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Abstract

Let Dist(f,g) = Pry[f(u)#g(u)] denote the relative dis-
tance between functions f, ¢ mapping from a group G to a
group 7, and let Dist( f) denote the minimum, over all linear
functions (homomorphisms) g, of Dist( f, g). Givenafunction
f: G — Hwelet Err(f) = Pryo [ f(u)+f(v)#f(utv)]
denote the rejection probability of the BLR (Blum-Luby-
Rubinfeld) linearity test. Linearity testing is the study of the
relationship between Err( f) and Dist( f), and in particular the
study of lower bounds on Err( f) interms of Dist( f).

The case we are interested in is when the underlying groups
areG=GF(2)” and H=GF(2). Thecorrespondingtest isused
in the construction of efficient PCPs and thence in the deriva-
tion of hardness of approximation results, and, in this context,
improved analysestranslate into better non-approximability re-
sults. However, while several analysesof therelation of Err( f)
to Dist( f) are known, none is tight.

We present a description of the relationship between Err( f)
and Dist(f) which is nearly complete in all its aspects, and
entirely complete (i.e. tight) in some. In particular we present
functions I, U: [0,1] — [0, 1] such that for all x € [0,1]
we have L(z) < Err(f) < U(x) whenever Dist(f)=x, with
the upper bound being tight on the whole range, and the lower
bound tight on alarge part of the range and close on the rest.

Part of our strengthening is obtained by showing a new con-
nection between the linearity testing problem and Fourier anal-
ysis, a connection which may be of independent interest. Our
results are used by Bellare, Goldreich and Sudan to present the
best known hardness results for Max3SAT and other MaxSNP
problems [7].

* Department of Computer Science & Engineering, Mail Code 0114, Uni-
versity of California a San Diego, 9500 Gilman Drive, La Jolla, Cdifornia
92093. mi hir @s. ucsd. edu. Thiswork was done while the author was at
theIBM T. J. Watson Research Center.

t Research Divison, IBM T.J. Watson Research Center, PO. Box 218,
Yorktown Heights, NY 10598, USA. copper @at son. i bm com

4 Department of Computer Science, Royal Ingtitute of Technology, 10044
Stockholm, Sweden. j ohanh@ada. kt h. se. Part of this work was done
while the author was visiting MIT.

§ Dept. of Applied Mathematics, Massachusetts Ingtitute of Technology,
Cambridge, MA  02139. nkiw @mth.nmt.edu. Supported by an AT&T
Bell Laboratories PhD Scholarship and NSF Grant CCR-9503322. On leave
of absence from Dept. de IngenieriaMatemética, U. de Chile.

1 Research Division, IBM T.J. Watson Research Center, PO. Box 218,
Yorktown Heights, NY 10598, USA. nadhu@wat son. i bm com

J. HAsTAD ¥

M. Kiwi § M. Suban T

1 Introduction

Linearity testing (and its extension to low degree testing) has
come to the fore in the last few years principally due to its
crucial role in the construction of efficient PCPs, and thencein
the obtaining of (strong) non-approximability results for NP-
optimization problems. Yet the problemitself is older, with the
basic formulation as we now know it first made in the context
of program checking [9]. It also has wider applicability, for
examplein the testing of linear error-correcting codes.

It is afeature of the areathat while tests are easy to specify,
they are notoriously hard to analyze, especially to analyzewell.
Yet, good analyses are, for several reasons, worth striving for.
There is, first, the inherent mathematical interest of getting
the best possible analysis and understanding of a well-defined
combinatorial problem. But, there is amore pragmatic reason:
better analyses typically translate into improved (increased)
factors shown non-approximable in hardness of approximation
results.

The particular problem in linearity testing that we address
isacasein point. The BLR (Blum-Luby-Rubinfeld) test is
the first ever proposed, and addresses the most basic question,
namely testing linearity (as opposed, say, to low-degree). Our
focus is the case of most importance in applications, when the
underlying function maps between groups of characteristic two.
Several analyses have appeared, yet none is tight. With each
analysis comes an improved Max3SAT non-approximability
factor, but the extent to which the factor can grow remains
open. Itisagoal of this paper to provide some answersto this
guestion.

Wewill dothis; but in fact do more. Let usbegin by describ-
ing the problem and past work more precisely.

1.1 TheProblem

Although our concernis groups of characteristic two, it will be
useful, to discuss past work, to begin more generally, with the
problem of linearity testing over arbitrary finite groups. Thus
let G, H befinite groups, and recal that afunctiong: G — H
islinear if g(u) 4+ ¢(v) = g(u+ v) foral u,v € G. (Thatis,
g isagroup homomorphism.) Here are some basic definitions:

— LIN(G, H)— Setof dl linear functions of G to H

Dist(f,q) = Pr r[f(u) # g(u)] — (relative) dis-

tance between f, g: G — H



— Dist(f) % min{ Dist(f, ) : g € LIN(G, H) } — Dis-
tance of f toitsclosest linear function.
We are given oracle access to a function f mapping &G to H.
(That is, we can specify u €  and in one step are returned
f(u) € H.) Wewant to test that f isclose(in relative distance)
to alinear function. We are charged for each oracle call.

THEBLRTEST. TheBLRtestisthefollowing[9]— Pick u, v €
(i at random, query the oracleto obtain f(u), f(v), f(u + v),
andrejectif f(u) + f(v) # f(u+ v). Let

Err(f) 4l p,

)

w [F(0) + F(0) # flu+ )]
denote the probability that the BLR test rejects f. Theissuein
linearity testing is to study how Err(f) behaves as a function
of # = Dist(f). In particular, one would like to derive good
lower bounds on Err( f) asafunction of x.

REJ(-). A convenient way to capture the above issues is via
the rejection probability function REJ ¢ & [0,1] — [0, 1] of
the test. It associates to any number = the minimum value of

Err(f), takenover all functions f of distance x from the space

of linear functions. Thus, REJ ¢ () def

min{ Err(f): f: G — H st. Dist(f) =« }.

Thegraphof REJ ¢ g —namely REJ ¢ g () plotted asafunc-
tion of x— is called the linearity testing curve. This curve
depends only on the groups G, H .

Thus the most general problem in linearity testing is to de-
termine the function REJ ¢ () for given G, H. Much of the
work that has been done provides information about various
aspects of thisfunction.

THE KNEE OF THE CURVE. In particular, one parameter has
emerged asan important one in connection with MaxSNP hard-
nessresults. Thisparameter, identifiedin[2, 6,7, 8], isasingle
number, which we call here the knee of the curve. It is defined
as the minimum rejection probability when the distance (of the
function being tested from the space of linear functions) is at
least 1/4:

KNEE ¢ g ! min{ REJ(z): 2> 1/4}.

Improvements (increases) in the lower bound that can be shown
on KNEE ¢, g trandate directly into improved (increased) non-
approximability factors for MaxSNP problems via [6, 7, 8].
(Exactly how or why thisisthe caseis outside the scope of this
paper, and we refer the reader to the worksin question.)

1.2 Previous work

Thefirst investigation of the shape of the linearity testing curve,
by Blum, Luby and Rubinfeld [9], was in the general context
where G, H are arbitrary finite groups. Their analysis showed

that REJ ¢ g(x) > 2¢/9 [9]. (They indicate that this is an
improvement of their original analysis obtained jointly with
Coppersmith.) Interest in the tightness of the analysis begins
with Bellare, Goldwasser, Lund and Russell [6] in the context
of improving non-approximability factors for MaxSNP prob-
lems. They showedthat REJ ¢ g (x) > 3z — 62%. Meanwhile
it was noted that the result of [9] could be used to show that
REJ g m(x) > 2/9 for z > 1/4. The last two bounds super-
sede the first, so that the following theorem captures the state
of knowledge.

Theorem 1.1 [6, 9, 10] Let G, H be arbitrary finite groups.
Then:

(1) REJgm(r) > 3z — 627
(20 KNEEq g > 2/9.

As indicated above, an improved lower bound for the knee
would lead to better non-approximability results. But in this
general setting, we can do no better: an example of Copper-
smith shows that the above value is in fact tight in the case of
general groups. (For completenessthis exampleis provided in
Appendix A.) This leads into our research. We note that the
problem to which linearity testing isapplied in the proof system
constructionsof [2, 6, 7, 8] isthat of testing Hadamard codes (in
the first three works) and the long code (in the last work). But
this correspondsto the above problem in the special casewhere
G = GF(2)" and H = GF(2). For this case, the example of
Coppersmith does not apply, and we can hope for better results.

1.3 New results and techniques

Welook at the performance of the BL R test when the underlying
groupsareG = GF(2)” and H = GF(2) forsomen > 1. (G
isregarded asan additive group intheobviousway. Namely, the
elementsare viewed asn-bit strings or vectorsover GF(2), and
operations are component-wise over GF(2).) For notational
simplicity we now drop the groups &G, H from the subscripts,
writing REJ(z) and KNEE— it is to be understood that we
mean ¢ = GF(2)” and H = GF(2). We provide two new
analysesof REJ(z).

FOURIER ANALYSIS. We establish a new connection between
linearity testing and Fourier analysis. We provide an interpreta-
tion of Dist(f) and Err(f) interms of the Fourier coefficients
of an appropriate transformation of f. We use this to cast the
linearity testing problem in the language of Fourier series. This
enables us to use Fourier analysis to study the BLR test. The
outcomeis the following:

Theorem 1.2 REJ(z) > .

Apart from lending a new perspective to the linearity testing
problem, the result exhibits afeaturewhich distinguishesit from
all previous results. Namely, it shows that REJ(z) increases



with = and in factis 1/2 at = 1/2.} (According to the
previousanalysis, namely Theorem 1.1, REJ(x) may havebeen
bounded above by 2/9 for all 2 > «, where « isthe larger root
of theequation3z—62% = 2/9.) Furthermorewecan show that
the analysisistight (towithino(1) factors)at # = 1/2 — o(1).

Thisresult can a so be combined with Part (1) of Theorem 1.1
to show that KNEE > 1/3. However thisis not tight. So we
focus next on finding the right value of the knee.

COMBINATORIAL ANALYSIS. The analysis to find the knee is
based on combinatorial techniques. It leads us to an isoperi-
metric problem about a 3-regular hypergraph on the vertices of
the n-dimensional hypercube. We state and prove a Summation
lemma which provides atight isoperimetric inegquality for this
problem. We then use it to provide the following tight bound
on the knee of REJ ().

Theorem 1.3 KNEE = 45/128.

As the statement indicates we have an equality, not a lower
bound— the value of the knee above is tight. This means we
have the best possible value from the point of view of applica-
tions to MaxSNP hardness. See Section 1.4.

TIGHTNESS OF THE ANALYSIS. We provide examplesto indicate
that, besides the knee value, the lower bounds on REJ(z) as
indicated by our and previous results are tight for a number of
points. In particular, the curve istight for « < 5/16, and the
bound at « = 1/2 — o(1) is matched up to within o(1) factors
(i.e, thereexist functions f,, : GF(2)” — GF(2) suchthat as
n goesto oo, Err(f,,) and Dist(f,) goto 1/2).

OTHER RESULTS. The isoperimetric inequality underlying
Theorem 1.3 turns out to reveal other facts about REJ(z) as
well. In particular it helps establish a tight upper bound on
Err(f) as afunction of Dist(f). This result is presented in
Section 3.

Also, while the main focus of this paper has been the BLR
test, we also present in Appendix B amore general result about
testing for total degree one in characteristic two. The purpose
is to further illustrate the strength and elegance of the Fourier
analysis technique, as well as its more general applicability to
the problem of analyzing program testers.

GRAPH. Figure 1 summarizes the results of this work. The
points { (Dist(f), Err(f)) : f } liein the white region of the
first graph. The dark shaded region represents the forbidden
area before our work, and the lighter shaded region represents
what we add to the forbidden area. Note we both extend the
lower bound and provide upper bounds. The dots are actual
computer constructed examples; they indicate that perhaps the

1 Note that Dist(f) < 1/2foral f: G — H because we are working
over GF(2), so only theportionz € [0, 1/2] of the curveisinteresting.

lower bound may be improved, but not by much.? Of course,
the knee value is tight. Furthermore the upper bound istight.

The second graph indicates lower bounds on REJ(z). The
parabola is the curve 3z — 627 representing the result of [6],
and the line 22 /9 representsthe result of [9]. The earlier value
of the knee appears as the horizontal line at 2/9. Our additions
arethe 45 degreeline of » and the horizontal line at 45/128 for
the new knee value.

1.4 Application to MaxSNP hardness

Usage of the linearity test in the construction of efficient PCPs,
and thence in the derivation of hardness of approximability
resultsfor Max-SNP problems, beginsin[2] and continuesin[6,
7, 8]. Inthefirst three cases, it isused to test the Hadamard code;
inthelast case, to test thelong code. In all casesthe underlying
problem is the one we have considered above, namely linearity
testingwith G = GF(2)” and H = GF(2).

The Max-SNP hardness result of [6] used only two things:
The lower bound REJ(z) > 3z — 62* of Theorem 1.1, and
the best available lower bound % on the knee. They were able
to express the non-approximability factor for Max-3SAT as an
increasing function ¢ (k) depending solely on k. Since the
only available lower bound on the knee at that time was the
KNEE > 2/9 of Theorem 1.1, this was the value they used.
Their final result was that approximating Max-3SAT within
113/112 =2 1.009 is NP-hard.

Improved proof systemswere built by [8]. Again, their non-
approximability factor had the form ¢2(k) for some function
g2 depending only on the best available lower bound & on the
knee. They also used KNEE > 2/9 to show that approximating
Max-3SAT within 74/73 ~ 1.014 isNP-hard.

Theorem 1.3 would yield direct improvements to the results
of [6, 8] with no change in the underlying proof systems or
construction. However, better proof systems are now known,
namely the ones of [7]. Again, the analysis depends on the best
availablelower bound on theknee, so that usage of Theorem 1.3
yields a better result than would have been obtained using only
Theorem 1.1, and thisaspectisnow tight. But, interestingly, [7]
was also able to exploit Theorem 1.2. Their final conclusion,
which uses both our results, wasthat approximating Max-3SAT
within 38/37 ~ 1.027 is NP-hard. (Using only Theorem 1.1
it would have been 45/44 =2 1.023. Using Theorem 1.3 but
not Theorem 1.2 it would have been 39/38 ~ 1.026.)

1.5 Reationship to other work

There are a variety of problems which are studied under the
label of (low-degree) testing. Furthermore, low-degreetestsare
used in avariety of waysin proof systems. We briefly explain,
first, what are the other problems and results in low degree

?Moreprecisely, we have arandomized procedure that with high probability
can construct, for each plotted point, afunction f such that (Dist(f),Err(f))
isarbitrarily close to the point in question.
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Figure 1. The points (Dist(f), Err(f)) inthe plane,

testing and why they differ from ours; second how the usage of
these in proof systemsis different from the usage of linearity
tests.

Low DEGREE TESTING. We are given an oracle for a function
f: F* — F,where F' isafield, and we are given a positive
integer d. In the low individual degree testing problem we are
asked to determine whether f is close to some polynomial p of
degree d in eachof itsn variables. When specializedto the case
of d = 1, thistask is referred to as multi-linearity testing. In
the low total degree testing problem we are asked to determine
whether f is closeto some polynomial p of total degreed inits
n variables. Multi-linearity tests were studied by [4, 11]. Low
individual degree tests were studied by [3, 5, 12, 16]. Tota
degree testswere studied by [2, 13, 14, 17].

What wearelooking at, namely linearity testing over GF(2),
is a variant of the total degree testing problem in which the
degreeisd = 1, F' issetto GF(2), and the constant term of the
polynomial pisforcedto 0.3 Even though asignificant amount
of work has been put into the analysis of the low degree tests
by the above mentioned works, the analysis does not appear to
be tight for any case. In particular one cannot use those results
to derive the results we obtain here. In fact the tightness of
the result obtained here raises the issue as to whether similar
techniques can be used to improve the analysis in the above
testers.

THE ROLE OF TESTING IN PROOF SYSTEMS. To explain this, first

3 To illustrate the difference between individual and total degree, note that
f(z1,...,8n) = @122 ismulti-linear but not linear.
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and the successive lower bounds. See text for discussion.

recall that proof systemsare built by recursion[3]. Each level
of recursion will typically use some form of low-degree testing,
the kind differing from level to level.

The use of multi-linearity testing was initiated by Babai,
Fortnow and Lund [4]. For efficiency reasons, researchers
beginning with Babai, Fortnow, Levin and Szegedy [5] then
turned to low individual degree testing. This testingisusedin
the “higher” levels of the recursion. Linearity testing showed
up for the first time in the lowest level of the recursion, in
the checking of the Hadamard code in [2]. The proof systems
we discuss use all these different testers, but, as we explained,
thefinal non-approximability factors obtained can be expressed
only in terms of the knee of the linearity testing curve.

1.6 Discussion

The main argument behind the analysis of the BLR test given
in [9] is the following: given f taking values from one finite
group into another finite group, start by defining a function ¢
whose value at v is MAJORITY, { f(u + v) — f(v)}. Then,
show that if Err(f) is sufficiently small, three things happen.
First, an overwhelming majority of the values { f(u + v) —
f(v)}, agreewith g(u), second, ¢ islinear, and last, ¢ is close
to f. Thisargument is constructive, since it explicitly builds a
function to which f is shown to be close.

The arguments used in all previous works on low-degree
testing have been constructive. So far, constructive proof argu-
ments have been unable to show a non-trivia relation between
the probability that a given function f fails a test, and the dis-
tance from f to any family of low-degree polynomials, when



the probability that the test failsis high (i.e. larger than 1/2).
Our discrete Fourier analysis approach does not exhibit the
constructive properties discussed above, and may be one of the
reasonsfor its success. Further exploration of non-constructive
techniques seemsto be worth undertaking.

2 Fourier Analysisof theLinearity Test

In this section we prove Theorem 1.2 and discuss how tight it
is.

The main result of this section is based on the following
observation: If we view f as areal valued function, and let
h be the function that at « takes the value (—1)(*), then, if
the distance from f to the nearest linear function is large, the
Fourier coefficients of A cannot be very large. Furthermore,
the smaller the Fourier coefficients of ~ are, the higher the
probability that f will fail the linearity test.

In the rest of this section, we first review the basic tools of
discrete Fourier analysis that we use, and then give a precise
formulation of the argument discussed above.

DiIsCRETE FOURIER TRANSFORM. Consider the family of all
real-valued functions on F™.* This collection of functions is
a 2”-dimensional rea vector space with the following inner
product: (¢, 0) = (2, pn (w)0(w))/[F[".

When one studies a linear space of functions defined on a
group, choosing aspecial basisfor thelinear spacemight bevery
useful. Thisspecial basisisthe charactersof the group at hand.
In our case the group is F. Thus, we chose as basis of our
linear space the basis {1 facrn, Where ¢o(u) = (—1)*%,
and, «-u = Z?Il a;u;. Itcanbeeasily verified that thefamily
{to }aep= forms an orthonormal basis. It follows that any
real-valued function ¢ over F'™ can be uniquely expressed as a
linear combination of the v,,’s, namely, ¢ = Zaan (/?a%.
The coefficient $a is referred to asthe a-th Fourier coefficient
of ¢. By the ortho-normality property of our chosen basis, we
havethat ¢, = (¢, ¢o). The ortho-normality of the basis also
implies Parseval’sidentity: (¢, ¢) = 3" pa (6,)%-

The convolution of two functions ¢ and ¢ is de
noted by ¢ * @ and defined as follows: (¢ * 0)(z) =
(X utv=e #(u)0(v))/|F|". Note, that over the vector space
of real-valued functionson F'™ the convol ution operator is asso-
ciative, commutative, and distributive with respect to addition.

The following convolution identity shows the relationship
between the Fourier coefficients of two fungti\ons ¢, 6, and the
Fourier coefficients of their convolution: (¢ * ), = @ﬁa.

LoweR BouND. Tolower bound Err( f) weusediscrete Fourier
analysistechniques. Westart by establishing arelation between

4Intherest of thiswork, unless explicitly said otherwise, F' denotes GF(2).
Furthermore, whenever wewrite LIN it isto be understood that we arereferring
toLIN(F™, F).

the Fourier coefficients of the function (—1)/(") 5 and the dis-
tance from f to the nearest linear function. More precisely, we
show that if the distancefrom f to the nearest linear functionis
large the Fourier coefficients of (—1)/(") are small.

Lemma2.1 Suppose f: F" — Fanda € F. Leth(-) =
(=1)7¢). Then h, < 1 — 2 Dist(f).

Proof: Letl,(u) = Y ., ayu;. Clearly, I, € LIN. More-
over, viewing f and [, asrea valued functions, we have that

ho = e, (<1 0F00

= Pro[f(u)=la(w)] = Pry [ f(w)#la(u)]
= 1-2Dist(f, 1)
< 1-2Dist(f). =

We will now establish Theorem 1.2.

Proof of Theorem1.2: Let f: F — F be such that
Dist(f) = x. Note that if we let h(-) = (=1)7(), then
(1=h(u)h(v)h(u+v))/2equalslif f(u)+ f(v) # f(utv),
and 0 otherwise. Thisleadsto the following key observation:

Err(f) = %(1 — (h*xh*h)(0)) .

Thus, from the definition of Fourier coefficients and the convo-
lution identity, it follows that:

Err(f) = %(1—Za(h*/h\*h)a)
= 1(1-%. ().

The upper bound for ﬁa given in Lemma 2.1 and Parseval’s
identity imply that

En(f) >4 (1-(1-20)%, (ha)?) ==,
asdesired. =

The next lemma complements Theorem 1.2. To stateit wefirst
define the slack between functions f and [ by

def

sl(£,1) = Pry [ f(w)2l(u), f(v)2l(v), f(utv)#l(u+v)] .
Lemma22 Foradl f: F* — FandadllinLIN,

Err(f) = 3Dist(f, 1) — 6 Dist(f, )2 + 4sl(f, 1) .

Proof: First observethat f(u)+f(v) and f(u+v) aredistinct
if and only if f differs from [ in exactly one of the points

5In this section, if the function f(-) appears as an exponent it is to be
understood as areal valued function.



{u,v,u+v} orinall of the points {u, v, u + v}. Thus Err(f)
equals

3Pry, [ Fw)2l(u), f(v)=1(v), flutv)=l(u+v)]
+ Proy [f(w)#l(u), f(v)2l(v), f(utv)£l(utv)] .
But thisequals

4Pry o [ f(w)2l(u), f(v)2l(v), flutv)#l(u+v)]
+ 3 Pryy [f(w)2l(u), f(v)=l(v)]
= 3Pry o [f(w)2l(u), fv)2l(v)] .

Observing that the events { (u,v): f(w)={(w) }, and
{(u,v): f(v)=I(v) } areindependent, and performing asim-
ple algebrai c manipul ation, sufficesto concludethe proof of the
lemma. =

TIGHTNESS DiscussioN. We now discuss how tight the results
of this section are. Throughout the rest of this discussion let
z € [0, 1] besuchthat = | F'|" is an integer.

If « > 1/2, then there is no function f: F" — F such
that Dist( f) = « (since the expected distance from arandomly
chosen linear functionto f is1/2).

If # = 1/2, and we randomly choose f so f(u) = X,
where Pr[X, =1] =p, Pr[X,=0]=1—-p, andp €
[1/2,1], it follows from a Chernoff bound (see [1, Appendix
A]) and Chebyschev's inequality (see [1, Ch. 4]) that with
high probability 0 < « — Dist(f) < o(1), and |Err(f) —
(3p(1 —p)? +p?) | < o(1), respectively. Thus, if p = 1/2,
Theorem 1.2 is almost tight in the sensethat REJ () is almost
i

If + < 5/16, then Lemma 2.2 is tight, since there are func-
tions f suchthat Dist(f) = x and Err(f) = 32 —62”. Infact,
forwin F™ let |u]y d:efu1~~~uk. fFS={ueF": |uls€
{1000, 0100,0010,0001, 1111} }, then for any boolean func-
tion f whichequals1inz | F|" elementsof S, and 0 otherwise,
it holds that Dist(f) = Dist(f,0) = «, and sl(f,0) = 0,
hence, Err(f) = 3« — 6 2. Thus, Lemma2.2, isbest possible
for z intheinterval [0,5/16].

Figure 1, gives evidence showing that Theorem 1.2 is close
to being optimal for « in the interval [5/16, 1/2]. But, as the
next two sections show, there isroom for improvements.

3 The Summation Lemma

This section is devoted to proving a combinatorial result of
independent interest, but necessary in the tighter analysis of the
linearity test that wegivein Section 4. We also apply thisresult
to obtain a tight upper bound on the probability that the BLR
test fails.

Loosely stated, we show that given three subsets A, B, C'
of £, the number of triplets (u, v, w) in A x B x ' such

that u + v + w = 0, is maximized when A, B and (' are
the lexicographic smallest |[A|, |B| and |C| elements of F'™
respectively.®
The following lemma, independently proved by D. J. Kleit-
man [15], gives aprecise statement of the above discussed fact.
For convenience we introduce the following notation:

®(A4,B,C)={(u,v,w) E AxBxC :utv+w=01}.

Also, for S C F™ we let S* denote the smallest, in lexico-
graphic order, |.S| elementsof 7.

Lemma3.1 [Summation Lemma] For any non-negative inte-
gersmy, mp and me,

max |®(4, B,C)| = |®(A", B*,C)|,

wherethe maximum istakenover all A, B, C' C F™ satisfying
|A| =1ma, |B| = mpg, and |C| =mc.

Proof: We proceed by induction. The case n = 1 istrivial.
For the inductive step, consider ¢ in {1,...,n} and b in F.
Let f; » be the function such that for u = (u;);%; € F"~1,
(fip(u)); = uy if j#i, andb otherwise, i.e. f; ; embeds F"~!
onto{u € F":wu; = b} inthenatura way. For S C F'*,
let S = { (uj);: € FP7': fis(u) € 5}, ie SI) isthe
natural projection into 7~ of the elements of S whose i-th
coordinateis b. Furthermore, let

§O = Fio (577 U (158777)

Observe that | S| = |S|. Now, given A, B,C' C F™, maxi-
mizing |®(A, B, C)|, weseethat |®(A, B, C')| equals

1845, BY, 57| + @AY, B, C5)]
+lo(AY, B i+ oAl BY, ).

Applying the inductive hypothesis four times we have that
|®(A, B,C)| < |®(AD, BW )], Abusing notation, we
letu € F'™ represent theinteger with binary expansion «. Then,
AW £ A or B 2 B,or C% # O, impliesthat 3, ¢ 4 u+
2oueB U uec > 2ueam W uep U yec U
Thus, without loss of generality, we can assume that for all 7,
A = A, BY = Band 0 = C.

Onewould liketo conclude the proof of the lemmaby claiming
that, if for al i, A) = 4, B®) = Band C1¥) = C, then 4,
B and C areequa to A*, B* and C* respectively. The latter
claimis‘amost’ true, in the sense that, if S is a set such that
foral 4, S¢) = 3, then, either S = S*, or S = {u:u; =
Ooru =10---0}\ {01---1}. Thelemma follows by case
analysis(omitted). =

8The lexicographic order in‘F" is the total order relation <, such that,
u < wifandonlyif Y~ w;27" < ) w27 (arithmetic over thereals).



By definition, asubspace V' of £ issuch that for every « and
vinV,ut+visasoin V. This motivates using

L [0(5,5,9)]

as a measure of how close the set S C F” isto being a
subspace. The larger this quantity is, the closer the set S is
off being a subspace. From this point of view, the Summation
Lemmaimpliesthat the collection of the lexicographic smallest
m elements of F'” is the subset of F'™* (of cardinality m) that
more closely resembles a subspace.

Observing that the slack between f and [ is proportional to
how closetheset { u : f(u)#{(u) } isto being a subspace, we
obtain the following:

Lemma3.2 Suppose f: F" — F. Letz = Dist(f). Let
k bethe unique integer such that 2=% < = < 27%*! and let
§ =27% Then

Err(f) < 3z — 622 + 48 + 12(x — 6)* .

Proof: Let! betheclosestlinear functionto f, andlet.S = {u :
f(u) # l(u)}. Denote |®(A, B,C)|/|F|*™ by ¢(A, B, C).
Then
sI(f,1) = ¢(S,9,5) < p(57,5%,57),

where the inequality follows from the Summation Lemma.
Now, let V' be the smallest, in lexicographic order, é |F'|”
elements of F. In particular, V' is a subspace. Moreover,
|S*| = |S| = « |F|™. Thus

P(S*,57,8") = e(V,V,V)+3p(S"\V,S*"\V,V)
= §°4+3 (x — 6)2 .
The claim follows from LemmaZ2.2. =

Lemma 3.2 is best possible. Indeed, let = € [0,1/2], and
let S C F™ be the set of the lexicographic smallest = | F'|™
elements of F'*. Then, the function f that evaluatesto 1 at
every u € S, andto 0 elsewhere, issuch that « = Dist( f), and
Err( f) meets the upper bound of Lemma 3.2.

4 Combinatorial analysis of thelinearity test

We now prove Theorem 1.3. The tightness discussion of Sec-
tion 2 already implies that KNEE < 45/128. The main ar-
gument used to show that KNEE > 45/128 is the following:
Given afunction f: F* — F define afunction g¢, from '
to I, whose value at « is MAJORITY,{f(u + v) — f(v)}.
Then if Err(f) is sufficiently small three things occur: (i) An
overwhelming majority of thevalues{ f(u+v) — f(v)}, agree
with g ¢ (u), (ii) g islinear, (iii) g ¢ iscloseto f. Thisargument
was first used in [9] while studying linearity testing over finite
groups. We will show how this argument can be tightened in
the case of linearity testing over fields of characteristic two.

More precisely, the proof of Theorem 1.3 is a consegquence
of the following three lemmas:

Lemmad4.l [9] For al f: F* — I, if g; is linear, then
Err(f) > Dist(f,g;)/2.

Lemmad4.z2 Foral f: F* — F,if g5 islinear, thenErr(f) >
2Dist(f,g;) - [1 — Dist(f, g5)]-

Lemma43 Foral f: F" — F,if Err(f) < 45/128, then
gy islinear.

We first show that Theorem 1.3 follows from the above stated
results. Assume KNEE < 45/128, then, there is a function
f: F™ — F,suchthat Err(f) < 45/128 and z = Dist(f) >
1/4. By Lemma 2.2, Err(f) > 3z — 622, thence we need
only consider the case in which « is at least 5/16. Moreover,
by Lemma 4.3, ¢; is alinear function. Thus, Dist(f, g;) >
xz > 5/16, which together with Lemmas 4.1 and 4.2 imply
that Err(f) > minges/16,1)max{z/2,2(1 — z)z} = 3/8,
acontradiction.

The rest of this section is dedicated to proving Lemmas 4.1
through 4.3.

The proofsof Lemmas4.1 and 4.2 are based onthefollowing
observation. For al u:

Pr, [ f(utv)-f(v)=gy (u)] > 1/2.
Hence, if f(u)#g;(u), then f(u) isdifferent from f(u +v) —
f(v) at least half of thetime. That is:

Proy [f(u)+f(v)2f(utv) | fu)2gp(u) ] > 1/2. (1)

Proof of Lemma4.1: Letg = g;. Simple conditioning says
that Err(f) isat least

Pro o [f(w)+f(0)# f(u+v) | f(u)#g(u) | Dist(f, g) -

But by (1) weknow thisisat least Dist(f,¢)/2. =
Proof of Lemma4.2: Letg = g; and assumeitislinear. As
observed in the proof of Lemma 2.2, we have that Err(f) =

3Pryy [f(u)#g(u), f(v)=g(v), f(utv)=g(u+v)]
+ Proy [f(w)2g(u), f(v)29(v), futv)#g(u+tv)]

= 3Pru, [f(w)+f(v)#f(u+v) | f(u)#g(u) ] Dist(f, g)
—2Pry [f(w)Zg(u), f(v)2g(v), flutv)Zg(utv)].

Inthislast expression, thefirst term can belower bounded, asin
the proof of Lemma 4.1, by 3 Dist(f, ¢)/2. The secondtermis
equal to 2sl(f, g). Thus, wehave Err(f) > 3 Dist(f, ¢)/2 —
2sl(f, g). Finaly, applying Lemma2.2, we get that Err(f) >
3 Dist(f, g) — 3 Dist(f, g)? — Err(f)/2. Thelemmafollows.
]

Proof of Lemma4.3: By contradiction. Assume g; is
not linear. Then, there are x and y distinct, such that



gr(x)+g¢(y)#gs(x+y). Without loss of generality, assume
that g;(z) = g;(y) = gs(xz+y) = 1. Furthermore, let
S = span{z,y}. For every s € F", define f; to be the
function from S to F', suchthat f,(u) = f(s + u). Hence

Err(f) = Es,t [ps,t] ) (2)

where
pop = Pr o n L@ fi(0)# fopi(uro)]

But, p; ; depends only on the valuesthat f, f; and f,. take.
That is, on the trace of f at s, ¢ and s + ¢, where the trace
of f at wisdefinedas[f., (0), fu (), fu(y), fu(x + )], and
denoted by tr; (w).

To lower bound p; ;, the following partition of the elements
s € F'", according to thetrace of f at s, playsacrucial role:

Hy = {s:try(s)equals[0,0,0,0]or[1,1,1,1]}

H, = {s:trs(s)equas(0,0,1,1]or[1,1,0,0]}

H, = {s:try(s)equas[0,1,0,1]or[1,0,1,0]}
Heyy = {s:trp(s)equals[0,1,1,0]or[1,0,0,1]}
H,qa = {s:trs(s)hasanodd numberof I's} .

We also partition /" x F'™ into six setsas follows:

A = Setofall (s,¢) suchthat {s,¢,s + ¢} aredl in
the same set, either H or H, or Hy or Hyqy
Set of all (s,t) suchthat twoof {s,¢,s+ ¢} are
in the same set Hy or H, or H, or H.,, and
the other oneisin H,44

Setof al (s, ¢) suchthat at least twoof {s, ¢, s+t}
arein H,4q

Set of al (s,?) suchthat {s,t,s+t} C Hy U
H,UH,UH,, with exactly two elementsfrom
thesameset Hy, H,, Hy or Hy; 4y

Set of al (s,?) such that one of {s,t,s+ ¢} is
in H,44, the other two are from different setsin
Ho, Hy  Hyand Hypyy

Set of al (s,t) such that {s,t,s + t} are from
different sets Ho, Hy, Hy, Hyyy

B =

F =

We now proceed to show a lower bound for Err(f) which
depends on the relative size of the sets A, B,C, D, £, and F.
Indeed, observethat if (s,t) isin B, thenp, ¢ isat least 1/4. If
(s,t)isinC, thenp, ;isatleast3/8. And,if (s,t)isinD, & or
F,thenp, ; isequal to 1/2. Hence, if foraset S C F" x F
welet u(S) = |S|/|F|*", then (2) yields

Err(f) = u(B)/4 4 3u(C)/8 + (u(D) + u(€) + u(F)/2 .

Recalling that

#(C€) = 1= (u(A) + u(B) + u(D) + j(€) + u(F))

allows us to conclude that

Err(f) > 3/8—(3u(A) +p(B))/8

+(1(D) + (&) + pu(F))/8. ®
In what follows we denote, for simplicity’s sake, |Hy|/|F|",
| He|/|E" [Hyl/IF" [Hogyl/|F[" and |Hoaql/|F]", by
ho,he, by, heyy and h,qq respectively. Wenow derivefrom (3)

another lower bound for Err(f) which will depend solely on
ho, ho, hy, hoty, hogq and p(F).

We first need the following identities relating the measure of
thesets A, B, C, D, £ and F, t0 hg, he, hy, heyy, and hygq:

Bu(A) + u(B) + p(D) = 3 (hg + by + hy + hiy,) o (4)
and
2(D) + (&) + 3u(F) =
3((1 = hoaa)” — (h§ +h2+hi+h2,,)). (5
Adding —1/8 of (4) and 1/8 of (5) to (3), gives
Er(f) > §—5(h3+hE+hy+hiy,)
+3(1 = hoaa)® = u(F). (6)

We now proceed to upper bound u(F). We divide the analysis
into two cases. But first we assume, without loss of generality,
that h, < hy < hyyy. Observe aso, that for a randomly
chosens, f;(x+y)— f;(0) differsfrom g (= +y) at most half
of thetime. Moreover sincewe have assumedthat g (¢ +y) =
1, the following holds:

1/2 > Prs[gf($+y)¢fs($+y)_fs(o)]
= hO + hx+y + hodd/2~ (7)
It followsthat Ay4y < 1/2.

Casel: h, + hy — hg — hx+y > 1/4

By assumptions, h, > he + hy — hg — hpyy > 1/4. SO,
ey hy, hoyy € (1/4,1/2]. Now let

~ {(u,v,w) € AXBxC : utv+w =0 }

(A, B,C)

Observe now, that for each element (u, v) of F, {u, v, u+v}
either contains an element from Hy or contains one element
from each of the sets I, H, and H.

The contribution to F of the elements (u, v), where {u, v, u +
v} contain elements from each of the sets H,, H, and
Hyyy, is upper bounded by 6 ¢(H., Hy, Hryy). Since



hey hy, heyy € (1/4,1/2], the Summation Lemma implies
that 6 (H,, Hy, Hypy) is

1 hy+h,+h,
= 3 — 3 (hothoad)(hothy+heyy) — 3 (ha+hi+hi ).

Furthermore, the contribution to F of the elements (u, v),
where {u, v, u-+v} containsanelement of H isupper bounded

by

330(H0’Hx’Hy UHx-I—y) + 330(H0’Hy’Hx UHx-I—y)
+3§0(H0aHx+yaHx UHy) )

which is at most 3o (hy+hy+he4y). Putting it all together,
we have

(F) < 3/2=3hoga(ho+hy+hoyy)—3(h2+h2+h2,,)

which jointly with (6) impliesthat Err(f) is

> 24 2(1— hoaa)” —
_% + %hodd(hx + hy + hx+y)
+3(h2 +hy +h2y,)
- %hidd — 3 hohoga — %hﬁ

3

8

— 3(hoaa + 4ho)*.

S(hg+hi+hy+hi,,)

_ 3
- 8

3
-

We conclude the analysis of this case by noting that

1/4 > 1= 3(hy+ hy — ho— hypy)
> 1= hy — hy — hoyy + 3ho
= hoga + 4ho,

where the first inequality follows by case assumption, and the
second one because h, < by < hgqy.

Case2: hy + hy —hg — hoyy < 1/4.
To each element (w,v) in F, associate the unique tuple
(u',v") € {u,v,u+v} x {u,v,u+v}, such that (v',v') €
Ho x Hyqy U Hy x Hy. This scheme associates to each el-
ement of Hy x Hpy, U Hy x Hy a most 6 elements of F.
Thus, u(F) < 6 (hohety + hohy). Which jointly with (6)
implies

Err(f) > 24 2(1 = hoaa)” — 2 (hohoty + hohy)

—2(hg+hi+h+h2y,)

% (hx + hy — ho — hx+y)2 :

Il
oles
|

The analysis of this case concludes by observing that

1/4 > hy+hy —ho — hogy
= 1_hodd_2(h0+hx+y)
> 0,

where the first inequality is by case assumption, and the latter
onefollowsfrom (7). =
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A Tightness of the analysis for the case of gen-
eral groups

Here is Coppersmith’s example. Let m bedivisible by 3. Let
f beafunction from 27, to Z,,, suchthat f(u) = 3k, if uy €
{3k — 1,3k,3k + 1}. Then, Dist(f) = 2/3. Furthermore,
flu) + f(v)2f(u+v)only if uy = vy = 1 (mod 3), or
up = v = —1 (mod 3),i.e Err(f) =2/9.

B Total degree 1 testingin characteristic two.

Although the main purpose of our work is to give a near op-
timal analysis of the BLR linearity test, we now describe and
analyze away of testing for total degree 1 in characteristic two.
Our purpose is to further illustrate the strength and elegance
of the Fourier analysis technique, as well as its more general
applicability to the problem of analyzing program testers.
Asusual, let F' = GF(2). Recall that afunctionp: F” —
Fistotal degree 1 if p(u) + p(v) + p(w) = p(u+ v + w)

forall u, v, win F”. Inanalogy to the case of linearity testing,
define

— DEgaG; — Set of al polynomials of total degree 1 of /' to
r
— Dist;(f) = min{ Dist(f,p) : p € DEG; } — Distance
of f toitsclosest polynomial of total degree 1.
Again, assume we are given oracle accessto afunction f map-
ping F' to F'. We want to test that f is close to a polynomial
of total degree 1 of F'” to /7, and make asfew oracle queries as
possible.

THE ToTAL DEGREE 1 TEST. The test is the following —
Pick u,v,w € F™ a random, query the oracle to obtain

flu), f(v), f(w), f(u +v+w),andreject if f(u)+ f(v) +

def

F(w) # f(u+v+w). LetErr(f) =
Pr [f(u) + F(v) + f(w) # flu+v+w)],

u,v,wiF"
be the probability that the test rejects f. Alsolet REJ; (z) =
min{ Erry(f): f: F" — Fst. Dist;(f) = } .

In order to understand how good this test is we need to lower
bound Erry(f) in terms of # = Dist;(f). The techniques
discussed in this work gives us tools for achieving this goal.
In fact, observe that if h(-) = (—1)f() (f viewed as a real
valued function), then |h,| < 1 — 2z, for al «in F™. Indeed,
note that all functions in DEG; are of the form [, (-) + 5,
where G isin F' and [, denotes the function that sends u to
S, aju; (arithmetic over F). Then, asin Lemma 2.1, we
have that hy = 1 — 2Dist(f, ) < 1 — 2. Moreover, since
Dist(f, o) 4 Dist(f,lo + 1) = 1, we also have that h, =
2Dist(f,lo + 1) — 1 > 22 — 1, which proves the claim.
The crucial observation is now the following:

Err(f) = 1 (1= (h+hxhh)(0)) .

Our previousclaim and an argument similar to the one sketched
in the proof of Theorem 1.2 yield

En(f) = 3(1-%. ()"

> (1= (-2, (ha)?)
= 2z(l—=).

Finally, note that f(u) + f(v) + f(w) and f(u + v + w)
are distinct if and only if f differs from every p € DEG;
in exactly one of the points {u, v, w, u+v+w}, or in exactly
three of the points {u, v, w, u+v+w}. This observation leads
to a generalization of Lemma 2.2 that alows to show that
Erri(f) > 82(1 — 2)(1/2 — =). This, coupled with our
previous derivations yields:

LemmaB.1 REeJ;(x) islower bounded by
max{ 8z(1 —z)(1/2—z), 22(1 —x) } .



