
Free Bits and Non-Approximability
(Extended Abstract)

MIHIR BELLARE∗ ODED GOLDREICH† MADHU SUDAN‡

Abstract

This paper investigates the possibility that tight hardness of approximation results may be derived for several
combinatorial optimization problems via the “pcp-connection” (a.k.a., the FGLSS-reduction [FGLSS]). We study
the amortized free bit-complexity of probabilistic verifiers and “invert the FGLSS-reduction” by showing that an
NP-hardness result for the approximation of MaxClique to within a factor of N1/(g+1) would imply a probabilistic
verifier for NP with logarithmic randomness and amortized free-bit complexity g. In addition, we present a new
proof system for NP in which the amortized free-bit complexity is ≈ 2 which yields (via the FGLSS-reduction) that
approximating the clique to within a factor of N1/3 (in an N -vertex graph) is NP-hard. The new proof system is based
on a new code and means for checking codewords. This machinery is used to obtain improved non-approximability
results for Max-SNP problems such as Max-2SAT, Max-3SAT, Max-CUT and Min-VC.

This extended abstract provides less technical detail than customary. The interested reader is referred to our
(124-pages) technical report [BGS].

∗ Advanced Networking Laboratory, IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA. e-mail:
mihir@watson.ibm.com.
† Department of Computer Science and Applied Mathematics, Weizmann Institute of Sciences, Rehovot, Israel. e-mail: oded@wisdom.

weizmann.ac.il. Partially supported by grant No. 92-00226 from the US–Israel Binational Science Foundation (BSF), Jerusalem, Israel.
‡ Research Division, IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA. e-mail: madhu@watson.

ibm.com.

1 Introduction
The success of the interactive proof based approach to deriving non-approximability results seems beyond question
— not only has problem after problem fallen, but results grow succesively stronger. Today, it even seems possible that
this approach may lead to tight non-approximability results for several popular optimization problems.

Max Clique is a canonical example. Known non-approximability results are strong; but they are not tight, and
improvement seems desirable and feasible. Given the absence of any algorithm which approximates this problem
to within N1−ε, for any ε > 0, one wonders if it is the case that such an approximation may not be achievable in
polynomial time, and if so how can we show this1? In particular, are interactive proofs still the right approach, and, if
so, what kinds of theorems about them should we be proving?

1.1 Max Clique and amortized free bits

The first part of our paper is a result that we feel answers the above question. Roughly, it reverses the connection
between proofs and approximation, to say that certain kinds of theorems about proof systems are necessary to prove
non-approximability results. That is, the use and success of proofs was no co-incidence: they are inherent.

But the connection goes further. It identifies a specific parameter of proof systems that must be minimized to get
tight non-approximability results for Max Clique. This parameter is the number of amortized free bits (to be defined
very soon). Thus, as an answer to the question we asked above (about what kind of theorems we should be proving)
it says that to get tight non-approximability results for Max Clique, we must construct proofs which minimize the
number of amortized free bits. To describe this result, as well as others, we first need some definitions.

PROOF SYSTEM PARAMETERS. The key word in proof checking is parameters– there are many of them. First, recall
that a probabilistically checkable proof system [FGLSS]2 is described by a probabilistic, polynomial time verifier V
who has, in addition to the input x, oracle access to a proof string. While the task is typically language recognition, we
will, more generally, consider promise problems (A,B) consisting of positive and negative instances; we can define a
completeness probability c and a soundness probability s in the usual way, the former applying to positive instances
and the latter to negative ones. In case c = 1 we say that the verifier is of perfect completeness. The gap is g = c/s.
Now here are the parameters:

query complexity – the maximum, over all possible coin tosses of V , of the number of bits of the oracle accessed
by the verifier for a fixed input.
free bit complexity – the maximum, over all possible coin tosses of V , of the logarithm of the number of possible
accepting configurations of V .3 For example a verifier which makes 3 queries and accepts iff the parity of the
answers is odd has 4 accepting configuration and thus free bit complexity 2.
amortized free bit complexity – the free bit complexity divided by the logarithm of gap. That is, the number of
free bits needed per factor of 2 increase in the gap.
FGLSS-reduction – a reduction of a promise problem (A,B) or rather a pcp system for (A,B), which maps an
input x to a graph Gx so that the max-clique in Gx reflects the maximum accepting probability of the pcp verifier
on input x ∈ A ∪B [FGLSS].

We use the notation PCPc,s[r, q] to denote the class of promise problems recognized by verifiers tossing r coins,
having query complexity q, and achieving completeness probability c and soundness probability s. FPCPc,s[r, f]
is defined analogously with f being the free bit complexity; FPCPc[r, f] is defined analogously with f being the
amortized free bit complexity and c being the completeness parameter. (Note that in the last case there is no need to
specify s since we measure the “rate” of free bit usage!) Amortized query complexity can be defined analogously to
amortized free bit complexity, and we let PCPc[r, q] be the corresponding class. In case the verifier is of perfect
completeness (i.e., c = 1) we may omit the subsript from the latter two notations. In general, unless stated otherwise,
the verifier is of perfect completeness and its error refers to the soundness error.

TOWARDS TIGHT RESULTS: THE ROLE OF THE PARAMETERS. The key factor in obtaining tight non-approximability
results via the pcp-connection (for any problem), is the distilling of appropriate pcp-parameters that need to be mini-
mized and the use of a good-reduction. For Max Clique, the basic reduction is that of [FGLSS], used today in slightly
tighter randomized form due to [BeSc, Zu]. The sequence of works [FGLSS, ArSa, ALMSS, BGLR, FeKi, BeSu] lead

1 An additional motivation for looking for such “weak” approximation algorithms was suggested by Blum [Bl]: such an algorithm would imply
an algorithm for coloring a 3-colorable graph with O(logn) colors, which is significantly fewer colors than known algorithms use.

2 An analogous discussion can be carried out also using the model of transparent proofs due to Babai et. al. [BFLS].
3 This is a simplification which omits discussion of an additional constructivity property.

1

us through a sequence of parameters: query complexity, free bit complexity and, finally, for the best known results,
amortized free bit complexity. The relation here is that if NP is in FPCP[O(log n), f] then the Max Clique size of
an N -vertex graph is NP-hard to approximate (under randomized Karp reductions) within a factor of N1/(1+f+ε), for
any ε > 0.

A REVERSE CONNECTION. Our result inverts the above mentioned connection to establish an equivalence.
Theorem 1.1 Let f : Z+ → R+ be polynomial-time computable. Then the following two statements are equivalent.
(1) For all ε > 0, approximating the Max Clique size of an N -vertex graph to within a factor of N1/(1+f+ε) is

NP-hard via a randomized Karp (resp., Cook) reduction.
(2) For all ε > 0, the class NP is random Karp (resp., Cook) reducible to FPCP[O(log n), f + ε].
Thus if there is some (any) way to show hardness of Max Clique approximaiton to within N1/(1+f+ε) then NP has
(via a randomized reduction) a proof system with logarithmic randomness and amortized free bit complexity f + ε.
We stress both the “qualitative” and the “quantitative” aspects of this result.

Qualitatively, it provides an answer to the following kind of a question: “What do proofs have to do with approx-
imating clique size, and can we not prove the non-approximability result without using proof checking?” The result
indicates that proofs are inherent, and explains, perhaps, why hardness results avoiding the proof connection have not
appeared.

However, at this stage it is the quantitative aspect that interests us more. It says that to get tighter results on Max
Clique hardness, we must construct proof systems to minimize the amortized free bit complexity.

Can we hope to do so? It is a feature of the measure that so far this seems entirely possible. In particular it seems
possible that the amortized free bit complexity of a pcp verifier for NP can be ε for any ε > 0. Indeed, the theorem says
that if Max Clique is indeed hard to within N1−ε as we believe, then such a system will exist.4 It may be worth noting
that both the freeness and the amortization are key to this: we can rule out such efficiency under query complexity,
amortized query complexity, and (non-amortized) free bit complexity. This is because of the following:
Theorem 1.2 The following containments hold:
(1) PCP1,1/2[log, 2] ⊆ P .
(2) PCP[log, 1] ⊆ P .
(3) FPCP1,1/2[log, 1] ⊆ P .
For further results regarding the structure of the PCP and FPCP hierarchies see Section 5. Also see Section 6 for
various useful transformations between proof systems.

MINIMIZING AMORTIZED FREE BITS. Theorem 1.1 thus further motivates the search for the best possible proof
systems for NP in the sense of amortized free-bit complexity. Bellare and Sudan [BeSu] have constructed a pcp verifier
for NP that uses 3+ε amortized free-bits. We improve upon this, presenting a new proof system with amortized free-bit
complexity 2 + ε. This implies that Max Clique is hard to approximate to within N

1
3+ε .

Theorem 1.3 For every ε > 0, NP ⊆ FPCP[log, 2 + ε]. Thus the Max Clique size of an N vertex graph is NP-hard
(under randomized Karp-reductions) to approximate within N1/3+ε.
Combined with a recent reduction by Furer [Fu], which in turn builds upon the reductions presented in [LuYa, KLS,
BeSu], we get:
Theorem 1.4 For any ε > 0, it is NP-Hard (under randomized Karp reductions) to approximate the chromatic number
of an N -vertex graph to within N

1
5−ε.

Previous improvements in the efficiency of proof systems [BFL, BFLS, FGLSS, ArSa, ALMSS, BGLR, FeKi, BeSu]
had required non-trivial technical advances. Our improvement has the same feature. In particular, underlying our proof
systems is a new (and simple) error-correcting code, called the long code, and means to check it. The corresponding
tests and analysis are the main technical contribution of our paper.

Furthermore under the framework used within this and previous papers on this subject, the 2 + ε threshold seems
to be a natural barrier. We show that any proof system that is constructed via the paradigm used here must use 2 − ε
amortized free-bits. The result, including a definition of what we mean by “our framework,” is in Section 4. We
stress that this last result makes various assumptions about methods, and is intended to show that significantly novel
techniques are required to go further. But it does not suggest an inherent limitation, and, in particular, it does not rule
out the hope of getting a verifier with amortized free-bit complexity of ε > 0 for all NP languages.

4 Note that these statements do not take into account limitations imposed by current technology as to what we can prove. The discussion on this
aspect is the focus of Section 4 as well as of a subsequent paper of Arora [Ar].

2

Problem Approx Non-Approx

Factor Due to New Factor Previous Factor Assumption

Max-3-SAT 1.319 [Ya, GoWi1, GoWi2] 1.027 1 + 1
72

[BeSu] P 6= NP

Max-E3-SAT 1 + 1
7

folklore 1 + 1
37

unspecified [ALMSS] P 6= NP

Max-2-SAT 1.075 [GoWi2, FeGo] 1.010 1 + 1
504

(implied [BeSu]) P 6= NP

MAX CUT 1.139 [GoWi2] 1.012 unspecified [ALMSS] P 6= NP

Min-VC 2− o(1) [BaEv, MoSp] 1 + 1
26

unspecified [ALMSS] P 6= NP

Max-Clique N1−o(1) [BoHa] N
1

4+ε [BeSu] NP 6⊆ coRP̃

N
1

3+ε ? coRP 6= NP

N
1

4+ε N
1

5+ε [BeSu] P 6= NP

Chromatic Num5 N1−o(1) [BoHa] N
1

10+ε [BeSu] NP 6⊆ coRP̃

N
1

5+ε ? coRP 6= NP

N
1

7+ε N
1

13+ε [BeSu] P 6= NP

Figure 1: Approximation factors attainable by polynomial-time algorithms (Approx) versus factors we show are hard
to achieve (Non-Approx). Here ε > 0 is an arbitrary positive constant.

1.2 Results for MaxSNP

In the rest of the paper we find more uses for the long code based machinery. We apply it systematically to yield
improved non-approximability results for a variety of MaxSNP problems. The improvements here are perhaps more
significant than the Max Clique one: for the first time, we see hardness results for MaxSNP problems which are
comparable to the factors achieved by known polynomial time approximation algorithms. The following theorem
summarizes our results. Fig. 1 present a broader picture, which depicts, for each problem, the best known factor
achievable by a polynomial time algorithm, our lower bound, and the best previous lower bound.

Theorem 1.5 The following indicate factors shown NP-hard to achieve in polynomial time:
(1) The minimum vertex cover size of a graph is NP-hard to approximate within 27/26.
(2) Max3SAT and Max Exact 3SAT are NP-hard to approximate within 38/37.
(3) Max CUT is NP-hard to approximate within 82/81.
(4) Max2SAT is NP-hard to approximate within 94/93.

We note that we are obtaining the first explicity and reasonable non-approximability factor for the minimum vertex
cover. Recall that it is approximable within 2-o(1) [BaEv, MoSp]. Our results for Max CUT and Max 2SAT show that
it is not possible to find a solution with value which is only 1% away from being optimal. This may be contrasted with
the recent results of [GoWi2, FeGo] which shows that solutions which are within 14% and 7.5%, respectively, of the
optimum are obtainable in polynomial time. Thus even though, we do not know if the “pcp approach” allows to get the
best possible non-approximability results for these problems, we feel that the current results are not ridiculously far
from the known upper bounds. Consider, for example, the ratio u−1

l−1 , where u and l are the currently known upper and
lower bounds, respectively. Then, the ratios for the abovementioned MaxSNP problems are 5.3 for Max-Exact-3SAT,
7 for Max-2SAT, 11.3 for Max-CUT, 11.8 for Max-3SAT, and 26 for MinVC (Minimum Vertex Cover).

1.3 Techniques

As in all recent constructions of efficient pcp’s our construction also relies on the use of recursive construction of
verifiers. We have the advantage of being able to use, at the outer level, the the verifier of Raz [Raz] which appeared
only recently and was not available to previous works. The inner level verifier relies on the use of a “good” encoding
scheme. Since [ALMSS], constructions of inner verifiers have used the Hadamard Code. In this paper we change this

5This result is obtained by combining our non-approximability result for clique with a recent (improved) reduction of [Fu].

3

aspect of the protocol and use instead a much more redundant code which we call the long code. This code encodes
an n-bit string as a 22n bit string which consists of the value of every boolean function on the n bit string. It is easy
to see such codes have large Hamming distance. What is important is that this code is also easily “testable” and
“correctable”. This is shown in Section 3, where we show how this code and its machinery translates into the theorem
described above. We also benefit from a recent improved analysis of the Linearity Test due to Bellare et. al. [BCHKS].

A second aspect of the improved hardness results for MaxSNP is the fact that we use direct reductions from
verifiers to the problems of interest. This follows and extends [BGLR], prior to which results had used “generic”
reductions, which did not take advantage of the nature of the tests performed by the verifier. In particular, in our case
it turns out that the verifier only performs two kinds of tests — (1) verify that a + b + c = 0(mod 2); and (2) verify
that a · b = c + d(mod 2), where a, b, c, d are all elements of {0, 1}. By constructing local gadgets (i.e., one gadget
per random coin toss sequence) to verify each of the verifier’s tests, we achieve better non-approximability results than
using more general reductions. In particular our work seems to suggest that optimizing for gadgets which “check” the
two conditions listed above will lead to reasonably good lower bounds for many Max SNP problems.

2 FPCP and Clique Approximation
Denote by G(V, x) the graph constructed from verifier V and input x by the FGLSS reduction. The vertices cor-
respond to possible accepting transcripts in V ’s computation and edges corresponding to consistent/non-conflicting
computations. The maximum clique size in the constructed graph is proportional to the accepting probability of V .
Here we “reverse” the process; given a graph we constract a verifier such that the same proportion holds. Furthermore,
applying the FGLSS-construction to our verifier retreives the original graph. We stress that by the term graph we mean
an undirected simple graph (i.e., no self-loops or parallel edges).

Theorem 2.1 (clique verifier of ordinary graphs): There exists a verifier, denoted W , of logarithmic randomness-
complexity, logarithmic query-length and zero free-bit complexity, that, on input aN -vertex graphG, satisfies maxπ Pr[Wπ accepts G] =
w(G)/N. Furthermore, G(W,G) is isomorphic to G where the isomorphism is easily computable. Lastly, given a
proof/oracle π we can construct in polynomial-time a clique of size pN in G, where p is the probability that W
accepts G with oracle access to π.

The construction of W . On input a graph G on N nodes, the verifier W works with proofs of length
(
N
2

)
− |E(G)|.

The proof π is indexed by the edges in G (i.e., non-edges in G). For clarity of the proof we assume that the binary
value π({u, v}) is either u or v. On input G and access to oracle π, the verifier W picks uniformly a vertex u in the
vertex set of G and queries the oracle at each {u, v} ∈ E(G). The verifier accepts if and only if all answers were u.
Clearly, W tosses log2N coins. Also, once W picks a vertex u, the only pattern it may accepts is (u, u, . . . , u). Thus
the free-bit complexity of W is 0. To analyze the probability that W accepts the input G, when given the best oracle
access, one may merely prove that the graphs G(W,G) and G are isomorphic.

We now generalize the above construction to get verifiers which indicate the existence of large cliques in layered
graphs. An (L,M,N)-layered graph is an N -vertex graph in which the vertices are arranged in L layers so that there
are no edges between vertices in the same layer and each layer has at most M vertices. We use a convention by which,
whenever a layered graph is given to some algorithm, a partition into layers is given along with it.

Theorem 2.2 (clique verifier for layered graphs): There exists a verifier, denoted W , of logarithmic randomness-
complexity and logarithmic query-length so that, on input an (L,M,N)-layered graphG, the free-bit complexity ofW
is log2M and it satisfies maxπ Pr[Wπ accepts G] = w(G)/L. Furthermore, the additional properties in Theorem 2.1
hold here as well.

The generalized construction of W . On input a (L,M,N)-layered graph G, the verifier W works with proofs
consisting of two parts. The first part assigns every layer (i.e., every integer i ∈ [L]) a vertex in the layer (i.e., again
we use a redundant encoding by which the answers are vertex names rather then an index between 1 and the number
of vertices in the layer). The second part assigns pairs of non-adjacent (in G) vertices, a binary value, which again is
represented as one of the two vertices. On input G and access to oracle π, the verifier W picks uniformly a layer i in
{1, ..., L} and queries π at i obtaining as answer a vertex u. If u is not in the ith layer of G then the verifier rejects.
Otherwise, it continues as in Theorem 2.1 (i.e., queries the oracle at each {u, v} ∈ E(G) and accepts iff all answers
equal u). (Actually, it is not needed to query the oracle on pairs of vertices belonging to the same layer.) The properties
of W are established as before; in particular, observe that once a vertex u is specified, the only accepting pattern is
(u, u, . . . , u). The free-bit complexity is determined by the number of vertices in layer i, which is upper bounded by
M (and on the average equals N/L).

4

Main Consequences

We are interested in problems exhibiting a gap in Max-Clique size between positive and negative instances. It is
convenient to let MaxClique(G) = MaxClique(G)/N be the fraction of nodes in a maximum clique of G.

Definition 2.3 For any 0 ≤ s(·) ≤ c(·) ≤ 1 we let the promise problem Gap-Cliquec,s be the pair (A,B), where–
(1) A is the set of all graphs G with MaxClique(G) ≥ c(N), and
(2) B is the set of all graphs G with MaxClique(G) ≤ s(N).
The gap of this problem is defined to be c/s.

As a direct consequence of Theorem 2.1, we get

Corollary 2.4 For functions c, s: Z+ → [0, 1] we have Gap-Cliquec,s ∈ FPCPc,s[log, 0].

This corollary transforms the gap in the promise problem into a gap in a pcp system. However, the accepting probabil-
ities in this pcp system are very low (also on yes-instances). Below, we use Theorem 2.2 to obtain a pcp system with
almost perfect completeness for this promise problem. We start by presenting a randomized reduction of the promise
problem to a layer version. An alternative method is presented in Section 6 (cf., Proposition 6.5).

Proposition 2.5 (layering the clique promise problem): There exists a polynomial-time randomized transformation,
T , of graphs into layered graphs so that, on input a graph G, integers C and L ≤ C/(3 log2N), outputs a subgraph
H = T (G,C,L) of G in L layers such that with high probability H has at most 2N/L vertices per layer and if
w(G) ≥ C then w(H) = L.

We remark that there exist an alternative transformation,6 using only logarithmically many coins, and guranteeing
only Pr [w(H) ≤ (1− ε) · L] < L/(εC), for every ε ∈ [0, 1], provided w(G) ≥ C. Combining Theorem 2.2 and
Proposition 2.5, we obtain

Proposition 2.6 (inverse of FGLSS-reduction): For any polynomial-time computable functions c, s, ε: Z+ → [0, 1],
the promise problem Gap-Cliquec,s is randomly (Karp-) reducible to FPCP1,s′ [log, f ′], where f ′(N) def= log2(1/c(N))+

log2 log2(N) + 2 and s′(N) def= 2 log2(N) · s(N)
c(N) .

Proposition 2.6 shows that the well-known method of obtaining clique-approximation results from efficient pcp sys-
tems (cf., [FGLSS, FeKi, BeSu]) is “complete” in the sense that if clique-approximation to within some factor can be
shown NP-hard then this can be done via the “pcp method”. This concludes the sketch of the proof of Theorem 1.1.

3 New proof systems and non-approximability results
The starting point for all our proof systems is a two-prover proof system achieving arbitrarily small constant error with
logarithmic randomness and constant answer size. Furthermore, this proof system has the property that the answer
of the second prover is supposed to be a predetermined function of the answer of the first prover. (A proof system
satisfying these properties can be easily obtained by combining [ALMSS] and [Raz].) Thus, verification in it amounts
to checking that the first answer satisfies some predicate and that the second answer equals the value obtained from the
first answer. Following the “proof composition” paradigm of Arora and Safra [ArSa], we will “encode” the answers
of the two provers under a suitable code and then, “recursively”, check these encodings. This is captured formally by
the construction of appropriate “inner verifiers.” As usual, we will check both that these encodings are valid and that
they correspond to answer which would have been accepted by the original verifier. The brunt of our constructions is
thus the construction of inner verifiers.

Our main technical contribution is a new code, called the long code, and means to check it. The long code of
an n-bit information word w is the sequence of 22n bits representing the values of all possible boolean functions at
w. The long code is certainly a disaster in terms of coding theory, but it has big advantages in the context of proof
verification, arising from the fact that it carries enormous amounts of data about w.

We show that checking that the oracle is “close” to a codeword amounts to two tests – a linearity test and a
multiplication test. The tests themselves are simple, but their analysis is not. Our analysis is based on a characterization
of the code in terms of monomial series. The linearity test is also used as self-corrector when testing that the second
answer indeed matches the first one. Finally, an additional idea is used to eliminate the need for a “circuit” test.7

6 This alternative transformation is used for presenting an alternative inverse of the FGLSS-reduction. See our technical report [BGS].
7 This observation is inessential for the construction of a pcp system with amortized free-bit complexity 2.

5

After establishing some basic notation in Section 3.1, we present the the long code and some basic properties in
Section 3.2. We describe some “atomic” tests in Section 3.4. By performing suitable combinations of these tests, a
verifier will be able to test that a given word is close to a codeword (of the long code) and that the underlying message
word satisfies the acceptance condition of the outer level verifier. All verifiers we use perform different mixes of these
tests. We present four major implementations of the above ideas yielding different types of pcp systems for NP (in
Sections 3.5, 3.6, 3.7, and 3.8). The latter yield the hardness results for the Max SNP problems, Min-VC and Max
Clique, respectively.

3.1 Preliminaries

Σ = {0, 1}will be identified with the finite field of two elements, the field operations being addition and multiplication
modulo two. For any m we regard Σm as a vector space over Σ, so that strings and vectors are identified. A map
f from a group G to a group H is linear if f(x + y) = f(x) + f(y) for all x, y ∈ G. Let Lin(G,H) denote
the set of all linear maps of G to H . The distance between functions f1, f2 defined over a common finite domain
D is Dist(f1, f2) = Pr

x
R←D

[f1(x) 6= f2(x)]. If f : G → H we denote by Dist(f,Lin) the minimum, over all
g ∈ Lin(G,H), of Dist(f, g). We are concerned with the case of G being a vector space V over Σ and H being Σ.
In this case we have Dist(f,Lin) ≤ 1/2 for all f : V → Σ. Specifically, for an integer l, we consider the set of all
maps of Σl to Σ, denoted Fl. We regard Fl as a vector space (of dimension 2l) over Σ. Addition and multiplication of
functions are defined in the natural way.

THE MONOMIAL BASIS. For each S ⊆ [l] we let χS ∈ Fl be the monomial corresponding to S, defined for x ∈ Σl by
χ
S(x) =

∏
i∈S x

(i), where x(i) is the ith bit of x, and χ∅ is defined as identically 1. The functions {χS}S⊆[l] form a
basis for the vector space Fl which we call the monomial basis. This means that for each f ∈ Fl, there exists a unique
vector C(f) = (Cf (S))S⊆[l] ∈ Σ2l such that f =

∑
S⊆[l] Cf (S) · χS .

FOLDING.8 Fix ≺ to be some canonical, polynomial time computable total order on the set Fl. For h ∈ Fl, define the
h-span of f ∈ Fl to be {f + σ · h : σ ∈ Σ}. Let h ∈ Fl and b ∈ Σ, the (h, b)-folding of A: Fl → Σ, denoted A(h,b),
is a function given by A(h,b)(f) = A(g) + σ · b, where g = f + σ · h is the smallest function (by ≺) in the h-span
of f . Folding over several (function,bit)-pairs is defined analogously. In the paper we use folding over both (h, 0) and
(1, 1), where h is an arbitrary function (i.e., the first-query acceptance predicate) and 1 is the identically 1 function.
Folding over (h, 0) allowes to get rid of the “circuit test” (see Proposition 3.2) and folding over (1, 1) simplifies and
improves the analysis of the RMB-test (see Section 3.4).

3.2 Evaluation operators and the long code

Let a ∈ Σl. We define the map Ea: Fl → Σ by Ea(f) = f(a) for all f ∈ Fl. We say that a map A: Fl → Σ is
an evaluation operator if there exists some a ∈ Σl such that A = Ea. We now provide a useful characterization of
evaluation operators. First we need a definition. Namely, a map A: Fl → Σ is said to respect the monomial basis
if A(χ∅) = 1 and A(χS) ·A(χT) = A(χS∪T), for all S, T ⊆ [l].

Proposition 3.1 A map Ã: Fl → Σ is an evaluation operator if and only if it is linear and respects the monomial
basis.

The long code E is defined for any a ∈ Σl by E(a) = Ea. Thus, formally, a codeword is a map of Fl to Σ.
Intuitively, think of the codeword E(a) as the 22l bit string which in position f ∈ Fl stores the bit f(a). It is thus an
extremely “redundant” code, encoding an l-bit string by the values, at a, of all functions in Fl.

We let Dist(A,Eval) = mina∈Σl Dist(A,Ea) be the distance fromA to a closest codeword ofE. It is convenient
to define E−1(A) ∈ Σl as the lexicographically least a ∈ Σl such that Dist(A,Ea) = Dist(A,Eval). Notice9 that if
Dist(A,Eval) < 1/4 then there is exactly one a ∈ Σl such that Dist(A,Ea) = Dist(A,Eval), and so E−1(A) is
this a. The following is useful in relating folding to the long code.

Proposition 3.2 Let A: Fl → Σ, h 6= h′ ∈ Fl, b, b′ ∈ Σ and a ∈ Σl. Then–
(1) For any f ∈ Fl it is the case that A(h,b),(h′,b′)(f + h) = A(h,b),(h′,b′)(f) + b.
(2) If Dist(A(h,b),(h′,b′), Ea) < 1/2 then h(a) = b.

8 Folding is not essential to the Max Clique result but it plays an important role in deriving the best results for the MaxSNP problems.
9Actually, this observation only simlifies the analysis of the composition of verifiers (below). It can be used only for the verifier constructed for

the Max Clique result.

6

3.3 Recursive proof verification

We briefly outline the recursive proof checking scenario. We start with a two-prover proof system for NP, having an
arbitrary small constant soundness error, and whose verifier Vout behaves as follows: On input x of length n, Vout

computes (using internal coin tosses) questions q and q1 to ask the two provers. Vout also constructs a predicate
h : Σl → Σ and a function σ : Σl → Σl1 which will be used to evaluate the answers of the two provers in the
following way. Let a ∈ Σl and a1 ∈ Σl1 be the answers of the two provers, then Vout accepts only if h(a) = 0 and
σ(a) = a1.

To simulate the above computations of Vout we will create inner verifiers Vin which access two oracles A and A1.
These oracles are supposed to represent encodings according to the long code of the strings a ∈ Σl and a1 ∈ Σl1
respectively. The inner verifier is also given h and σ and should verify the following (by few probes into A and A1):

Codeword Test: Verify there exists a string a such that Dist(A(h,0), E(a)) ≤ 1/2− δ, where δ > 0.
Projection Test: Verify that Dist(A1, E(σ(a))) ≤ 1/2− δ.

Note that the first condition refers to the folded version of A. and recall that, by Proposition 3.2, the codeword test
makes testing h(a) = 0 (the “circuit test”) superflous.10 If a inner verifier performs the above task with soundness
error ρ, then it is considered (ρ, δ)-good. Any such inner verifier (i.e., for any ρ < 1 and δ > 0) can be composed with
Vout and yield a meaningful result (i.e., the soundness error of the composed verifier will be O(ε/δ4) + ρ, where ε is
the soundness error of Vout). In what follows we attempt to construct inner verifiers that minimizes the soundness ρ
as we let δ → 0. We first start with some elementary tests which help solve the above tasks — then in the following
subsections we show how to combine them appropriately so as to achieve the different hardness results.

3.4 The atomic tests

The aim here is to test various properties of functions A: Fl → Σ and A1: Fl1 → Σ to which the tester has oracle
access. These tests will be the basis for several forthcoming proof systems. In all our applications, A is supposed to be
(a folding of) an encoding of the answer of the first prover (in a two-prover proof system) and A1 is supposed to be the
encoding of the answer of the second prover. However, the exposition and analysis of these tests, in this subsection, is
independent of the usage of the codes in our proof systems. We remark that for the applications to Max-SNP problems
it is important to have the best possible analysis of our atomic tests, and what follows strives to this end.

The first task that concerns us is to design a test which, with high probability, passes if and only if A is close to an
evaluation operator (i.e., a valid codeword). The idea is to exploit the characterization of Proposition 3.1. Accordingly,
the first step is to check that A is almost linear.

ATOMIC LINEARITY TEST. The atomic linearity test with parameters f1 and f2, denoted LinTest(A; f1, f2), consists
of checking whether A(f1) + A(f2) = A(f1 + f2). The analysis of this simple test, initiated by Blum et. al. [BLR]
and continued by [BGLR], turned out to be very involved and was resolved recently by Bellare et. al. [BCHKS].

Lemma 3.3 [BLR, BGLR, BCHKS]: Let A: Fl → Σ and let x = Dist(A,Lin). Then,

Pr
f1,f2

R←Fl
[LinTest(A; f1, f2) rejects] ≥ Γlin(x)

where Γlin(x) def= 3x− 6x2 if x ≤ 5
16 , Γlin(x) def= 45

128 for 5
16 ≤ x ≤

45
128 , and Γlin(x) def= x otherwise.

ATOMIC RESPECT OF MONOMIAL BASIS TEST (RMB-TEST). Having determined thatA is close to linear, the atomic
respect of monomial basis test makes sure that the linear function close to A respects the monomial basis. The test,
MBTest(A; f1, f2, f3), taking parameters f1, f2, f3 consists of checking whether A(f1) ·A(f2) = A(f1 ·f2 +f3)−
A(f3). Actually, the test performs self-correction for a test of multiplication, yet it can be shown that this establishes
the desired property of respecting the monomial basis. Namely,

Lemma 3.4 Let A, Ã: Fl → Σ with Ã linear but NOT respecting the monomial basis. Suppose that A satisfies
A(f + 1) = A(f) + 1, for all f ∈ Fl, and let x = Dist(A, Ã). Then

Pr
f1,f2,f3

R←Fl
[MBTest(A; f1, f2, f3) rejects] ≥ Γrmb(x)

where Γrmb(x) def= 3
8 −

7
4x+ 5

2x
2 − x3.

10 This observation (as well as letting δ → 0) is important for obtaining the best results for MaxSNP problems. For establishing the Max Clique
result, we may use a circuit test (as well as δ > 1/4) and yet obtain the same result we have.

7

Remark: Functions that are folded over the constant function 1 satisfy the condition of the hypothesis. (This is a case
in our applications.) For other functions, one needs augment the RMB-test so that it checks A(f + 1) = A(f) + 1 for
a random f .

Having established that A is close to some evaluation operator Ea, we now want to test two things. The first is that
h(a) = 0 for some predetermined function h. This test which would normally be implemented by “self-correction”
(i.e., evaluating h(a) by uniformly selecting f ∈ Fl and computing A(f +h)−A(f)) is not needed here, since in our
applications we will use an (h, 0)-folding of A instead of A (see Prop. 3.2). Thus, it is left to test that the two oracles
are consistent in the sense that A1 encodes the projection of the word encoded in A.

ATOMIC PROJECTION TEST. This test checks that the second function A1 is not too far from the evaluation operator
Ea1 where a1 = σ(a) is a function of the string a whose evaluation operator is close to A. Here, unlike previous
works (for instance [BeSu]), σ may be an arbitrary mapping from Σl to Σl1 rather than being a projection. Thus, the
name “projection test” is adopted merely for historical reasons. The test, ProjTestσ(A,A1; f, g), takes parameters
f and g and checks whether A1(g) = A(g ◦ σ + f)−A(f).

Lemma 3.5 Let A: Fl → Σ and σ: Σl → Σl1 be a function. Let a ∈ Σl, x = Dist(A,Ea) and y = Dist(A1, Eσ(a)).
Then

Pr
f
R←Fl ; g

R←Fl1
[ProjTestσ(A,A1; f, g) rejects] ≥ (1− 2x) · y

3.5 Minimizing the number of queries by recycling

Performing each of the atomic tests sufficiently many times yields an inner verifier with error smaller than 1/2 and thus
a pcp system for NP follows. To minimize the query complexity, we adopt the observation of Bellare et. al. [BGLR]
by which the same queries can be used for different types of tests without effecting the error analysis.11 Namely,
we select m def= max{2N1, 3N2, N3} random functions f1, ..., fm ∈ Fl, and N3 random functions gi’s in Fl1 . We
perform the linear test N1 times, in the ith time with parameters f2i−1, f2i. Likewise, the MBtest is performed N2

times (in the ith time with f3i−2, f3i−1, f3i), and the projection tests is performed N3 times (in the ith time with fi
and gi). Setting N1 = 3, N2 = 3 and N3 = 2 suffices for proving the worst case bound (below) and for the average
case bound we pick N2 and N3 at random in {2, 3} and {1, 2}, respectively.

Theorem 3.6 There exists a pcp system for NP with logarithmic randomness, error probability 1/2 and query com-
plexity 19 (and 15.6 on the average). Furthermore, the free-bit complexity of this system is 11.

3.6 Selecting a random test – the MaxSNP inner verifier

Here we build an inner verifier which we later use for the MaxSNP hardness results. We are going to select one of the
three atomic tests at random (not necessarily uniformly) and perform it only once (for uniformly chosen parameters).
Specifically, with some probability p1 we perform a Linear Test, with probability p2 a MBtest and otherwise (with
probability p3 = 1−p1−p2) we perform a projection test. We stress that these tests are performed on a folded version
of A and on A1. (The folding is over (h, 0) and (1, 1) and virtual access to the folded version is provided by accessing
the actual oracle according to the definition of folding.) This defines an inner verifier, USNP, which we analyse to
show has the following properties:

Lemma 3.7 Suppose δ > 0. Suppose p1, p2, p3 ∈ [0, 1] satisfy p1 + p2 + p3 = 1. Then the inner verifier USNP

is (maxi{ρi}, δ)-good, where ρ1
def= 1 − (1

2 − δ) · p1, ρ2
def= 1 − min x≤ 1

2−δ
[Γlin(x) · p1 + Γrmb(x) · p2] and

ρ3
def= 1−min x≤ 1

2−δ
[Γlin(x) · p1 + (1

2 − δ)(1− 2x) · p3].

We optimize the above expression to find the best possible values of p1, p2, p3 and obtain p2 ≈ 0.364 and soundness
error smaller than 0.864. Next, we implement the computation of the tests using gadgets of the MaxSNP problem at
hand, which in turn induces a reduction of NP to the problem at hand. We observe that we need to implement only two
types of gadgets – a parity check (PC), which given three variables checks that their parity equals 0, and a Monomial
Basis check (MBC), which given a, b, c, d checks that a · b = c+ d. (Observe that the Projection Test also amounts to
a parity check.) In case of the MaxSAT problems the gadgets are small formulii (of the appropriate type) whereas in
the MaxCUT case the gadgets are graphs and Boolean values are associated to the vertices by any potential cut. The
hardness results mentioned in Theorem 1.5, parts (2–4), follows.

11This is the case since the error analysis breaks into cases and in each case only one of the test types is used.

8

3.7 Two free-bits and inapproximability of vertex cover

It is known that approximating the minimum vertex cover of a graph to within a 1 + ε factor is hard, for some ε > 0
[PaYa, ALMSS]. Our initial attempt to obtain a bound on ε uses VC-gadgets that implement the various tests in
the inner verifier USNP, analogously to the way it was done in the previous section. This yields a lower bound of
ε > 1

54 > 0.018. However, a stronger result is obtained via free-bit complexity. Specifically, we apply the FGLSS-
reduction to a proof system (for NP) in which the free-bit complexity is the lowest one possible: which, by the results of
Section 5, is 2 free-bits. Consequently, the clique size, in case the original input is in the language, is at least one fourth
(1/4) of the size of the graph which means that translating clique-approximation factors to VC-approximation factors
yields only a loss of one third. Since the FGLSS-transformation translates the completeness/soundness ratio to the
gap-factor for clique approximation, our first goal is to construct for NP a proof systems which uses two free-bits and
has soundness error as low as possible. The proof system of subsection 3.5 uses 11 free-bits and achieves soundness
error less than 1/2. The reader may observe that, using the clique to VC reduction, it is not worthwhile to use the proof
system of subsection 3.5 or any proof systems which achieves a soundness error of 1/2 at the cost of 5 free-bits or
more. The 2-free-bit pcp system for NP is obtained by splitting the MBtest into its two natural parts: a multiplication
test (i.e., A(f1) ·A(f2) = A(f1 · f2)) and a corresponding self-corrector (i.e., A(f1 · f2) = A(f1 · f2 + f3)−A(f3)).
The inner verifier decides at random which of the four tests to perform; actually, their are three cases as in one case
the verifier performs both the linear test and the pure multiplication test (using the same paramters/functions and so
maintaining a count of 2 free-bits in each case). This yields the following theorem and the hardness of Vertex Cover
mentioned in Theorem 1.5, part (1), follows.

Theorem 3.8 There exists a pcp system for NP with logarithmic randomness, free-bit complexity 2, and error proba-
bility 0.884464. Furthermore, the query complexity is 4 (and less than 3.5 on the average).

Using the above mentioned 4 tests, so that only a single test is performed in each case, we obtain

Theorem 3.9 There exists a pcp system for NP with logarithmic randomness, query complexity 3, and error proba-
bility 0.8999. Furthermore, the free-bit complexity is 2.

3.8 Using related queries – two amortized free-bits

Here the inner verifier invokes each atomic test many times but with related parameters/functions. Specifically, we
select uniformlym functions inFl andm functions inFl1 and invoke each test poly(2m) times. In a typical invokation
we use as parameters functions obtained by linear combinations of the corresponding m functions. For example,
suppose we have selected f1, ..., fm ∈ Fl. Then for every two (different and non-trivial) linear combinations, f ′ =∑m
i=1 c

′
i · fi and f ′′ =

∑m
i=1 c

′′
i · fi, we invoke the linear test with parameters f ′ and f ′′. Clearly, the free-bit count in

this system is 2m, as all queries are determined by the value of the 2m functions selected above. On the other hand,
the various invokations are sufficiently random so that a Law of Large Numbers can be invoked12 and consequently
the error probability of the resulting inner verifier can be bounded by O(2−m). Thus,

Theorem 3.10 There is a constant c such that, for every m ≥ 3, there exists a pcp system for NP with logarithmic
randomness, free-bit complexity 2m, and error probability c · 2−m. Thus, for any ε > 0, there exists a pcp system for
NP with logarithmic randomness and amortized free-bit complexity 2 + ε.

This yields Theorem 1.3.

4 On the Limitations of Some Common Approaches
Recall that in Section 3.3 we outlined the basic tasks of an inner verifier. They are central to all existing (“low-
complexity”) pcps. In this section we provide lower bounds on the free-bit complexity of these tasks. Specifically,
we consider the task of checking that a string (given by oracle access) is close13 to a valid codeword and the task of
checking that one oracle is an encoding of a projection of a string encoded by a second oracle. Loosely speaking, we
show that each of these tasks has amortized free-bit complexity of at least one (and this is tight by the codes and tests
presented in Section 3). Furthermore, we show that the amortized free-bit complexity of performing both tasks (with

12Specifically, we can isolate a set of Ω(2m) invokations that are pairwise independent and apply Chebyshev’s Inequality.
13 Here ‘close’ means closer than half the distance of the code. Indeed, our Max Clique result may use a verifier that makes such a test, but other

verifiers in the paper perform a weaker form of a codeword test which is required to detect only strings which are at distance almost equal to the
distance of the code.

9

respect to the same given oracles) is at least two (which is also tight). We consider these bounds as an indication that
one will have to depart significantly from the known techniques in order to obtain lower (than two) amortized free-bit
complexity for NP . One possible avenue which may lead to a amortized free-bit complexity of 1 is to perform a
relaxed form of the codeword test (see footnote above) at free-bit complexity 0.

Definition 4.1 The absolute distance between two words w, u ∈ {0, 1}n, denoted d(w, u), is the number of bits
on which w and u disagree. We say that the code E : {0, 1}m → {0, 1}n has absolute distance d if for every
x 6= y ∈ {0, 1}m the absolute distance between E(x) and E(y) is at least d. The absolute distance between a word
w and a code E, denoted dE(w), is defined as the minimum absolute distance between w and a codeword of E.
A codeword test (with respect to E) is an oracle machine, T , such that TE(a)(R) accepts for all a,R. The error
probability of T is defined to be maxA∈{0,1}n:dE(A)≥bd/2c{PrR

[
TA(R) accepts

]
}.

Lemma 4.2 Let E : {0, 1}m 7→ {0, 1}n be a code of absolute distance d > 1, and let T be a codeword test with
respect to E which uses fav free-bits on the average. Then, T has error probability at least 1

F −
1
M , where F = 2fav

and M = 2m, and its amortized free bits complexity is at least 1− F/M .

Definition 4.3 Let E1: {0, 1}m → {0, 1}n and E2: {0, 1}k → {0, 1}n′ be two codes and let π : {0, 1}m → {0, 1}k
be a function. A projection test (with respect to the above) is a two-oracle machine, T , such that TE1(x),E2(π(x))(R)
accepts for all x,R. The error probability of T is defined to be

max
a,b:π(a)6=b

{PrR
[
TE1(a),E2(b)(R) accepts

]
}.

Lemma 4.4 Let E1, E2 and π be as above, and T be a projection test with respect to them, which uses fav bits on the
average. Then, T has error probability at least 1

F −
1
K , where K = |{π(a)|a ∈ {0, 1}m}| and F = 2fav , and thus its

amortized free-bit complexity is at least 1− F
K .

Finally, we define a tester which combines the two tests above: i.e., T takes two oracles A and B and performs a
codeword test on A and a projection test on the pair A,B.

Definition 4.5 Given a code E1 : {0, 1}m → {0, 1}n of absolute distance d a code E2 : {0, 1}k → {0, 1}n′

and a function π : {0, 1}m → {0, 1}k, a Combined Test for (E1, E2, π) is a two-oracle machine T such that
TE1(a),E2(π(a))(R) accepts on all a,R. The error of the test is defined to be

max
{(A,B)∈S}

{
PrR

[
TA,B(R) accepts

]}
.

where S contains (A,B) iff either dE1(A) ≥ bd/2c or A = E1(a) and B = E2(b) for some b 6= σ(a).

Lemma 4.6 Let E1 (of distance > 1), E2 and π be as above and T be a combined codeword and projection test
with respect to them. Suppose that, given access to a pair of oracles, of length n and n′ respectively, T accepts at
most F 2 = 22f possible patterns for each possible sequence of coin tosses. Then, T has error probability at least

1
64F −

1
4K −

1
2M , where K = 2k and M is the minimum, over all b ∈ {0, 1}k, of the number of a ∈ {0, 1}m projected

by π to b. Thus, the amortized free-bit complexity of T is at least 2−O(1
f + F

min{K,M}).

5 The True Complexity of PCP and FPCP
Proposition 5.1 (pcp systems with at most 3 queries):
(1) ∀ c, s : Z+ → [0, 1] so that s is strictly less than c, PCPc,s[log, 1] = P.
(2) ∀ s : Z+ → [0, 1] strictly less than 1, PCP1,s[log, 2] = P. In contrast for some 0<s<c<1, PCPc,s[log, 2] =

NP.
(3) PCP1,0.9[log, 3] = NP. In contrast, ∀s ≤ 0.299, naPCP1,s[log, 3] = P where naPCP is a restriction of PCP

in which the verifier is required to be non-adaptive.

Item (2) is folklore. The bound obtained in the second part of Item (3), let alone that it is restricted to the non-adaptive
case, is weaker than what can be proven for MIP proof systems (see below). This contrast may perhaps provide
a testing ground to separate PCP from MIP, a question raised by [BGLR]. Below, MIP·,·[·, p] denotes the class of
languages accepted by a one-round p-prover protocol in which is prover answer is a single bit.

10

Proposition 5.2 (mip systems with at most 3 queries):
(1) MIPc,s[r, p] ⊆ MIPc,2s[r, p− 1].
(2) For s < 1/2, MIP1,s[log, 3] = P.

Lemma 5.3 For all functions c, s, q, r such that cs > 2q ,

PCPc,s[r, q] ⊆ RTIME(poly(n, r, q, (c− 2qs)−1)

Furthermore, if r and q are both logarithmically bounded then PCPc,s[r, q] = P.

Corollary 5.4 ∀ c>0, PCPc[log n, 1] = P.

Before turning to free-bit complexity, we comment that results analogous to Proposition 5.1, where PSPACE plays
the role of P and NEXP the role of NP, can be derived for the classes PCP·,·(poly, ·). Furthermore, for functions c, s
so that c(n) > s(n) + 1/ poly(n), we obtain PCPc,s[poly, 1] ⊆ AM. In light of the last item of Proposition 5.5, this
result may be hard to strenthen.

Proposition 5.5 Let s : Z+ → [0, 1] be a function strictly smaller than 1.
(1) FPCP1,s[log, 1] = P. In contrast, FPCP0.5,0.45[log, 1] = NP, FPCP0.25,0.22[log, 0] = NP, and FPCP1,0.95[log, f] =

NP for f = log2 3.
(2) FPCP1,s[poly, 0] ⊆ coNP and FPCP1,s[poly, 1] ⊆ PSPACE.
(3) Graph Non-Isomorphism and Quadratic Non-Residousity have pcp systems, with perfect completeness and

soundness bound 1/2, in which the verifier makes a single query and this query is free.

The last item follows from [GMR, GMW].

6 Transformations of FPCP Systems
In this section we show several useful transformations which can be applied to pcp systems. We concentrate on the
free bit complexity, and introduce an additional parameter into the notation – the proof length (i.e., FPCPc,s[r, f, l]
refers to randomness r, free bit f and proof length l). We start by stating the simple fact that the ratio between the
completeness and soundness bounds (also referred to as gap) is amplified (i.e., raise to the power k) when one repeats
the pcp system (k times). Note, however, that if the original system is not perfectly complete then the completeness
bound in the resulting system gets decreased.

Proposition 6.1 (gap amplification):

∀k, c, s FPCPc,s[r, f, l] ⊆ FPCPck,sk [kr, kf, l].

Next, we show that in some sense the randomness-complexity of a proof system need not be higher than logarithmic
in the length of the proofs/oracles employed. The symbol ≤RK denotes a randomized Karp reduction.

Proposition 6.2 (reducing randomness): There exists a constant γ > 0 so that for every two functions s, ε : Z+→
[0, 1], FPCP1,s[r, f, l] ≤RK FPCP1,s′ [r′, f, l], where s′ = (1 + ε)s and r′ = γ + log2(l/ε2s).

An analogous statement for two-sided error pcp is omitted. Combining Propositions 6.1 and 6.2, we obtain the fol-
lowing corollary which plays a central role in deriving clique approximation results via the FGLSS method 14–

Corollary 6.3 For every k : Z+ → Z+, FPCP[r, f] ≤RK FPCP1,2−k [r + k + log, kf].

An alternative error reduction procedure, which allows to obtain inapproximability results under P 6= NP, follows
(stated here only for the one-sided error case)

Proposition 6.4 ∀ε, s > 0, ∀k :Z+→Z+ FPCP1,s[r, f] ⊆ FPCP1,sk [r + (2 + ε) · k + log, kf].

The following transformation is analogous to the randomized layering procedure for the clique promise problem (i.e.,
Proposition 2.5). In view of the relation between FPCP and the clique promise problem (shown in Section 2), this
analogy is hardly surprising. In this transformation the acceptance probability bounds are pushed higher at the expense
of increasing the free-bit complexity.

14In a typical application, r = O(logn) and one sets k to be a large multiple of r. The FGLSS-graph corresponding to the resulting pcp system
will have size N = 2(r+k+O(1))+kf and a gap in clique size of factor 2k , which can be rewritten as N1/(1+f+ε) where ε = r/k.

11

Proposition 6.5 (increasing acceptance probabilities): For all functions c, s : Z+ → [0, 1], and r, f,m : Z+ → Z+,
FPCPc,s[r, f] ≤RK FPCPc′,s′ [r, f + log2m], where c′ = 1− 4(1− c)m and s′ = m · s.

The following transformation has an opposite effect than the previous one, reducing the free-bit complexity at the
expense of lowering the bounds on acceptance probability.
Proposition 6.6 (decreasing acceptance probabilities): For all functions c, s : Z+ → [0, 1], and r, f, k : Z+ → Z+,
if L ∈ FPCPc,s[r, f] with a verifier for which every random-pad has at least 2k accepting configurations, then
L ∈ FPCP c

2k
, s
2k

[r + k, f − k].

References
[Ar] S. ARORA. Reductions, Codes, PCPs and Inapproximability. These proceedings.
[ALMSS] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN AND M. SZEGEDY. Proof verification and intractability of approximation problems.

FOCS, 1992.
[ArSa] S. ARORA AND S. SAFRA. Probabilistic checking of proofs: a new characterization of NP. FOCS, 1992.
[BFL] L. BABAI, L. FORTNOW AND C. LUND. Non-deterministic Exponential time has two-prover interactive protocols. FOCS, 1990.
[BFLS] L. BABAI, L. FORTNOW, L. LEVIN, AND M. SZEGEDY. Checking computations in polylogarithmic time. STOC, 1991.
[BaEv] R. BAR-YEHUDA AND S. EVEN. A local ratio theorem for approximating the weighted vertex cover problem. In Analysis and Design

of Algorithms for Combinatorial Problems Vol. 25 of Annals of Discrete Math, Elsevier, 1985.
[BCHKS] M. BELLARE, D. COPPERSMITH, J. HÅSTAD, M. KIWI AND M. SUDAN. Linearity testing in characteristic two. These proceedings.
[BGLR] M. BELLARE, S. GOLDWASSER, C. LUND AND A. RUSSELL. Efficient probabilistically checkable proofs and applications to approx-

imation. STOC, 1993. (See also Errata sheet in STOC, 1994).
[BGS] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability – Towards Tight Results. Auguat 1995 (replac-

ing previous version of May 1995). Available from ECCC, Electronic Colloquium on Computational Complexity, via WWW using
http://www.eccc.uni-trier.de/eccc/.

[BeSu] M. BELLARE AND M. SUDAN. Improved non-approximability results. STOC, 1994.
[BGKW] M. BEN-OR, S. GOLDWASSER, J. KILIAN AND A. WIGDERSON. Multi-Prover interactive proofs: How to remove intractability

assumptions. STOC, 1988.
[BeSc] P. BERMAN AND G. SCHNITGER. On the complexity of approximating the independent set problem. Information and Computation 96,

77–94 (1992).
[Bl] A. BLUM. Algorithms for approximate graph coloring. Ph. D Thesis, MIT, 1991.
[BLR] M. BLUM, M. LUBY AND R. RUBINFELD. Self-testing/correcting with applications to numerical problems. Journal of Computer and

System Sciences Vol. 47, pp. 549–595, 1993.
[BoHa] R. BOPPANA AND M. HALDÓRSSON. Approximating maximum independent sets by excluding subgraphs. BIT, Vol. 32, No. 2, 1992.
[FRS] L. FORTNOW, J. ROMPEL AND M. SIPSER. On the power of multiprover interactive protocols. Proceedings of the 3rd Structures, IEEE,

1988.
[FeGo] U. FEIGE AND M. GOEMANS. Approximating the value of two prover proof systems, with application to Max-2SAT and Max-DICUT.

ISTCS, 1995.
[FGLSS] U. FEIGE, S. GOLDWASSER, L. LOVÁSZ, S. SAFRA, AND M. SZEGEDY. Approximating clique is almost NP-complete. FOCS, 1991.
[FeKi] U. FEIGE AND J. KILIAN. Two prover protocols – Low error at affordable rates. STOC, 1994.
[Fu] M. FURER. Improved hardness results for approximating the chromatic number. These proceedings.
[GJS] M. GAREY, D. JOHNSON AND L. STOCKMEYER. Some simplified NP-complete graph problems. Theoretical Computer Science 1,

pp. 237–267, 1976.
[GoWi1] M. GOEMANS AND D. WILLIAMSON. New 3/4-approximation algorithm for MAX SAT. Proceedings of the 3rd Mathematical Pro-

gramming Society Conference on Integer Programming and Combinatorial Optimization, 1993.
[GoWi2] M. GOEMANS AND D. WILLIAMSON. .878 approximation algorithms for Max-CUT and Max-2SAT. STOC, 1994.
[GMW] O. GOLDREICH, S. MICALI, AND A. WIGDERSON. Proofs that yield nothing but their validity and a methodology of cryptographic

protocol design. FOCS, 1986.
[GMR] S. GOLDWASSER, S. MICALI, AND C. RACKOFF. The knowledge complexity of interactive proofs. SIAM J. Computing Vol 18, No. 1,

186–208, 1989.
[KLS] S. KHANNA, N. LINIAL AND S. SAFRA. On the hardness of approximating the chromatic number. ISTCS, 1993.
[LuYa] C. LUND AND M. YANNAKAKIS. On the hardness of approximating minimization problems. STOC, 1993.
[MoSp] MONIEN AND SPECKENMEYER. Some further approximation algorithms for the vertex cover problem. Proceedings of CAAP 83 ,

Lecure Notes in Computer Science Vol. 159, Springer-Verlag, 1983.
[PaYa] C. PAPADIMITRIOU AND M. YANNAKAKIS. Optimization, approximation, and complexity classes. Journal of Computer and System

Sciences 43, pp. 425–440, 1991.
[Raz] R. RAZ. A parallel repetition theorem. STOC, 1995.
[Ya] M. YANNAKAKIS. On the approximation of maximum satisfiability. SODA, 1992.
[Zu] D. ZUCKERMAN. NP-Complete Problems have a version that is hard to Approximate. Structures, 1993.

12

