Computing Roots of Graphs is Hard

Rajeev Motwani * Madhu Sudan T
Department of Computer Science IBM Thomas J. Watson Research Center
Stanford University P.O. Box 218
Stanford, CA 94305-2140 Yorktown Heights, NY 10598
Abstract

The square of an undirected graph G is the graph G? on the same vertex set such that there
is an edge between two vertices in G? if and only if they are at distance at most 2 in G. The k’th
power of a graph is defined analogously. It has been conjectured that the problem of computing
any square root of a square graph, or even that of deciding whether a graph is a square, is
NP-hard. We settle this conjecture in the affirmative.

1. Introduction

We consider the problem of deciding whether a graph is a perfect square. Informally, the square of
an undirected graph is obtained by placing an edge between two vertices which are at a distance
of two or less. It is easy to see that the adjacency matrix of the square graph is the square
(under boolean matrix multiplication) of the original adjacency matrix. Our main result is that
the problem of deciding whether a graph is a square graph is NP-complete. We start by providing
a formal definition of the power of a graph.

Let G(V, E) be an undirected graph on n vertices with m edges. The distance between two vertices
w and v in G is denoted by d(u,v). The k’th power of the graph G is defined as follows.

Definition 1.1: For any positive integer k, the graph G*(V, E¥) has an edge (u,v) if and only if
d(u,v) <k.

If we assume that G' has a self-loop on all the vertices, then it is clear that taking the k’th power
of the adjacency matrix of G gives the adjacency matrix of G¥. We will call G a k ’th-root of the
graph G*. In particular, G? is the square of the graph G and G is a square root of the graph G2.

Powers of graphs have been studied extensively in graph theory. For example, it is well-known
that the square of a 2-connected graph has a Hamiltonian cycle [2], and the Hamiltonian cycle

“Supported by Mitsubishi Corporation, NSF Grant CCR-9010517 and NSF Young Investigator Award CCR-
9357849, with matching funds from IBM, Schlumberger Foundation, Shell Foundation, and Xerox Corporation.

"Part of this research was done while this author was a student at the University of California at Berkeley,
supported by NSF PYI Grant CCR-8896202.

can be found in polynomial time [6]. Furthermore, Sekanina [11] showed that for any non-trivial
connected graph G, the graph G2 is Hamiltonian. Our main motivation for studying the complexity
of checking squareness of a graph comes from distributed computing. In this application [8], the ¢’th
power of a graph G represents the possible flow of information during ¢ rounds of communication
of a distributed network of processors organized according to G. Our motivation in studying this
problem was the question posed by Nati Linial of characterizing the class of graphs that are ¢’th
powers, in the hope that this would facilitate the study of distributed algorithms for graph problems.
Our result implies that there does not exist any good (polynomially verifiable) characterization of
even the square graphs.

Several attempts have been made at characterizing the class of square graphs. Mukhopadhyay [9]
showed that a graph H is a square if and ounly if there exists a complete induced subgraph H;
corresponding to each vertex v; in H such that

e v; € H;.
e v; € Hj if and only if v; € H;.

o U,H,=H.

This is not a polynomial characterization in that it does not lead to a polynomial time algorithm
for recognizing square graphs. Similar characterizations were provided for the squares of directed
graphs [4] and the k’th powers [1].

Several results have been obtained on the powers of special classes of graphs, or in the case where
the power of a graph belongs to a special class. Ross & Harary [10] showed that the tree square roots
of a graph, when they exist, are unique up to isomorphisms. Harary, Karp & Tutte [5] provided
characterizations of the planar graphs which are square graphs. Recently, Lin & Skiena [7] devised
several algorithms with respect to powers of graphs. They provided efficient algorithms for finding
square-roots of graphs G? where G is a tree, and where G? is planar. They also presented several
polynomial-time algorithms for problems which are NP-complete in general, when restricted to
the special case of graphs that are k’th powers. Lin & Skiena conjectured that the problem of
recognizing square graphs is NP-complete — we settle this conjecture in this paper. We believe that
the square-testing problem remains NP-complete even when restricted to the special case of squares
of bipartite graphs, but our proof does not seem to extend to this problem. An important related
problem that remains open is the issue of finding square roots of matrices under field operations.
These questions bear upon the construction of block designs and related combinatorial structures.

2. Preliminaries

Throughout this paper ¢ will represent a 3-CNF formula on n variables z1, - - -, x, with m clauses.
The n variables give 2n literals and we will use [y, - -, l2, to denote them.

Definition 2.1: A 3-CNF formula ¢ has a not-all-equal satisfying assignment, if there exists an
assignment to the variables x1,---, Ty, such that each clause of ¢ has at least one TRUE literal and
at least one FALSE literal.

TRUE

| TRUE FALSE T I

FALSE

Figure 1: Py and P

Definition 2.2: NAESAT is the set of all 3-CNF formulae that have not-all-equal satisfying
assignments.

The following result can be found in the book of Garey & Johnson [3].
Theorem 1: Given a 3-CNF formula ¢, determining if ¢ € NAESAT s NP-Complete.

Problem [SQUARE]
Instance: A graph G = (V, E).
Question: Does there exists a graph H such that G = H??

The rest of the paper shows that SQUARE is NP-hard by reducing NAESAT to it. It is clear
that SQUARE is in NP, since guessing the square root H and verifying that G = H? can be easily
done in polynomial time. Thus, we conclude that SQUARE is NP-complete.

Theorem 2: SQUARE is NP-Complete

3. Intuitive description of the reduction

This section describes the basic ideas and tools that set up the reduction from NAESAT to
SQUARE. The reduction starts off by trying to set up a graph H which represents a satisfying
assignment to a 3-CNF formula such that its square G would effectively hide all information about
the assignment. Furthermore, the reduction would try to maintain that any square root of G gives
a satisfying assignment to the formula.

One of the most important insights into the problem is obtained by looking at a very simple graph
— the path on 4 vertices (Py, see Figure 1). The square of this graph is the complete graph on 4
vertices from which one edge is missing. Associate with the endpoints of this path the literals [
and [, and associate with the two inner vertices the constants TRUE and FALSE. This association
can be used to represent an assignment to the variable [: [is TRUE if and only if [is adjacent to
TRUE. In the square of this graph the literals [and [are both connected to the constants TRUE and
FALSE, so the square no longer contains any information of the assignment to [. At the same time,

Vs Vo Vi

\ V3 V2 V1 v

Figure 2: Tail in H and H?

enough information is preserved to ensure that any square root of this graph would have been some
assignment to /.

The natural direction for the reduction would be to replicate this process with many literals.
However the notion of TRUE and FALSE has to be global — so the reduction would have to use
exactly one pair of TRUE and FALSE vertices and all literals that are assigned TRUE will be made
adjacent to TRUE in H (similarly for FALSE literals). There is a problem with this process - all
TRUE literals become adjacent in the square. This problem though is overcome easily by making
all literal pairs [; and [o adjacent in G. This is achieved by creating for every pair of literals [y, [2,
which are not complements of each other, a vertex A;;, which is adjacent to /; and ly in H. By
throwing in a few more edges connecting A; ;, to some other vertices, it can be ensured that the
square of H has no information at all about the assignment.

The next step would be to force the assignment to be a not-all-equal satisfying assignment for a
set of clauses C. This is achieved by creating for each clause a vertex ¢ which is adjacent in H to
all literals contained in the clause. The fact that the clause contains at least one and at most two
TRUE literals, implies that in G, ¢ will be connected to both TRUE and FALSE.

Lastly we need a gadget which can be used to enforce some nice properties of any square root of
the square of a fixed graph H. One such property might be to ensure that some vertex v has the
same neighborhood in any square root of H? as in H. This is enforced by adding to v, in H, a tail,
which is a sequence of vertices vz <> ve <> v; where v; is adjacent only to v (see Figure 2). It can
be argued by looking at H? that in any square root of H?, vs is adjacent only to vo, which in turn
is adjacent only to v; and so on, finally enabling one to exactly pin down the neighborhood of v.

The next section gives the complete and exact details of the reduction, along with a formal proof
of its correctness.

4. The Reduction

Let ¢; be the set of literals in clause j and let C = {¢;|1 < j < m}. The graph G is constructed as
follows :

Vertices of G

e Constant Vertices : TRUE, FALSE, X and tail vertices to X — t1, {2 and 3.

e Literal Vertices : L; : 1 <14 < 2n for each literal I;.

e Literal Pair Vertices : A;; : 1 <1< j <2n and [; # l}.

e Clause Vertices : C; for each clause ¢; € C and tail vertices C}, CJZ, C]?’ for each c;.
Edges of G

° Edges of the tail of X : t3 <> lo, T3 <> Ty, T2 < 11, T2 <& X, t1 & X, t1 <> TRUE, and
t1 <> FALSE.

e Edges of the tails of clauses : Vc¢; € C, CJ‘?’ > CJZ, C’;-)’ > C}, C’? > C}, C']2 + O}, C’} + Cj,
le — Lil, le — Li2, and le <~ Li3, where {lil,lh, li3} = Cj.

e Edges of the clauses : Vc¢; € C, and Vi s.t. [; € ¢;, Cj <> Lj; Cj <> TRUE, C; <> FALSE. Also
for all k s.t. I #[;, Cj ~ A

e Edges of the literal vertices, literal pair vertices and the vertices TRUE, FALSE, X : All remain-
ing vertices {L;}’s, the {A;;}’s and TRUE, FALSE, X’ are adjacent, except for the pairs, L;, L;
where [; = ;.

The important thing about G is that it can be constructed without any knowledge of the satisfia-
bility of ¢. At the same time G contains all the information of ¢. The next two subsections show
that G is a square if and only if ¢ is satisfiable in a not all equal manner.

4.1. Satisfiability implies squareness

Here we prove that if ¢ € NAESAT, then G is a square. Consider an assignment to the variables
1, -+, Ty, such that every clause of ¢ contains at least one true and one false literal. A square
root of G, say H, can be constructed as follows :

Edges of H

e Edges of X and the tail of X' : {35 <> to, {9 <> t1, t1 <> X and X <> TRUE, FALSE.
e Edges of clause vertex C; and its tail : C;’ ~ CJZ, C’]2 ~ C;, C} < Cj and Cj < L; if and

only in [; € Cj-

e Edges of literal vertex L; : Here we use the assignment information and connect L; to TRUE
if it is true under the assignment and connect it to FALSE otherwise. Also for each literal k
s.t. lk 7é li, LZ Ad Azk;

e Fdges of literal pair vertex A;; : A;x <> TRUE, FALSE.
Lemma 3: Gy = H?

Proof: It can be verified that the adjacency of the tail vertices of X and the tail vertices of
the clause vertices have the same adjacency in G4 as in H 2. Also, the clause vertex C; has as its
neighbors in H? all neighbors in H of literal vertices L;,, L;, and L;, where ¢; = {l;,,l;,,l;;}. This
can be used to check that the adjacency of the clause vertices is the same in H? as in Gg.

Figure 3:

Consider the induced subgraph on the literal vertices, the literal pair vertices and the constant
vertices. Since no literal and its complement share a common neighbor in H, vertex pairs corre-
sponding to a literal and its complement are non-adjacent in H?. All other vertices get connected
mainly because they either share a common neighbor in TRUE or FALSE, or because of the existence
of the literal pair vertices.

We have omitted some details for the sake of clarity, but these can be easily verified. O

4.2. Squareness implies satisfiability

We now show that if G is a square, then ¢ € NAESAT. First we derive a property of the “tails”
which are crucial to our construction.

Lemma 4: If a,b,c,d are vertices of G such that

e The only neighbors of a are b and c.
e The only neighbors of b are a,c and d.

e cd

Then the neighbors, from V —{a,b,c,d}, of d in any square root of G are the same as the neighbors,
from V —{a,b,c,d}, of c in G.

Proof: Assume, without loss of generality, that G is a connected graph and let H be a square
root of G. Then H is connected and hence G is biconnected. Hence both ¢ and d must have
neighbors in V' —{a,b,¢,d} in G (see Figure 3).

First, observe that the degree of ¢ in H must be one, or else d would have to be a neighbor of ¢ in
G. If ¢ <> a in H then ¢ can only be adjacent to b and a in H. But ¢ has neighbors in V' —{a, b, ¢, d}
in G while ¢ and b do not. This implies that the only neighbor of a in H is b. Now the following
line of reasoning pins down the neighborhood of a, b, ¢, d exactly :

e b is adjacent only to ¢ (besides a) in H : This follows by looking at the neighborhood of ¢ in
G.

e cis adjacent only to d (besides b) in H : This follows by looking at the neighborhood of b in
G.

e d is adjacent only to the neighbors of ¢ in V' — {a, b, ¢,d} (besides ¢) in H : Once again this
follows by looking at the neighborhood of ¢ in G.

Immediate corollaries to this lemma are the following :

Corollary 5: If Hy is a square root of Gy then X is adjacent only to TRUE and FALSE in H,
(besides neighbors in its tail).

Corollary 6: If Hy is a square root of Gy then C; is adjacent only to L;,, L;, and L;, in Hg where
cj = {li, iy, liy} (besides neighbors in its own tail).

Corollary 5 forces Hy to be an assignment. Since every literal vertex is adjacent to X' in Gy, every
literal must be adjacent to at least one of TRUE or FALSE in Hy. But no literal vertex is adjacent
to its complementary vertex in G,. Thus every literal vertex must be adjacent to exactly one of
TRUE and FALSE and its complement must be adjacent to the other vertex. This forces Hy to look
like an assignment.

Now Corollary 6 can be used to force this to be a not-all-equal satisfying assignment. Every clause
vertex sees both TRUE and FALSE in G4 but it sees only its own literals in Hy. Therefore at least
one of the literals that a clause sees must be true and at least one must be false. This implies that
the assignment given by Hy is a not-all-equal satisfying assignment.

This completes the proof that G is a square if and only if ¢ € NAESAT.

5. Acknowledgments

We would like to thank Nati Linial for posing the problem over lunch at the Jordan Hall Cafe.

References

[1] F. ESCALANTE, L. MONTEJANO AND T. R0OJANO, Characterization of n-path graphs and of
graphs having n’th root, Journal of Combinatorial Theory (Series B), 16 (1974), pp. 282-289.

[2] H. FLEISCHNER, The square of every two-connected graph is Hamiltonian, Journal of Combi-
natorial Theory (Series B), 16 (1974), pp. 29-34.

[3] M.R. GAREY AND D.S. JOHNSON, “Computers and Intractability — A Guide to the Theory
of NP-completeness,” W.H. Freeman & Co., 1979.

[4] D.P. GELLER, The square root of a digraph, Journal of Combinatorial Theory (Series B), 5
(1968), pp. 320-321.

[6] F. HARARY, R.M. KARP AND W.T. TUTTE, A criterion for planarity of the square of a
graph, Journal of Combinatorial Theory (Series B), 2 (1967), pp. 395-405.

[6]

H.T. LAvu, “Finding a Hamiltonian Cycle in the Square of a Block,” PhD. Thesis, School of
Computer Science, McGill University, Montreal, 1980.

Y-L. LIN AND S.S. SKIENA, “Algorithms for Square Roots of Graphs,” Technical Report
TR# 91/11, Department of Computer Science, SUNY Stony Brook, 1991.

N. LiNIAL, Locality in distributed graph algorithms, STAM Journal on Computing, 21 (1992),
pp. 193-201.

A. MUKHOPADHYAY, The square root of a graph, Journal of Combinatorial Theory (Series
B), 2 (1967), pp. 290-295.

D.J. Ross AND F. HARARY, The square of a tree, Bell System Technical Journal 39 (1960),
pp. 641-647.

M. SEKANINA, “On an ordering of the set of vertices of a connected graph,” Technical Report
No. 412, Publ. Fac. Sci. Univ. Brno, 1960.

