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Abstract

Let Dist(f; g) = Pru [ f(u)6=g(u) ] denote the relative dis-
tance between functions f; g mapping from a group G to a
group H, and let Dist(f) denote the minimum, over all linear
functions (homomorphisms) g, of Dist(f; g). Given a functionf : G ! H we let Err(f) = Pru;v [ f(u)+f(v) 6=f(u+v) ]
denote the rejection probability of the BLR (Blum-Luby-
Rubinfeld) linearity test. Linearity testing is the study of the
relationship between Err(f) and Dist(f), and in particular the
study of lower bounds on Err(f) in terms of Dist(f).

The case we are interested in is when the underlying groups
areG=GF(2)n andH=GF(2). The corresponding test is used
in the construction of efficient PCPs and thence in the deriva-
tion of hardness of approximation results, and, in this context,
improved analyses translate into better non-approximability re-
sults. However, while several analyses of the relation of Err(f)
to Dist(f) are known, none is tight.

We present a description of the relationship between Err(f)
and Dist(f) which is nearly complete in all its aspects, and
entirely complete (i.e. tight) in some. In particular we present
functions L;U : [0; 1] ! [0; 1] such that for all x 2 [0; 1]
we have L(x) � Err(f) � U (x) whenever Dist(f)=x, with
the upper bound being tight on the whole range, and the lower
bound tight on a large part of the range and close on the rest.

Part of our strengthening is obtained by showing a new con-
nection between the linearity testing problem and Fourier anal-
ysis, a connection which may be of independent interest. Our
results are used by Bellare, Goldreich and Sudan to present the
best known hardness results for Max3SAT and other MaxSNP
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1 Introduction

Linearity testing (and its extension to low degree testing) has
come to the fore in the last few years principally due to its
crucial role in the construction of efficient PCPs, and thence in
the obtaining of (strong) non-approximability results for NP-
optimization problems. Yet the problem itself is older, with the
basic formulation as we now know it first made in the context
of program checking [9]. It also has wider applicability, for
example in the testing of linear error-correcting codes.

It is a feature of the area that while tests are easy to specify,
they are notoriously hard to analyze, especially to analyze well.
Yet, good analyses are, for several reasons, worth striving for.
There is, first, the inherent mathematical interest of getting
the best possible analysis and understanding of a well-defined
combinatorial problem. But, there is a more pragmatic reason:
better analyses typically translate into improved (increased)
factors shown non-approximable in hardness of approximation
results.

The particular problem in linearity testing that we address
is a case in point. The BLR (Blum-Luby-Rubinfeld) test is
the first ever proposed, and addresses the most basic question,
namely testing linearity (as opposed, say, to low-degree). Our
focus is the case of most importance in applications, when the
underlying function maps between groups of characteristic two.
Several analyses have appeared, yet none is tight. With each
analysis comes an improved Max3SAT non-approximability
factor, but the extent to which the factor can grow remains
open. It is a goal of this paper to provide some answers to this
question.

We will do this; but in fact do more. Let us begin by describ-
ing the problem and past work more precisely.

1.1 The Problem

Although our concern is groups of characteristic two, it will be
useful, to discuss past work, to begin more generally, with the
problem of linearity testing over arbitrary finite groups. Thus
letG;H be finite groups, and recall that a function g: G! H
is linear if g(u) + g(v) = g(u+ v) for all u; v 2 G. (That is,g is a group homomorphism.) Here are some basic definitions:Lin(G;H) — Set of all linear functions of G to HDist(f; g) def= PruR G [ f(u) 6= g(u) ] — (relative) dis-

tance between f; g: G! H
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Dist(f) def= minfDist(f; g) : g 2 Lin(G;H) g — Dis-
tance of f to its closest linear function.

We are given oracle access to a function f mapping G to H.
(That is, we can specify u 2 G and in one step are returnedf(u) 2 H.) We want to test that f is close (in relative distance)
to a linear function. We are charged for each oracle call.

THE BLR TEST. The BLR test is the following [9]— Picku; v 2G at random, query the oracle to obtain f(u); f(v); f(u + v),
and reject if f(u) + f(v) 6= f(u + v). LetErr(f) def= Pru;vR G [f(u) + f(v) 6= f(u + v) ]
denote the probability that the BLR test rejects f . The issue in
linearity testing is to study how Err(f) behaves as a function
of x = Dist(f). In particular, one would like to derive good
lower bounds on Err(f) as a function of x.Rej(�). A convenient way to capture the above issues is via
the rejection probability function RejG;H : [0; 1]! [0; 1] of
the test. It associates to any number x the minimum value ofErr(f), taken over all functions f of distance x from the space

of linear functions. Thus, RejG;H(x) def=minf Err(f) : f : G! H s.t. Dist(f) = x g:
The graph ofRejG;H —namelyRejG;H(x) plotted as a func-
tion of x— is called the linearity testing curve. This curve
depends only on the groups G;H.

Thus the most general problem in linearity testing is to de-
termine the function RejG;H(�) for given G;H. Much of the
work that has been done provides information about various
aspects of this function.

THE KNEE OF THE CURVE. In particular, one parameter has
emerged as an important one in connection with MaxSNP hard-
ness results. This parameter, identified in [2, 6, 7, 8], is a single
number, which we call here the knee of the curve. It is defined
as the minimum rejection probability when the distance (of the
function being tested from the space of linear functions) is at
least 1=4:KneeG;H def= minfRej(x) : x � 1=4 g :
Improvements (increases) in the lower bound that can be shown
onKneeG;H translate directly into improved (increased) non-
approximability factors for MaxSNP problems via [6, 7, 8].
(Exactly how or why this is the case is outside the scope of this
paper, and we refer the reader to the works in question.)

1.2 Previous work

The first investigation of the shape of the linearity testing curve,
by Blum, Luby and Rubinfeld [9], was in the general context
where G;H are arbitrary finite groups. Their analysis showed

that RejG;H(x) � 2x=9 [9]. (They indicate that this is an
improvement of their original analysis obtained jointly with
Coppersmith.) Interest in the tightness of the analysis begins
with Bellare, Goldwasser, Lund and Russell [6] in the context
of improving non-approximability factors for MaxSNP prob-
lems. They showed thatRejG;H (x) � 3x�6x2. Meanwhile
it was noted that the result of [9] could be used to show thatRejG;H(x) � 2=9 for x � 1=4. The last two bounds super-
sede the first, so that the following theorem captures the state
of knowledge.

Theorem 1.1 [6, 9, 10] Let G;H be arbitrary finite groups.
Then:

(1) RejG;H(x) � 3x� 6x2.

(2) KneeG;H � 2=9.

As indicated above, an improved lower bound for the knee
would lead to better non-approximability results. But in this
general setting, we can do no better: an example of Copper-
smith shows that the above value is in fact tight in the case of
general groups. (For completeness this example is provided in
Appendix A.) This leads into our research. We note that the
problem to which linearity testing is applied in the proof system
constructions of [2, 6, 7, 8] is that of testing Hadamard codes (in
the first three works) and the long code (in the last work). But
this corresponds to the above problem in the special case whereG = GF(2)n and H = GF(2). For this case, the example of
Coppersmith does not apply, and we can hope for better results.

1.3 New results and techniques

We look at the performance of the BLR test when the underlying
groups areG = GF(2)n andH = GF(2) for somen � 1. (G
is regarded as an additive group in the obvious way. Namely, the
elements are viewed asn-bit strings or vectors over GF(2), and
operations are component-wise over GF(2).) For notational
simplicity we now drop the groups G;H from the subscripts,
writing Rej(x) and Knee— it is to be understood that we
mean G = GF(2)n and H = GF(2). We provide two new
analyses of Rej(x).
FOURIER ANALYSIS. We establish a new connection between
linearity testing and Fourier analysis. We provide an interpreta-
tion of Dist(f) and Err(f) in terms of the Fourier coefficients
of an appropriate transformation of f . We use this to cast the
linearity testing problem in the language of Fourier series. This
enables us to use Fourier analysis to study the BLR test. The
outcome is the following:

Theorem 1.2 Rej(x) � x.

Apart from lending a new perspective to the linearity testing
problem, the result exhibits a feature which distinguishes it from
all previous results. Namely, it shows that Rej(x) increases



with x and in fact is 1=2 at x = 1=2.1 (According to the
previous analysis, namely Theorem 1.1,Rej(x)may have been
bounded above by 2=9 for all x � �, where � is the larger root
of the equation3z�6z2 = 2=9.) Furthermore we can show that
the analysis is tight (to within o(1) factors) at x = 1=2� o(1).

This result can also be combined with Part (1) of Theorem 1.1
to show that Knee � 1=3. However this is not tight. So we
focus next on finding the right value of the knee.

COMBINATORIAL ANALYSIS. The analysis to find the knee is
based on combinatorial techniques. It leads us to an isoperi-
metric problem about a 3-regular hypergraph on the vertices of
then-dimensional hypercube. We state and prove a Summation
lemma which provides a tight isoperimetric inequality for this
problem. We then use it to provide the following tight bound
on the knee of Rej(x).
Theorem 1.3 Knee = 45=128.

As the statement indicates we have an equality, not a lower
bound— the value of the knee above is tight. This means we
have the best possible value from the point of view of applica-
tions to MaxSNP hardness. See Section 1.4.

TIGHTNESS OF THE ANALYSIS. We provide examples to indicate
that, besides the knee value, the lower bounds on Rej(x) as
indicated by our and previous results are tight for a number of
points. In particular, the curve is tight for x � 5=16, and the
bound at x = 1=2� o(1) is matched up to within o(1) factors
(i.e., there exist functions fn : GF(2)n ! GF(2) such that asn goes to 1, Err(fn) and Dist(fn) go to 1=2).

OTHER RESULTS. The isoperimetric inequality underlying
Theorem 1.3 turns out to reveal other facts about Rej(x) as
well. In particular it helps establish a tight upper bound onErr(f) as a function of Dist(f). This result is presented in
Section 3.

Also, while the main focus of this paper has been the BLR
test, we also present in Appendix B a more general result about
testing for total degree one in characteristic two. The purpose
is to further illustrate the strength and elegance of the Fourier
analysis technique, as well as its more general applicability to
the problem of analyzing program testers.

GRAPH. Figure 1 summarizes the results of this work. The
points f (Dist(f);Err(f)) : f g lie in the white region of the
first graph. The dark shaded region represents the forbidden
area before our work, and the lighter shaded region represents
what we add to the forbidden area. Note we both extend the
lower bound and provide upper bounds. The dots are actual
computer constructed examples; they indicate that perhaps the1 Note that Dist(f) � 1=2 for all f : G ! H because we are working
over GF(2), so only the portion x 2 [0;1=2] of the curve is interesting.

lower bound may be improved, but not by much.2 Of course,
the knee value is tight. Furthermore the upper bound is tight.

The second graph indicates lower bounds on Rej(x). The
parabola is the curve 3x � 6x2 representing the result of [6],
and the line 2x=9 represents the result of [9]. The earlier value
of the knee appears as the horizontal line at 2=9. Our additions
are the 45 degree line of x and the horizontal line at 45=128 for
the new knee value.

1.4 Application to MaxSNP hardness

Usage of the linearity test in the construction of efficient PCPs,
and thence in the derivation of hardness of approximability
results for Max-SNP problems, begins in [2] and continues in [6,
7, 8]. In the first three cases, it is used to test the Hadamard code;
in the last case, to test the long code. In all cases the underlying
problem is the one we have considered above, namely linearity
testing with G = GF(2)n and H = GF(2).

The Max-SNP hardness result of [6] used only two things:
The lower bound Rej(x) � 3x � 6x2 of Theorem 1.1, and
the best available lower bound k on the knee. They were able
to express the non-approximability factor for Max-3SAT as an
increasing function g1(k) depending solely on k. Since the
only available lower bound on the knee at that time was theKnee � 2=9 of Theorem 1.1, this was the value they used.
Their final result was that approximating Max-3SAT within113=112� 1:009 is NP-hard.

Improved proof systems were built by [8]. Again, their non-
approximability factor had the form g2(k) for some functiong2 depending only on the best available lower bound k on the
knee. They also usedKnee � 2=9 to show that approximating
Max-3SAT within 74=73 � 1:014 is NP-hard.

Theorem 1.3 would yield direct improvements to the results
of [6, 8] with no change in the underlying proof systems or
construction. However, better proof systems are now known,
namely the ones of [7]. Again, the analysis depends on the best
available lower bound on the knee, so that usage of Theorem 1.3
yields a better result than would have been obtained using only
Theorem 1.1, and this aspect is now tight. But, interestingly, [7]
was also able to exploit Theorem 1.2. Their final conclusion,
which uses both our results, was that approximating Max-3SAT
within 38=37 � 1:027 is NP-hard. (Using only Theorem 1.1
it would have been 45=44 � 1:023. Using Theorem 1.3 but
not Theorem 1.2 it would have been 39=38 � 1:026.)

1.5 Relationship to other work

There are a variety of problems which are studied under the
label of (low-degree) testing. Furthermore, low-degree tests are
used in a variety of ways in proof systems. We briefly explain,
first, what are the other problems and results in low degree2More precisely, we have a randomized procedure that with high probability
can construct, for each plotted point, a function f such that (Dist(f);Err(f))
is arbitrarily close to the point in question.
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Figure 1: The points (Dist(f);Err(f)) in the plane, and the successive lower bounds. See text for discussion.

testing and why they differ from ours; second how the usage of
these in proof systems is different from the usage of linearity
tests.

LOW DEGREE TESTING. We are given an oracle for a functionf : Fn ! F , where F is a field, and we are given a positive
integer d. In the low individual degree testing problem we are
asked to determine whether f is close to some polynomial p of
degree d in each of its n variables. When specialized to the case
of d = 1, this task is referred to as multi-linearity testing. In
the low total degree testing problem we are asked to determine
whether f is close to some polynomial p of total degree d in itsn variables. Multi-linearity tests were studied by [4, 11]. Low
individual degree tests were studied by [3, 5, 12, 16]. Total
degree tests were studied by [2, 13, 14, 17].

What we are looking at, namely linearity testing overGF(2),
is a variant of the total degree testing problem in which the
degree is d = 1,F is set toGF(2), and the constant term of the
polynomial p is forced to 0.3 Even though a significant amount
of work has been put into the analysis of the low degree tests
by the above mentioned works, the analysis does not appear to
be tight for any case. In particular one cannot use those results
to derive the results we obtain here. In fact the tightness of
the result obtained here raises the issue as to whether similar
techniques can be used to improve the analysis in the above
testers.

THE ROLE OF TESTING IN PROOF SYSTEMS. To explain this, first3 To illustrate the difference between individual and total degree, note thatf(x1; : : : ; xn) = x1x2 is multi-linear but not linear.

recall that proof systems are built by recursion [3]. Each level
of recursion will typically use some form of low-degree testing,
the kind differing from level to level.

The use of multi-linearity testing was initiated by Babai,
Fortnow and Lund [4]. For efficiency reasons, researchers
beginning with Babai, Fortnow, Levin and Szegedy [5] then
turned to low individual degree testing. This testing is used in
the “higher” levels of the recursion. Linearity testing showed
up for the first time in the lowest level of the recursion, in
the checking of the Hadamard code in [2]. The proof systems
we discuss use all these different testers, but, as we explained,
the final non-approximability factors obtained can be expressed
only in terms of the knee of the linearity testing curve.

1.6 Discussion

The main argument behind the analysis of the BLR test given
in [9] is the following: given f taking values from one finite
group into another finite group, start by defining a function g
whose value at u is Majorityvff(u + v) � f(v)g. Then,
show that if Err(f) is sufficiently small, three things happen.
First, an overwhelming majority of the values ff(u + v) �f(v)gv agree with g(u), second, g is linear, and last, g is close
to f . This argument is constructive, since it explicitly builds a
function to which f is shown to be close.

The arguments used in all previous works on low-degree
testing have been constructive. So far, constructive proof argu-
ments have been unable to show a non-trivial relation between
the probability that a given function f fails a test, and the dis-
tance from f to any family of low-degree polynomials, when



the probability that the test fails is high (i.e. larger than 1=2).
Our discrete Fourier analysis approach does not exhibit the
constructive properties discussed above, and may be one of the
reasons for its success. Further exploration of non-constructive
techniques seems to be worth undertaking.

2 Fourier Analysis of the Linearity Test

In this section we prove Theorem 1.2 and discuss how tight it
is.

The main result of this section is based on the following
observation: If we view f as a real valued function, and leth be the function that at u takes the value (�1)f(u), then, if
the distance from f to the nearest linear function is large, the
Fourier coefficients of h cannot be very large. Furthermore,
the smaller the Fourier coefficients of h are, the higher the
probability that f will fail the linearity test.

In the rest of this section, we first review the basic tools of
discrete Fourier analysis that we use, and then give a precise
formulation of the argument discussed above.

DISCRETE FOURIER TRANSFORM. Consider the family of all
real-valued functions on Fn.4 This collection of functions is
a 2n-dimensional real vector space with the following inner
product: h�; �i = (Pu2Fn �(u)�(u))=jF jn.

When one studies a linear space of functions defined on a
group, choosing a special basis for the linear space might be very
useful. This special basis is the characters of the group at hand.
In our case the group is Fn. Thus, we chose as basis of our
linear space the basis f �g�2Fn , where  �(u) = (�1)��u,
and,��u =Pni=1 �iui. It can be easily verified that the familyf �g�2Fn forms an orthonormal basis. It follows that any
real-valued function � over Fn can be uniquely expressed as a
linear combination of the  �’s, namely, � = P�2Fn b�� �.

The coefficient b�� is referred to as the �-th Fourier coefficient
of �. By the ortho-normality property of our chosen basis, we
have that b�� = h�;  �i. The ortho-normality of the basis also
implies Parseval’s identity: h�; �i =P�2Fn (b��)2.

The convolution of two functions � and � is de-
noted by � � � and defined as follows: (� � �)(x) =(Pu+v=x �(u)�(v))=jF jn. Note, that over the vector space
of real-valued functions onFn the convolution operator is asso-
ciative, commutative, and distributive with respect to addition.

The following convolution identity shows the relationship
between the Fourier coefficients of two functions �, �, and the

Fourier coefficients of their convolution: d(� � �)� = b��b��.

LOWER BOUND. To lower bound Err(f) we use discrete Fourier
analysis techniques. We start by establishing a relation between4In the rest of this work, unless explicitly said otherwise, F denotes GF(2).
Furthermore, whenever we writeLin it is to be understood that we are referring
to Lin(Fn; F ).

the Fourier coefficients of the function (�1)f(�),5 and the dis-
tance from f to the nearest linear function. More precisely, we
show that if the distance from f to the nearest linear function is
large the Fourier coefficients of (�1)f(�) are small.

Lemma 2.1 Suppose f : Fn ! F and � 2 Fn. Let h(�) =(�1)f(�). Then bh� � 1� 2Dist(f).
Proof: Let l�(u) = Pni=1 �iui. Clearly, l� 2 Lin. More-
over, viewing f and l� as real valued functions, we have thatbh� = 1jF j �Pu (�1)f(u)+l� (u)= Pru [f(u)=l�(u) ]� Pru [ f(u)6=l�(u) ]= 1� 2Dist(f; l�)� 1� 2Dist(f):
We will now establish Theorem 1.2.

Proof of Theorem 1.2: Let f : Fn ! F be such thatDist(f) = x. Note that if we let h(�) = (�1)f(�), then(1�h(u)h(v)h(u+v))=2 equals 1 if f(u)+f(v) 6= f(u+v),
and 0 otherwise. This leads to the following key observation:Err(f) = 12 (1� (h � h � h)(0)) :
Thus, from the definition of Fourier coefficients and the convo-
lution identity, it follows that:Err(f) = 12 �1�P� d(h � h � h)��= 12 �1�P� (bh�)3� :
The upper bound for bh� given in Lemma 2.1 and Parseval’s
identity imply thatErr(f) � 12 �1� (1� 2x)P� (bh�)2� = x ;
as desired.

The next lemma complements Theorem 1.2. To state it we first
define the slack between functions f and l bysl(f; l) def= Pru;v [ f(u)6=l(u); f(v) 6=l(v); f(u+v)6=l(u+v) ] :
Lemma 2.2 For all f : Fn ! F and all l in Lin,Err(f) = 3Dist(f; l) � 6Dist(f; l)2 + 4 sl(f; l) :
Proof: First observe that f(u)+f(v) and f(u+v) are distinct
if and only if f differs from l in exactly one of the points5In this section, if the function f(�) appears as an exponent it is to be
understood as a real valued function.



fu; v; u+vg or in all of the points fu; v; u+ vg. Thus Err(f)
equals3Pru;v [ f(u)6=l(u); f(v)=l(v); f(u+v)=l(u+v) ]+ Pru;v [f(u) 6=l(u); f(v) 6=l(v); f(u+v) 6=l(u+v) ] :
But this equals4Pru;v [ f(u)6=l(u); f(v) 6=l(v); f(u+v) 6=l(u+v) ]+ 3Pru;v [f(u)6=l(u); f(v)=l(v) ]� 3Pru;v [f(u)6=l(u); f(v) 6=l(v) ] :
Observing that the events f (u; v) : f(u)=l(u) g, andf (u; v) : f(v)=l(v) g are independent, and performing a sim-
ple algebraic manipulation, suffices to conclude the proof of the
lemma.

TIGHTNESS DISCUSSION. We now discuss how tight the results
of this section are. Throughout the rest of this discussion letx 2 [0; 1] be such that x jF jn is an integer.

If x > 1=2, then there is no function f : Fn ! F such
that Dist(f) = x (since the expected distance from a randomly
chosen linear function to f is 1=2).

If x = 1=2, and we randomly choose f so f(u) = Xu,
where Pr [Xu = 1 ] = p, Pr [Xu = 0 ] = 1 � p, and p 2[1=2; 1], it follows from a Chernoff bound (see [1, Appendix
A]) and Chebyschev’s inequality (see [1, Ch. 4]) that with
high probability 0 � x � Dist(f) � o(1), and jErr(f) ��3 p(1� p)2 + p3� j � o(1), respectively. Thus, if p = 1=2,
Theorem 1.2 is almost tight in the sense that Rej(x) is almostx.

If x � 5=16, then Lemma 2.2 is tight, since there are func-
tions f such that Dist(f) = x and Err(f) = 3x�6x2. In fact,

for u in Fn let buck def= u1 � � �uk. If S = f u 2 Fn : buc4 2f1000; 0100; 0010;0001; 1111gg, then for any boolean func-
tion f which equals 1 in x jF jn elements of S, and 0 otherwise,
it holds that Dist(f) = Dist(f; 0) = x, and sl(f; 0) = 0,
hence, Err(f) = 3x�6x2. Thus, Lemma 2.2, is best possible
for x in the interval [0; 5=16].

Figure 1, gives evidence showing that Theorem 1.2 is close
to being optimal for x in the interval [5=16; 1=2]. But, as the
next two sections show, there is room for improvements.

3 The Summation Lemma

This section is devoted to proving a combinatorial result of
independent interest, but necessary in the tighter analysis of the
linearity test that we give in Section 4. We also apply this result
to obtain a tight upper bound on the probability that the BLR
test fails.

Loosely stated, we show that given three subsets A;B;C
of Fn, the number of triplets (u; v; w) in A � B � C such

that u + v + w = 0, is maximized when A, B and C are
the lexicographic smallest jAj, jBj and jCj elements of Fn
respectively.6

The following lemma, independently proved by D. J. Kleit-
man [15], gives a precise statement of the above discussed fact.

For convenience we introduce the following notation:�(A;B;C) = f (u; v; w) 2 A�B�C : u+v+w = 0 g :
Also, for S � Fn we let S� denote the smallest, in lexico-
graphic order, jSj elements of Fn.

Lemma 3.1 [Summation Lemma] For any non-negative inte-
gers mA,mB and mC ,max j�(A;B;C)j = j�(A�; B�; C�)j;
where the maximum is taken over allA;B;C � Fn satisfyingjAj = mA, jBj = mB , and jCj = mC .

Proof: We proceed by induction. The case n = 1 is trivial.
For the inductive step, consider i in f1; : : : ; ng and b in F .
Let fi;b be the function such that for u = (uj)j 6=i 2 Fn�1,(fi;b(u))j = uj if j 6=i, and b otherwise, i.e. fi;b embedsFn�1
onto f u 2 Fn : ui = b g in the natural way. For S � Fn,

let S(i)b = f (uj)j 6=i 2 Fn�1 : fi;b(u) 2 S g, i.e. S(i)b is the
natural projection into Fn�1 of the elements of S whose i-th
coordinate is b. Furthermore, letS(i) = fi;0 �(S(i)0 )��[ fi;1 �(S(i)1 )�� :
Observe that jS(i)j = jSj. Now, given A;B;C � Fn, maxi-
mizing j�(A;B;C)j, we see that j�(A;B;C)j equalsj�(A(i)0 ; B(i)0 ; C(i)0 )j+ j�(A(i)1 ; B(i)1 ; C(i)0 )j+j�(A(i)1 ; B(i)0 ; C(i)1 )j+ j�(A(i)0 ; B(i)1 ; C(i)1 )j:
Applying the inductive hypothesis four times we have thatj�(A;B;C)j � j�(A(i); B(i); C(i))j. Abusing notation, we
letu 2 Fn represent the integer with binary expansionu. Then,A(i) 6� A, orB(i) 6� B, orC(i) 6� C, implies that

Pu2A u+Pu2B u+Pu2C u >Pu2A(i) u+Pu2B(i) u+Pu2C(i) u.
Thus, without loss of generality, we can assume that for all i,A(i) � A, B(i) � B and C(i) � C.

One would like to conclude the proof of the lemma by claiming
that, if for all i, A(i) � A, B(i) � B and C(i) � C, then A,B and C are equal to A�; B� and C� respectively. The latter
claim is ‘almost’ true, in the sense that, if S is a set such that
for all i, S(i) � S, then, either S � S�, or S = f u : u1 =0 or u = 10 � � �0 g n f01 � � �1g. The lemma follows by case
analysis (omitted).6The lexicographic order in Fn is the total order relation �, such that,u � v if and only if

Pi ui2�i �Pi vi2�i (arithmetic over the reals).



By definition, a subspace V of Fn is such that for every u andv in V , u+v is also in V . This motivates using1jSj2 j�(S; S; S)j ;
as a measure of how close the set S � Fn is to being a
subspace. The larger this quantity is, the closer the set S is
off being a subspace. From this point of view, the Summation
Lemma implies that the collection of the lexicographic smallestm elements of Fn is the subset of Fn (of cardinality m) that
more closely resembles a subspace.

Observing that the slack between f and l is proportional to
how close the set f u : f(u)6=l(u) g is to being a subspace, we
obtain the following:

Lemma 3.2 Suppose f : Fn ! F . Let x = Dist(f). Letk be the unique integer such that 2�k � x < 2�k+1, and let� = 2�k. ThenErr(f) � 3x� 6x2 + 4�2 + 12(x� �)2 :
Proof: Let l be the closest linear function to f , and letS = fu :f(u) 6= l(u)g. Denote j�(A;B;C)j=jF j2n by '(A;B;C).
Then sl(f; l) = '(S; S; S) � '(S�; S�; S�) ;
where the inequality follows from the Summation Lemma.
Now, let V be the smallest, in lexicographic order, � jF jn
elements of Fn. In particular, V is a subspace. Moreover,jS�j = jSj = x jF jn. Thus'(S�; S�; S�) = '(V; V; V ) + 3'(S� n V; S� n V; V )= �2 + 3 (x� �)2 :
The claim follows from Lemma 2.2.

Lemma 3.2 is best possible. Indeed, let x 2 [0; 1=2], and
let S � Fn be the set of the lexicographic smallest x jF jn
elements of Fn. Then, the function f that evaluates to 1 at
every u 2 S, and to 0 elsewhere, is such that x = Dist(f), andErr(f) meets the upper bound of Lemma 3.2.

4 Combinatorial analysis of the linearity test

We now prove Theorem 1.3. The tightness discussion of Sec-
tion 2 already implies that Knee � 45=128. The main ar-
gument used to show that Knee � 45=128 is the following:
Given a function f : Fn ! F define a function gf , from Fn
to F , whose value at u is Majorityvff(u + v) � f(v)g.
Then if Err(f) is sufficiently small three things occur: (i) An
overwhelming majority of the values ff(u+v)�f(v)gv agree
with gf (u), (ii) gf is linear, (iii) gf is close to f . This argument
was first used in [9] while studying linearity testing over finite
groups. We will show how this argument can be tightened in
the case of linearity testing over fields of characteristic two.

More precisely, the proof of Theorem 1.3 is a consequence
of the following three lemmas:

Lemma 4.1 [9] For all f : Fn ! F , if gf is linear, thenErr(f) � Dist(f; gf )=2.

Lemma 4.2 For all f : Fn ! F , if gf is linear, thenErr(f) �2Dist(f; gf ) � [1� Dist(f; gf )].
Lemma 4.3 For all f : Fn ! F , if Err(f) < 45=128, thengf is linear.

We first show that Theorem 1.3 follows from the above stated
results. Assume Knee < 45=128, then, there is a functionf : Fn ! F , such that Err(f) < 45=128 and x = Dist(f) �1=4. By Lemma 2.2, Err(f) � 3x � 6x2, thence we need
only consider the case in which x is at least 5=16. Moreover,
by Lemma 4.3, gf is a linear function. Thus, Dist(f; gf ) �x � 5=16, which together with Lemmas 4.1 and 4.2 imply
that Err(f) � minx2[5=16;1]maxfx=2; 2(1� x)xg = 3=8,
a contradiction.

The rest of this section is dedicated to proving Lemmas 4.1
through 4.3.

The proofs of Lemmas 4.1 and 4.2 are based on the following
observation. For all u:Prv [f(u+v)�f(v)=gf (u) ] � 1=2 :
Hence, if f(u) 6=gf (u), then f(u) is different from f(u+ v)�f(v) at least half of the time. That is:Pru;v [ f(u)+f(v)6=f(u+v) jf(u) 6=gf (u) ] � 1=2: (1)

Proof of Lemma 4.1: Let g = gf . Simple conditioning says
that Err(f) is at leastPru;v [f(u)+f(v) 6=f(u + v) jf(u) 6=g(u) ]Dist(f; g) :
But by (1) we know this is at least Dist(f; g)=2.

Proof of Lemma 4.2: Let g = gf and assume it is linear. As
observed in the proof of Lemma 2.2, we have that Err(f) =3Pru;v [f(u) 6=g(u); f(v)=g(v); f(u+v)=g(u+v) ]+ Pru;v [ f(u)6=g(u); f(v) 6=g(v); f(u+v) 6=g(u+v) ]= 3Pru;v [f(u)+f(v) 6=f(u + v) jf(u) 6=g(u) ]Dist(f; g)� 2Pru;v [f(u)6=g(u); f(v) 6=g(v); f(u+v) 6=g(u+v) ] :
In this last expression, the first term can be lower bounded, as in
the proof of Lemma 4.1, by 3Dist(f; g)=2. The second term is
equal to 2 sl(f; g). Thus, we have Err(f) � 3Dist(f; g)=2 �2 sl(f; g). Finally, applying Lemma 2.2, we get that Err(f) �3Dist(f; g)� 3Dist(f; g)2 � Err(f)=2. The lemma follows.

Proof of Lemma 4.3: By contradiction. Assume gf is
not linear. Then, there are x and y distinct, such that



gf (x)+gf (y) 6=gf (x+y). Without loss of generality, assume
that gf (x) = gf (y) = gf (x+y) = 1. Furthermore, letS = spanfx; yg. For every s 2 Fn, define fs to be the
function from S to F , such that fs(u) = f(s + u). HenceErr(f) = Es;t [ps;t] ; (2)

where ps;t = Pru;vR S [ fs(u)+ft(v) 6=fs+t(u+v) ] :
But, ps;t depends only on the values that fs, ft and fs+t take.
That is, on the trace of f at s, t and s + t, where the trace
of f at w is defined as [fw(0); fw(x); fw(y); fw(x+ y)], and
denoted by trf (w).
To lower bound ps;t, the following partition of the elementss 2 Fn, according to the trace of f at s, plays a crucial role:H0 = f s : trf (s) equals [0; 0; 0; 0] or [1; 1; 1; 1]gHx = f s : trf (s) equals [0; 0; 1; 1] or [1; 1; 0; 0]gHy = f s : trf (s) equals [0; 1; 0; 1] or [1; 0; 1; 0]gHx+y = f s : trf (s) equals [0; 1; 1; 0] or [1; 0; 0; 1]gHodd = f s : trf (s) has an odd number of 1’s g :
We also partition Fn�Fn into six sets as follows:A = Set of all (s; t) such that fs; t; s + tg are all in

the same set, either H0 or Hx or Hy or Hx+yB = Set of all (s; t) such that two of fs; t; s+ tg are
in the same set H0 or Hx or Hy or Hx+y, and
the other one is in HoddC = Set of all (s; t) such that at least two offs; t; s+tg
are in HoddD = Set of all (s; t) such that fs; t; s + tg � H0 [Hx[Hy[Hx+y with exactly two elements from
the same setH0, Hx, Hy or Hx+yE = Set of all (s; t) such that one of fs; t; s + tg is
in Hodd, the other two are from different sets inH0, Hx,Hy and Hx+yF = Set of all (s; t) such that fs; t; s + tg are from
different sets H0,Hx, Hy, Hx+y

We now proceed to show a lower bound for Err(f) which
depends on the relative size of the sets A;B; C;D; E , and F .
Indeed, observe that if (s; t) is in B, then ps;t is at least 1=4. If(s; t) is in C, then ps;t is at least 3=8. And, if (s; t) is inD, E orF , then ps;t is equal to 1=2. Hence, if for a set S � Fn�Fn
we let �(S) = jSj=jF j2n, then (2) yieldsErr(f) � �(B)=4 + 3�(C)=8 + (�(D) + �(E) + �(F)=2 :

Recalling that�(C) = 1� (�(A) + �(B) + �(D) + �(E) + �(F))
allows us to conclude thatErr(f) � 3=8� (3�(A) + �(B))=8+(�(D) + �(E) + �(F))=8: (3)

In what follows we denote, for simplicity’s sake, jH0j=jF jn,jHxj=jF jn, jHyj=jF jn, jHx+yj=jF jn and jHoddj=jF jn, byh0,hx,hy,hx+y andhodd respectively. We now derive from (3)
another lower bound for Err(f) which will depend solely onh0; hx; hy; hx+y; hodd and �(F).
We first need the following identities relating the measure of
the sets A, B, C, D, E andF , to h0, hx, hy, hx+y, and hodd:3�(A) + �(B) + �(D) = 3 �h20 + h2x + h2y + h2x+y� ; (4)

and 2�(D) + �(E) + 3�(F) =3 �(1� hodd)2 � �h20 + h2x + h2y + h2x+y�� : (5)

Adding�1=8 of (4) and 1=8 of (5) to (3), givesErr(f) � 38 � 34 �h20 + h2x + h2y + h2x+y�+38 (1� hodd)2 � 14�(F): (6)

We now proceed to upper bound �(F). We divide the analysis
into two cases. But first we assume, without loss of generality,
that hx � hy � hx+y. Observe also, that for a randomly
chosen s, fs(x+y)�fs(0) differs from gf (x+y) at most half
of the time. Moreover since we have assumed that gf (x+y) =1, the following holds:1=2 � Prs [ gf (x+ y) 6=fs(x+ y) � fs(0) ]= h0 + hx+y + hodd=2: (7)

It follows that hx+y � 1=2.

Case 1: hx + hy � h0 � hx+y > 1=4.

By assumptions, hx � hx + hy � h0 � hx+y > 1=4. So,hx; hy; hx+y 2 (1=4; 1=2]. Now let'(A;B;C) = jf (u; v; w) 2 A�B�C : u+v+w = 0 gjjF j2n :
Observe now, that for each element (u; v) of F , fu; v; u+vg
either contains an element from H0 or contains one element
from each of the sets Hx, Hy and Hx+y.

The contribution toF of the elements (u; v), where fu; v; u+vg contain elements from each of the sets Hx, Hy andHx+y, is upper bounded by 6'(Hx;Hy;Hx+y). Since



hx; hy; hx+y 2 (1=4; 1=2], the Summation Lemma implies
that 6'(Hx;Hy;Hx+y) is� 6'(H�x;H�y ;H�x+y)= 6�14 � hx+hy+hx+y2 + hxhy + hxhx+y + hyhx+y�= 32 � 3 (h0+hodd)(hx+hy+hx+y)� 3 (h2x+h2y+h2x+y):
Furthermore, the contribution to F of the elements (u; v),
where fu; v; u+vg contains an element ofH0 is upper bounded
by3'(H0;Hx;Hy [Hx+y) + 3'(H0;Hy;Hx [Hx+y)+ 3'(H0;Hx+y;Hx [Hy) ;
which is at most 3h0 (hx+hy+hx+y). Putting it all together,
we have�(F) � 3=2�3hodd(hx+hy+hx+y)�3(h2x+h2y+h2x+y) ;
which jointly with (6) implies that Err(f) is� 38 + 38 (1� hodd)2 � 34 �h20 + h2x + h2y + h2x+y��38 + 34hodd(hx + hy + hx+y)+34(h2x + h2y + h2x+y)= 38 � 38h2odd � 34h0hodd � 34h20� 38 � 38 (hodd + 4h0)2:
We conclude the analysis of this case by noting that1=4 � 1� 3(hx + hy � h0 � hx+y)� 1� hx � hy � hx+y + 3h0= hodd + 4h0 ;
where the first inequality follows by case assumption, and the
second one because hx � hy � hx+y.

Case 2: hx + hy � h0 � hx+y � 1=4.

To each element (u; v) in F , associate the unique tuple(u0; v0) 2 fu; v; u+vg � fu; v; u+vg, such that (u0; v0) 2H0 � Hx+y [Hx � Hy. This scheme associates to each el-
ement of H0 � Hx+y [Hx � Hy at most 6 elements of F .
Thus, �(F) � 6 (h0hx+y + hxhy). Which jointly with (6)
impliesErr(f) � 38 + 38 (1� hodd)2 � 32 (h0hx+y + hxhy)�34 �h20 + h2x + h2y + h2x+y�= 38 � 38 (hx + hy � h0 � hx+y)2 :

The analysis of this case concludes by observing that1=4 � hx + hy � h0 � hx+y= 1� hodd � 2(h0 + hx+y)� 0 ;
where the first inequality is by case assumption, and the latter
one follows from (7).
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A Tightness of the analysis for the case of gen-
eral groups

Here is Coppersmith’s example. Let m be divisible by 3. Letf be a function from Znm to Zm such that f(u) = 3k, if u1 2f3k � 1; 3k; 3k + 1g. Then, Dist(f) = 2=3. Furthermore,f(u) + f(v)6=f(u + v) only if u1 = v1 = 1 (mod 3), oru1 = v1 = �1 (mod 3), i.e. Err(f) = 2=9.

B Total degree 1 testing in characteristic two.

Although the main purpose of our work is to give a near op-
timal analysis of the BLR linearity test, we now describe and
analyze a way of testing for total degree 1 in characteristic two.
Our purpose is to further illustrate the strength and elegance
of the Fourier analysis technique, as well as its more general
applicability to the problem of analyzing program testers.

As usual, let F = GF(2). Recall that a function p: Fn !F is total degree 1 if p(u) + p(v) + p(w) = p(u + v + w)

for all u; v; w in Fn. In analogy to the case of linearity testing,
defineDeg1 — Set of all polynomials of total degree 1 of Fn toFDist1(f) def= minfDist(f; p) : p 2 Deg1 g — Distance

of f to its closest polynomial of total degree 1.

Again, assume we are given oracle access to a function f map-
ping Fn to F . We want to test that f is close to a polynomial
of total degree 1 of Fn to F , and make as few oracle queries as
possible.

THE TOTAL DEGREE 1 TEST. The test is the following —
Pick u; v; w 2 Fn at random, query the oracle to obtainf(u); f(v); f(w); f(u + v+w), and reject if f(u) + f(v) +f(w) 6= f(u + v + w). Let Err1(f) def=Pru;v;wR Fn [f(u) + f(v) + f(w) 6= f(u + v +w) ] ;
be the probability that the test rejects f . Also let Rej1(x) def=minf Err1(f) : f : Fn ! F s.t. Dist1(f) = x g :
In order to understand how good this test is we need to lower
bound Err1(f) in terms of x = Dist1(f). The techniques
discussed in this work gives us tools for achieving this goal.
In fact, observe that if h(�) = (�1)f(�) (f viewed as a real
valued function), then jh�j � 1� 2x, for all � in Fn. Indeed,
note that all functions in Deg1 are of the form l�(�) + �,
where � is in F and l� denotes the function that sends u toPni=1 �iui (arithmetic over F ). Then, as in Lemma 2.1, we

have that bh� = 1 � 2Dist(f; l�) � 1 � 2x. Moreover, sinceDist(f; l�) + Dist(f; l� + 1) = 1, we also have that bh� =2Dist(f; l� + 1)� 1 � 2x� 1, which proves the claim.
The crucial observation is now the following:Err(f) = 12 (1� (h � h � h � h)(0)) :

Our previous claim and an argument similar to the one sketched
in the proof of Theorem 1.2 yieldErr1(f) = 12 �1�P� (bh�)4�� 12 �1� (1 � 2x)2P� (bh�)2�= 2x(1� x):
Finally, note that f(u) + f(v) + f(w) and f(u + v + w)
are distinct if and only if f differs from every p 2 Deg1
in exactly one of the points fu; v; w; u+v+wg, or in exactly
three of the points fu; v; w; u+v+wg. This observation leads
to a generalization of Lemma 2.2 that allows to show thatErr1(f) � 8x(1 � x)(1=2 � x). This, coupled with our
previous derivations yields:

Lemma B.1 Rej1(x) is lower bounded bymaxf 8x(1� x)(1=2� x) ; 2x(1� x) g :


