powers of speial lasses of graphs, or in the ase wherethe power of a graph belongs to a speial lass. Ross & Harary [10℄ showed that the tree square rootsof a graph, when they exist, are unique up to isomorphisms. Harary, Karp & Tutte [5℄ providedharaterizations of the planar graphs whih are square graphs. Reently, Lin & Skiena [7℄ devisedseveral algorithms with respet to powers of graphs. They provided eÆient algorithms for �ndingsquare-roots of graphs G2 where G is a tree, and where G2 is planar. They also presented severalpolynomial-time algorithms for problems whih are NP-omplete in general, when restrited tothe speial ase of graphs that are k'th powers. Lin & Skiena onjetured that the problem ofreognizing square graphs is NP-omplete { we settle this onjeture in this paper. We believe thatthe square-testing problem remains NP-omplete even when restrited to the speial ase of squaresof bipartite graphs, but our proof does not seem to extend to this problem. An important relatedproblem that remains open is the issue of �nding square roots of matries under �eld operations.These questions bear upon the onstrution of blok designs and related ombinatorial strutures.2. PreliminariesThroughout this paper � will represent a 3-CNF formula on n variables x1; � � � ; xn with m lauses.The n variables give 2n literals and we will use l1; � � � ; l2n to denote them.De�nition 2.1: A 3-CNF formula � has a not-all-equal satisfying assignment, if there exists anassignment to the variables x1; � � � ; xn suh that eah lause of � has at least one TRUE literal andat least one FALSE literal. 2
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Figure 1: P4 and P 24De�nition 2.2: NAESAT is the set of all 3-CNF formulae that have not-all-equal satisfyingassignments.The following result an be found in the book of Garey & Johnson [3℄.Theorem 1: Given a 3-CNF formula �, determining if � 2 NAESAT is NP-Complete.Problem [SQUARE℄Instane: A graph G = (V;E).Question: Does there exists a graph H suh that G = H2?The rest of the paper shows that SQUARE is NP-hard by reduing NAESAT to it. It is learthat SQUARE is in NP, sine guessing the square root H and verifying that G = H2 an be easilydone in polynomial time. Thus, we onlude that SQUARE is NP-omplete.Theorem 2: SQUARE is NP-Complete3. Intuitive desription of the redutionThis setion desribes the basi ideas and tools that set up the redution from NAESAT toSQUARE. The redution starts o� by trying to set up a graph H whih represents a satisfyingassignment to a 3-CNF formula suh that its square G would e�etively hide all information aboutthe assignment. Furthermore, the redution would try to maintain that any square root of G givesa satisfying assignment to the formula.One of the most important insights into the problem is obtained by looking at a very simple graph{ the path on 4 verties (P4, see Figure 1). The square of this graph is the omplete graph on 4verties from whih one edge is missing. Assoiate with the endpoints of this path the literals land �l, and assoiate with the two inner verties the onstants TRUE and FALSE. This assoiationan be used to represent an assignment to the variable l : l is TRUE if and only if l is adjaent toTRUE. In the square of this graph the literals l and �l are both onneted to the onstants TRUE andFALSE, so the square no longer ontains any information of the assignment to l. At the same time,3
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3 2 1Figure 2: Tail in H and H2enough information is preserved to ensure that any square root of this graph would have been someassignment to l.The natural diretion for the redution would be to repliate this proess with many literals.However the notion of TRUE and FALSE has to be global { so the redution would have to useexatly one pair of TRUE and FALSE verties and all literals that are assigned TRUE will be madeadjaent to TRUE in H (similarly for FALSE literals). There is a problem with this proess - allTRUE literals beome adjaent in the square. This problem though is overome easily by makingall literal pairs l1 and l2 adjaent in G. This is ahieved by reating for every pair of literals l1; l2,whih are not omplements of eah other, a vertex Al1l2 whih is adjaent to l1 and l2 in H. Bythrowing in a few more edges onneting Al1l2 to some other verties, it an be ensured that thesquare of H has no information at all about the assignment.The next step would be to fore the assignment to be a not-all-equal satisfying assignment for aset of lauses C. This is ahieved by reating for eah lause a vertex  whih is adjaent in H toall literals ontained in the lause. The fat that the lause ontains at least one and at most twoTRUE literals, implies that in G,  will be onneted to both TRUE and FALSE.Lastly we need a gadget whih an be used to enfore some nie properties of any square root ofthe square of a �xed graph H. One suh property might be to ensure that some vertex v has thesame neighborhood in any square root of H2 as in H. This is enfored by adding to v, in H, a tail,whih is a sequene of verties v3 $ v2 $ v1 where v1 is adjaent only to v (see Figure 2). It anbe argued by looking at H2 that in any square root of H2, v3 is adjaent only to v2, whih in turnis adjaent only to v1 and so on, �nally enabling one to exatly pin down the neighborhood of v.The next setion gives the omplete and exat details of the redution, along with a formal proofof its orretness.4. The RedutionLet j be the set of literals in lause j and let C = fj j1 � j � mg. The graph G is onstruted asfollows :Verties of G� Constant Verties : TRUE, FALSE, X and tail verties to X { t1, t2 and t3.� Literal Verties : Li : 1 � i � 2n for eah literal li.4



� Literal Pair Verties : Aij : 1 � i < j � 2n and li 6= �lj.� Clause Verties : Cj for eah lause j 2 C and tail verties C1j ; C2j ; C3j for eah j.Edges of G� Edges of the tail of X : t3 $ t2, t3 $ t1, t2 $ t1, t2 $ X , t1 $ X , t1 $ TRUE, andt1 $ FALSE.� Edges of the tails of lauses : 8j 2 C, C3j $ C2j , C3j $ C1j , C2j $ C1j , C2j $ Cj , C1j $ Cj ,C1j $ Li1 , C1j $ Li2 , and C1j $ Li3 , where fli1 ; li2 ; li3g = j .� Edges of the lauses : 8j 2 C, and 8i s.t. li 2 j , Cj $ Li; Cj $ TRUE, Cj $ FALSE. Alsofor all k s.t. lk 6= �li, Cj $ Aik.� Edges of the literal verties, literal pair verties and the verties TRUE; FALSE;X : All remain-ing verties fLig's, the fAijg's and TRUE; FALSE;X are adjaent, exept for the pairs, Li; Ljwhere li = �lj.The important thing about G� is that it an be onstruted without any knowledge of the satis�a-bility of �. At the same time G� ontains all the information of �. The next two subsetions showthat G� is a square if and only if � is satis�able in a not all equal manner.4.1. Satis�ability implies squarenessHere we prove that if � 2NAESAT, then G� is a square. Consider an assignment to the variablesx1; � � � ; xn, suh that every lause of � ontains at least one true and one false literal. A squareroot of G�, say H, an be onstruted as follows :Edges of H� Edges of X and the tail of X : t3 $ t2, t2 $ t1, t1 $ X and X $ TRUE; FALSE.� Edges of lause vertex Cj and its tail : C3j $ C2j , C2j $ C1j , C1j $ Cj and Cj $ Li if andonly in li 2 j .� Edges of literal vertex Li : Here we use the assignment information and onnet Li to TRUEif it is true under the assignment and onnet it to FALSE otherwise. Also for eah literal ks.t. lk 6= �li, Li $ Aik.� Edges of literal pair vertex Aik : Aik $ TRUE; FALSE.Lemma 3: G� = H2Proof: It an be veri�ed that the adjaeny of the tail verties of X and the tail verties ofthe lause verties have the same adjaeny in G� as in H2. Also, the lause vertex Cj has as itsneighbors in H2 all neighbors in H of literal verties Li1 ; Li2 and Li3 where j = fli1 ; li2 ; li3g. Thisan be used to hek that the adjaeny of the lause verties is the same in H2 as in G�.5



a b c dFigure 3:Consider the indued subgraph on the literal verties, the literal pair verties and the onstantverties. Sine no literal and its omplement share a ommon neighbor in H, vertex pairs orre-sponding to a literal and its omplement are non-adjaent in H2. All other verties get onnetedmainly beause they either share a ommon neighbor in TRUE or FALSE, or beause of the existeneof the literal pair verties.We have omitted some details for the sake of larity, but these an be easily veri�ed. 24.2. Squareness implies satis�abilityWe now show that if G is a square, then � 2 NAESAT. First we derive a property of the \tails"whih are ruial to our onstrution.Lemma 4: If a; b; ; d are verties of G suh that� The only neighbors of a are b and .� The only neighbors of b are a;  and d.� $ dThen the neighbors, from V �fa; b; ; dg, of d in any square root of G are the same as the neighbors,from V � fa; b; ; dg, of  in G.Proof: Assume, without loss of generality, that G is a onneted graph and let H be a squareroot of G. Then H is onneted and hene G is bionneted. Hene both  and d must haveneighbors in V � fa; b; ; dg in G (see Figure 3).First, observe that the degree of a in H must be one, or else d would have to be a neighbor of a inG. If $ a in H then  an only be adjaent to b and a in H. But  has neighbors in V �fa; b; ; dgin G while a and b do not. This implies that the only neighbor of a in H is b. Now the followingline of reasoning pins down the neighborhood of a; b; ; d exatly :� b is adjaent only to  (besides a) in H : This follows by looking at the neighborhood of a inG.�  is adjaent only to d (besides b) in H : This follows by looking at the neighborhood of b inG. 6



� d is adjaent only to the neighbors of  in V � fa; b; ; dg (besides ) in H : One again thisfollows by looking at the neighborhood of  in G. 2Immediate orollaries to this lemma are the following :Corollary 5: If H� is a square root of G� then X is adjaent only to TRUE and FALSE in H�(besides neighbors in its tail).Corollary 6: If H� is a square root of G� then Cj is adjaent only to Li1 ; Li2 and Li3 in H� wherej = fli1 ; li2 ; li3g (besides neighbors in its own tail).Corollary 5 fores H� to be an assignment. Sine every literal vertex is adjaent to X in G�, everyliteral must be adjaent to at least one of TRUE or FALSE in H�. But no literal vertex is adjaentto its omplementary vertex in G�. Thus every literal vertex must be adjaent to exatly one ofTRUE and FALSE and its omplement must be adjaent to the other vertex. This fores H� to looklike an assignment.Now Corollary 6 an be used to fore this to be a not-all-equal satisfying assignment. Every lausevertex sees both TRUE and FALSE in G� but it sees only its own literals in H�. Therefore at leastone of the literals that a lause sees must be true and at least one must be false. This implies thatthe assignment given by H� is a not-all-equal satisfying assignment.This ompletes the proof that G� is a square if and only if � 2 NAESAT.5. AknowledgmentsWe would like to thank Nati Linial for posing the problem over lunh at the Jordan Hall Cafe.Referenes[1℄ F. Esalante, L. Montejano and T. Rojano, Charaterization of n-path graphs and ofgraphs having n'th root, Journal of Combinatorial Theory (Series B), 16 (1974), pp. 282{289.[2℄ H. Fleishner, The square of every two-onneted graph is Hamiltonian, Journal of Combi-natorial Theory (Series B), 16 (1974), pp. 29{34.[3℄ M.R. Garey and D.S. Johnson, \Computers and Intratability { A Guide to the Theoryof NP-ompleteness," W.H. Freeman & Co., 1979.[4℄ D.P. Geller, The square root of a digraph, Journal of Combinatorial Theory (Series B), 5(1968), pp. 320-321.[5℄ F. Harary, R.M. Karp and W.T. Tutte, A riterion for planarity of the square of agraph, Journal of Combinatorial Theory (Series B), 2 (1967), pp. 395{405.7
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