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tThe square of an undire
ted graph G is the graph G2 on the same vertex set su
h that thereis an edge between two verti
es in G2 if and only if they are at distan
e at most 2 in G. The k'thpower of a graph is de�ned analogously. It has been 
onje
tured that the problem of 
omputingany square root of a square graph, or even that of de
iding whether a graph is a square, isNP-hard. We settle this 
onje
ture in the aÆrmative.1. Introdu
tionWe 
onsider the problem of de
iding whether a graph is a perfe
t square. Informally, the square ofan undire
ted graph is obtained by pla
ing an edge between two verti
es whi
h are at a distan
eof two or less. It is easy to see that the adja
en
y matrix of the square graph is the square(under boolean matrix multipli
ation) of the original adja
en
y matrix. Our main result is thatthe problem of de
iding whether a graph is a square graph is NP-
omplete. We start by providinga formal de�nition of the power of a graph.Let G(V;E) be an undire
ted graph on n verti
es with m edges. The distan
e between two verti
esu and v in G is denoted by d(u; v). The k'th power of the graph G is de�ned as follows.De�nition 1.1: For any positive integer k, the graph Gk(V;Ek) has an edge (u; v) if and only ifd(u; v) � k.If we assume that G has a self-loop on all the verti
es, then it is 
lear that taking the k'th powerof the adja
en
y matrix of G gives the adja
en
y matrix of Gk. We will 
all G a k'th-root of thegraph Gk. In parti
ular, G2 is the square of the graph G and G is a square root of the graph G2.Powers of graphs have been studied extensively in graph theory. For example, it is well-knownthat the square of a 2-
onne
ted graph has a Hamiltonian 
y
le [2℄, and the Hamiltonian 
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an be found in polynomial time [6℄. Furthermore, Sekanina [11℄ showed that for any non-trivial
onne
ted graph G, the graph G3 is Hamiltonian. Our main motivation for studying the 
omplexityof 
he
king squareness of a graph 
omes from distributed 
omputing. In this appli
ation [8℄, the t'thpower of a graph G represents the possible 
ow of information during t rounds of 
ommuni
ationof a distributed network of pro
essors organized a

ording to G. Our motivation in studying thisproblem was the question posed by Nati Linial of 
hara
terizing the 
lass of graphs that are t'thpowers, in the hope that this would fa
ilitate the study of distributed algorithms for graph problems.Our result implies that there does not exist any good (polynomially veri�able) 
hara
terization ofeven the square graphs.Several attempts have been made at 
hara
terizing the 
lass of square graphs. Mukhopadhyay [9℄showed that a graph H is a square if and only if there exists a 
omplete indu
ed subgraph Hi
orresponding to ea
h vertex vi in H su
h that� vi 2 Hi.� vi 2 Hj if and only if vj 2 Hi.� [iHi = H.This is not a polynomial 
hara
terization in that it does not lead to a polynomial time algorithmfor re
ognizing square graphs. Similar 
hara
terizations were provided for the squares of dire
tedgraphs [4℄ and the k'th powers [1℄.Several results have been obtained on the powers of spe
ial 
lasses of graphs, or in the 
ase wherethe power of a graph belongs to a spe
ial 
lass. Ross & Harary [10℄ showed that the tree square rootsof a graph, when they exist, are unique up to isomorphisms. Harary, Karp & Tutte [5℄ provided
hara
terizations of the planar graphs whi
h are square graphs. Re
ently, Lin & Skiena [7℄ devisedseveral algorithms with respe
t to powers of graphs. They provided eÆ
ient algorithms for �ndingsquare-roots of graphs G2 where G is a tree, and where G2 is planar. They also presented severalpolynomial-time algorithms for problems whi
h are NP-
omplete in general, when restri
ted tothe spe
ial 
ase of graphs that are k'th powers. Lin & Skiena 
onje
tured that the problem ofre
ognizing square graphs is NP-
omplete { we settle this 
onje
ture in this paper. We believe thatthe square-testing problem remains NP-
omplete even when restri
ted to the spe
ial 
ase of squaresof bipartite graphs, but our proof does not seem to extend to this problem. An important relatedproblem that remains open is the issue of �nding square roots of matri
es under �eld operations.These questions bear upon the 
onstru
tion of blo
k designs and related 
ombinatorial stru
tures.2. PreliminariesThroughout this paper � will represent a 3-CNF formula on n variables x1; � � � ; xn with m 
lauses.The n variables give 2n literals and we will use l1; � � � ; l2n to denote them.De�nition 2.1: A 3-CNF formula � has a not-all-equal satisfying assignment, if there exists anassignment to the variables x1; � � � ; xn su
h that ea
h 
lause of � has at least one TRUE literal andat least one FALSE literal. 2
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Figure 1: P4 and P 24De�nition 2.2: NAESAT is the set of all 3-CNF formulae that have not-all-equal satisfyingassignments.The following result 
an be found in the book of Garey & Johnson [3℄.Theorem 1: Given a 3-CNF formula �, determining if � 2 NAESAT is NP-Complete.Problem [SQUARE℄Instan
e: A graph G = (V;E).Question: Does there exists a graph H su
h that G = H2?The rest of the paper shows that SQUARE is NP-hard by redu
ing NAESAT to it. It is 
learthat SQUARE is in NP, sin
e guessing the square root H and verifying that G = H2 
an be easilydone in polynomial time. Thus, we 
on
lude that SQUARE is NP-
omplete.Theorem 2: SQUARE is NP-Complete3. Intuitive des
ription of the redu
tionThis se
tion des
ribes the basi
 ideas and tools that set up the redu
tion from NAESAT toSQUARE. The redu
tion starts o� by trying to set up a graph H whi
h represents a satisfyingassignment to a 3-CNF formula su
h that its square G would e�e
tively hide all information aboutthe assignment. Furthermore, the redu
tion would try to maintain that any square root of G givesa satisfying assignment to the formula.One of the most important insights into the problem is obtained by looking at a very simple graph{ the path on 4 verti
es (P4, see Figure 1). The square of this graph is the 
omplete graph on 4verti
es from whi
h one edge is missing. Asso
iate with the endpoints of this path the literals land �l, and asso
iate with the two inner verti
es the 
onstants TRUE and FALSE. This asso
iation
an be used to represent an assignment to the variable l : l is TRUE if and only if l is adja
ent toTRUE. In the square of this graph the literals l and �l are both 
onne
ted to the 
onstants TRUE andFALSE, so the square no longer 
ontains any information of the assignment to l. At the same time,3
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3 2 1Figure 2: Tail in H and H2enough information is preserved to ensure that any square root of this graph would have been someassignment to l.The natural dire
tion for the redu
tion would be to repli
ate this pro
ess with many literals.However the notion of TRUE and FALSE has to be global { so the redu
tion would have to useexa
tly one pair of TRUE and FALSE verti
es and all literals that are assigned TRUE will be madeadja
ent to TRUE in H (similarly for FALSE literals). There is a problem with this pro
ess - allTRUE literals be
ome adja
ent in the square. This problem though is over
ome easily by makingall literal pairs l1 and l2 adja
ent in G. This is a
hieved by 
reating for every pair of literals l1; l2,whi
h are not 
omplements of ea
h other, a vertex Al1l2 whi
h is adja
ent to l1 and l2 in H. Bythrowing in a few more edges 
onne
ting Al1l2 to some other verti
es, it 
an be ensured that thesquare of H has no information at all about the assignment.The next step would be to for
e the assignment to be a not-all-equal satisfying assignment for aset of 
lauses C. This is a
hieved by 
reating for ea
h 
lause a vertex 
 whi
h is adja
ent in H toall literals 
ontained in the 
lause. The fa
t that the 
lause 
ontains at least one and at most twoTRUE literals, implies that in G, 
 will be 
onne
ted to both TRUE and FALSE.Lastly we need a gadget whi
h 
an be used to enfor
e some ni
e properties of any square root ofthe square of a �xed graph H. One su
h property might be to ensure that some vertex v has thesame neighborhood in any square root of H2 as in H. This is enfor
ed by adding to v, in H, a tail,whi
h is a sequen
e of verti
es v3 $ v2 $ v1 where v1 is adja
ent only to v (see Figure 2). It 
anbe argued by looking at H2 that in any square root of H2, v3 is adja
ent only to v2, whi
h in turnis adja
ent only to v1 and so on, �nally enabling one to exa
tly pin down the neighborhood of v.The next se
tion gives the 
omplete and exa
t details of the redu
tion, along with a formal proofof its 
orre
tness.4. The Redu
tionLet 
j be the set of literals in 
lause j and let C = f
j j1 � j � mg. The graph G is 
onstru
ted asfollows :Verti
es of G� Constant Verti
es : TRUE, FALSE, X and tail verti
es to X { t1, t2 and t3.� Literal Verti
es : Li : 1 � i � 2n for ea
h literal li.4



� Literal Pair Verti
es : Aij : 1 � i < j � 2n and li 6= �lj.� Clause Verti
es : Cj for ea
h 
lause 
j 2 C and tail verti
es C1j ; C2j ; C3j for ea
h 
j.Edges of G� Edges of the tail of X : t3 $ t2, t3 $ t1, t2 $ t1, t2 $ X , t1 $ X , t1 $ TRUE, andt1 $ FALSE.� Edges of the tails of 
lauses : 8
j 2 C, C3j $ C2j , C3j $ C1j , C2j $ C1j , C2j $ Cj , C1j $ Cj ,C1j $ Li1 , C1j $ Li2 , and C1j $ Li3 , where fli1 ; li2 ; li3g = 
j .� Edges of the 
lauses : 8
j 2 C, and 8i s.t. li 2 
j , Cj $ Li; Cj $ TRUE, Cj $ FALSE. Alsofor all k s.t. lk 6= �li, Cj $ Aik.� Edges of the literal verti
es, literal pair verti
es and the verti
es TRUE; FALSE;X : All remain-ing verti
es fLig's, the fAijg's and TRUE; FALSE;X are adja
ent, ex
ept for the pairs, Li; Ljwhere li = �lj.The important thing about G� is that it 
an be 
onstru
ted without any knowledge of the satis�a-bility of �. At the same time G� 
ontains all the information of �. The next two subse
tions showthat G� is a square if and only if � is satis�able in a not all equal manner.4.1. Satis�ability implies squarenessHere we prove that if � 2NAESAT, then G� is a square. Consider an assignment to the variablesx1; � � � ; xn, su
h that every 
lause of � 
ontains at least one true and one false literal. A squareroot of G�, say H, 
an be 
onstru
ted as follows :Edges of H� Edges of X and the tail of X : t3 $ t2, t2 $ t1, t1 $ X and X $ TRUE; FALSE.� Edges of 
lause vertex Cj and its tail : C3j $ C2j , C2j $ C1j , C1j $ Cj and Cj $ Li if andonly in li 2 
j .� Edges of literal vertex Li : Here we use the assignment information and 
onne
t Li to TRUEif it is true under the assignment and 
onne
t it to FALSE otherwise. Also for ea
h literal ks.t. lk 6= �li, Li $ Aik.� Edges of literal pair vertex Aik : Aik $ TRUE; FALSE.Lemma 3: G� = H2Proof: It 
an be veri�ed that the adja
en
y of the tail verti
es of X and the tail verti
es ofthe 
lause verti
es have the same adja
en
y in G� as in H2. Also, the 
lause vertex Cj has as itsneighbors in H2 all neighbors in H of literal verti
es Li1 ; Li2 and Li3 where 
j = fli1 ; li2 ; li3g. This
an be used to 
he
k that the adja
en
y of the 
lause verti
es is the same in H2 as in G�.5



a b c dFigure 3:Consider the indu
ed subgraph on the literal verti
es, the literal pair verti
es and the 
onstantverti
es. Sin
e no literal and its 
omplement share a 
ommon neighbor in H, vertex pairs 
orre-sponding to a literal and its 
omplement are non-adja
ent in H2. All other verti
es get 
onne
tedmainly be
ause they either share a 
ommon neighbor in TRUE or FALSE, or be
ause of the existen
eof the literal pair verti
es.We have omitted some details for the sake of 
larity, but these 
an be easily veri�ed. 24.2. Squareness implies satis�abilityWe now show that if G is a square, then � 2 NAESAT. First we derive a property of the \tails"whi
h are 
ru
ial to our 
onstru
tion.Lemma 4: If a; b; 
; d are verti
es of G su
h that� The only neighbors of a are b and 
.� The only neighbors of b are a; 
 and d.� 
$ dThen the neighbors, from V �fa; b; 
; dg, of d in any square root of G are the same as the neighbors,from V � fa; b; 
; dg, of 
 in G.Proof: Assume, without loss of generality, that G is a 
onne
ted graph and let H be a squareroot of G. Then H is 
onne
ted and hen
e G is bi
onne
ted. Hen
e both 
 and d must haveneighbors in V � fa; b; 
; dg in G (see Figure 3).First, observe that the degree of a in H must be one, or else d would have to be a neighbor of a inG. If 
$ a in H then 
 
an only be adja
ent to b and a in H. But 
 has neighbors in V �fa; b; 
; dgin G while a and b do not. This implies that the only neighbor of a in H is b. Now the followingline of reasoning pins down the neighborhood of a; b; 
; d exa
tly :� b is adja
ent only to 
 (besides a) in H : This follows by looking at the neighborhood of a inG.� 
 is adja
ent only to d (besides b) in H : This follows by looking at the neighborhood of b inG. 6



� d is adja
ent only to the neighbors of 
 in V � fa; b; 
; dg (besides 
) in H : On
e again thisfollows by looking at the neighborhood of 
 in G. 2Immediate 
orollaries to this lemma are the following :Corollary 5: If H� is a square root of G� then X is adja
ent only to TRUE and FALSE in H�(besides neighbors in its tail).Corollary 6: If H� is a square root of G� then Cj is adja
ent only to Li1 ; Li2 and Li3 in H� where
j = fli1 ; li2 ; li3g (besides neighbors in its own tail).Corollary 5 for
es H� to be an assignment. Sin
e every literal vertex is adja
ent to X in G�, everyliteral must be adja
ent to at least one of TRUE or FALSE in H�. But no literal vertex is adja
entto its 
omplementary vertex in G�. Thus every literal vertex must be adja
ent to exa
tly one ofTRUE and FALSE and its 
omplement must be adja
ent to the other vertex. This for
es H� to looklike an assignment.Now Corollary 6 
an be used to for
e this to be a not-all-equal satisfying assignment. Every 
lausevertex sees both TRUE and FALSE in G� but it sees only its own literals in H�. Therefore at leastone of the literals that a 
lause sees must be true and at least one must be false. This implies thatthe assignment given by H� is a not-all-equal satisfying assignment.This 
ompletes the proof that G� is a square if and only if � 2 NAESAT.5. A
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