
A GEOMETRIC APPROACH TO BETWEENNESS �BENNY CHORy AND MADHU SUDANzAbstract. An input to the betweenness problem contains m constraints over n real variables(points). Each constraint consists of three points, where one of the point is speci�ed to lie inside theinterval de�ned by the other two. The order of the other two points (i.e., which one is the largest andwhich one is the smallest) is not speci�ed. This problem comes up in questions related to physicalmapping in molecular biology. In 1979, Opatrny [14] showed that the problem of deciding whetherthe n points can be totally ordered while satisfying the m betweenness constraints is NP{complete.Furthermore, the problem is MAX SNP complete, and for every � > 47=48 �nding a total order thatsatis�es at least � of the m constraints is NP{hard (even if all the constraints are satis�able). It iseasy to �nd an ordering of the points that satis�es 1=3 of the m constraints (e.g. by choosing theordering at random).This paper presents a polynomial time algorithm that either determines that there is no feasiblesolution, or �nds a total order that satis�es at least 1=2 of the m constraints. The algorithmtranslates the problem into a set of quadratic inequalities, and solves a semide�nite relaxation ofthem in Rn. The n solution points are then projected on a random line through the origin. Theclaimed performance guarantee is shown using simple geometric properties of the SDP solution.Key words. Approximation algorithm, Semide�nite programming, NP-completeness, Compu-tational biology.AMS subject classi�cations. 68Q20, 68Q251. Introduction. An input to the betweenness problem consists of a �nite setof n elements (or points) S = fx1; : : : ; xng, and a �nite set of m constraints. Eachconstraint consists of a triplet (xi; xj; xk) 2 S � S � S. A candidate solution to thebetweenness problem is a total order < on its points. A total order xi1 < xi2 < : : : <xin satis�es the constraint (xi; xj; xk) if either xi < xj < xk or xk < xj < xi. That is,each constraint forces the second variable xj to be between the two other variables xiand xk, but does not specify the relative order of xi and xk. The decision version ofthe betweenness problem is to decide if all constraints can be simultaneously satis�edby a total order of the variables.In 1979, Opatrny [14] showed that the decision version of the betweenness prob-lem is NP{complete. This problem arises naturally when analyzing certain mappingproblems in molecular biology. For example, it arises when trying to order markerson a chromosome, given the results of a radiation hybrid experiment [6, 3]. A com-putational task of practical signi�cance in this context is to �nd a total ordering ofthe markers (the xi in our terminology) that maximizes the number of satis�ed con-straints. Indeed, betweenness is central in the recent software package RHMAPPER[15, 16]. At the heart of this package is a method for producing the order of frameworkmarkers, based on betweenness constraints (obtained from a statistical analysis of thebiological data). Slonim et. al. successfully employ two greedy heuristics for solvingthe betweenness problem.�A preliminary version of this paper appeared in the proceedings of the third annual EuropeanSymposium on Algorithms, ESA '95, Lecture Notes in Computer Science 979, Paul Spirakis (Ed.),Springer, September 1995, pp. 227{237.yDept. of Computer Science, Technion, Haifa 32000, Israel (benny@cs.technion.ac.il). Researchpartially supported by Technion V.P.R. funds.zLaboratory for Computer Science, MIT, 545 Technology Square, Cambridge, MA 02139(madhu@lcs.mit.edu). Part of the work was done when this author was at the IBM Thomas J.Watson Research Center. 1

2 Chor and SudanOpatrny gave two reductions in his proof of NP{completeness. One of thesereductions is from 3SAT. Following his construction, we show, in Section 2, an ap-proximation preserving reduction from MAX 3SAT. This implies that there exists an" > 0, such that �nding a total order that satis�es at least m(1� ") of the constraints(even if they are all satis�able) is NP{hard. In particular this holds for every " < 1=48(see Corollary 2.5). On the other hand, it is easy to �nd a total order that satis�esone third of the m constraints (even if they are not all satis�able). Simply arrangethe points in a random order along the line. The probability that a speci�c constraint(xi; xj; xk) is satis�ed by such a randomly chosen order is 1=3, since exactly two ofthe six permutations on i; j; k have j in the middle. Thus the expected number ofconstraints satis�ed by a random order is at least a third of the m constraints. Onthe other hand, it is easy to construct examples where at most m=3 constraints aresatis�able. Thus to achieve better approximation factors, one needs to be able torecognize instances of the betweenness problems that are not satis�able.We present a polynomial time algorithm that either determines that there is nofeasible solution, or �nds a total order that satis�es at least 1=2 of the m constraints.Our algorithm translates the problem into a set of quadratic inequalities, and solvesa semide�nite programming relaxation (SDP) of them in Rn. Let v1; : : : ; vn 2 Rnbe a feasible solution to the SDP, where each vi corresponds to the real variable xi.The n solution points are then projected on a random line through the origin. Weshow that if \xj between xi and xk" is one of the betweenness constraints, then theangle between the lines vivj and vkvj (in Rn) is obtuse. Using this property, we provethat the random projection satis�es each constraint with probability at least 1=2.This gives a randomized algorithm with the claimed performance guarantee. Next,we show how to derandomize the algorithm. In addition, we demonstrate that ouranalysis of the semide�nite program is tight. There is an in�nite family of inputs tothe betweenness problem, such that the resulting SDP is feasible, but any total orderof the variables satis�es at most 1=2 + o(1) of the m constraints.Our use of semide�nite programming is inspired by the recent success in usingthis methodology to �nd improved approximation algorithms for several optimizationproblems. The applicability of SDP in combinatorial optimization was demonstratedby Gr�otschel, Lov�asz and Schrijver [7] to show that the Theta function of Lov�asz[12] was polynomial time computable. This application was then turned into exactcoloring and independent set �nding algorithms for perfect graphs. The use of SDPin approximation algorithms was innovated by the work of Goemans and Williamson[5] who broke longstanding barriers in the approximability of MAX CUT and MAX2SAT by their SDP based algorithm. Further evidence of the applicability of the SDPapproach is provided by the works of Karger, Motwani and Sudan [10], who use itto approximate graph coloring, Alon and Kahale [1] (independent set approximation)and by Feige and Goemans [4] (improvements to MAX 2SAT).Thus the semide�nite programming method has now been used successfully tosolve many optimization problems | exactly and approximately. However all thecases where SDP has been used to �nd approximation algorithms seem to be essen-tially partition problems (MAX CUT, Coloring, Multicut etc.). Our solution seemsto be (to the best of our knowledge) the only case where SDP has been used tosolve an ordering problem. This syntactic di�erence between ordered structures andunordered ones, and the ability of SDP to help optimize over both, o�ers criticaladditional evidence on the power of the SDP methodology.The remaining of this paper is organized as following: Section 2 presents the

A Geometric Approach to Betweenness 3approximation preserving reduction from MAX 3SAT, as well as other observationsabout the betweenness problem. Semide�nite programming is brie
y reviewed inSection 3. The algorithm is presented in Section 4. Section 5 shows the tightness ofour analysis. Finally, Section 6 contains some concluding remarks and open problems.2. Preliminaries. We start this section with some preliminary observationsabout the betweenness problem. We begin by de�ning the notion of an approxi-mate solution to the betweenness problem and analyzing the complexity of �ndingsuch a solution.Definition 2.1. Given an instance of the betweenness problem on m constraintsand � � 1, an �-approximate solution is one that satis�es at least �k constraints,where k is the maximum number of constraints satis�ed by any solution. For � � 1,the �-approximation (version of the betweenness) problem is the task of �nding an �-approximate solution for every instance. An algorithm which solves such a problem issaid to be an �-approximation algorithm. For � � 1, the �-approximation problem forsatis�able instances is the task of �nding a total order that satis�es �m constraints,or determining that the instance is not satis�able. An algorithm which solves thisproblem is an �-approximation algorithm for satis�able instances.The complexity of solving the betweenness problem exactly (i.e., for � = 1) iswell-settled. Opatrny [14] has shown that it is NP-hard to decide if a given instance ofthe betweenness problem is satis�able. We now turn our attention to the complexityof the problem for � < 1. We �rst present a hardness result based on a simplereduction from MAX CUT, due to Michel Goemans. An instance of the MAX CUTproblem is an undirected graph. The goal of the problem is to �nd a partition (S; �S)of the vertex set so as to maximize the number of edges with one endpoint in S andone in �S. This problem was shown to be hard to approximate to within some factor� < 1 by Arora et al. [2]. The best result known to date, due to H�astad [9] (seealso Trevisan et al. [17]), is that �-approximating MAX CUT is NP-hard for every� > 16=17.Proposition 2.2. For every �, the �-approximation version of the MAX CUTproblem reduces to the �-approximation version of the betweenness problem.Proof. Given an instance G of the MAX CUT problem, we create an instance ofthe betweenness problem as follows: For every vertex vi in the graph, create a pointpi. In addition we introduce one special point s. For every edge (vi; vj) in the graph,we introduce the betweenness constraint (pi; s; pj) (i.e., s is between pi and pj). Now,given a cut (S; �S) in the graph that has k edges crossing the cut any ordering thatplaces the points corresponding to the vertices in S to the left of s and the rest of thepoints to the right of s is an ordering that satis�es k of the betweenness constraints.In the reverse direction, any ordering of the points that satis�es k betweenness con-straints can be converted into a cut with k edges crossing the cut, by letting S bethe set of vertices corresponding to points to the left of s. Thus the optima of thetwo problems are exactly equal; furthermore, given an �-approximate solution to thebetweenness instance, we can construct an �-approximate solution to the MAX CUTinstance. Thus an �-approximation algorithm for the betweenness problem yields an�-approximation algorithm for the MAX CUT problem.Corollary 2.3. The �-approximation version of the betweenness problem isNP-hard for � > 16=17.While the above reduction provides some insight about the hardness of the be-tweenness problem on general instances, it does not quite provide a hardness resultfor the problem of interest to us. This is because the instances of the betweenness

4 Chor and Sudanproblem that we typically consider are fully satis�able. In the reduction above, theonly instances of the MAX CUT problem that reduce to fully satis�able instances ofbetweenness are when the input graph is bipartite. But in such cases it is easy to �ndthe MAX CUT, and thus the instance of betweenness produced are not necessarilyhard.In what follows we present an approximation preserving reduction from MAX3SAT to the betweenness problem. This reduction follows Opatrny's original reductionand addresses the �-approximation problem for satis�able instances. It is well-knownthat there exists a constant " > 0 such that the (1� ")-approximation version of theMAX 3SAT problem is NP-hard. The best results known to date, due to H�astad [9],show this is true for every " < 1=8. Based on our reduction we conclude that thereexists a constant "0 > 0 such that �nding an ordering that satis�es (1 � "0) fractionof the constraints in a satis�able instance of the betweenness problem is NP-hard.Proposition 2.4. For every " > 0, the (1 � ")-approximation version of theMAX 3SAT problem on satis�able instances reduces to the (1 � "=6)-approximationversion of the betweenness problem on satis�able instances.Proof. Given a 3-CNF formula � on n variables and m clauses, we construct aninstance I of the betweenness problem on 2 + n + 5m points with 6m constraints,such that: for every `, there exists a total order satisfying 5m+ ` of the betweennessconstraints in I if and only if there exists an assignment satisfying ` of the clausesin �. The reduction proceeds as follows: For each Boolean variable xi of �, we adda point pi to I. In addition we create two special points T and F . Without loss ofgenerality, we consider orderings where T is to the right of F . An ordering of thepoints pi, T and F is supposed to imply a truth assignment as follows: If pi is to theleft of F then it is false, if it is to the right of F then it is true. This interpretationwill also apply to the additional \clause points" that are introduced in the rest of theconstruction.Given a clause Cj, say Cj = x1 _ x2 _ x3, we create �ve points q(1)j , q(�2)j and q(3)jand r(12)j and r(123)j . The points qj are supposed to represent the assignment to theliterals in the clause. For each literal in the clause, we include a constraint that forcesthe variable to be assigned consistently with the literal. We do so with the constraintsF is between p2 and q(�2)j , whereas q(1)j is between p1 and F and q(3)j is between p3 andF . Thus, for example, an assignment satis�es q(�2)j if and only if it falsi�es p2. Thepoints r(12)j and r(123)j are supposed to represent the OR of the �rst two and threeliterals in the clause, respectively. This is enforced with the betweenness constraints,r(12)j is between q(1)j and q(�2)j ; and r(123)j is between r(12)j and q(3)j . So, for example, ifboth literal points q(1)j and q(�2)j are false, and r(12)j is between q(1)j and q(�2)j then r(12)jmust be false, while if at least one of the literal points is true, then r(12)j can be placedso that it is true (to the right side of F). Lastly we add a betweenness constraint thatattempts to ensure that a clause is assigned true. This is done with the constraintr(123)j is between F and T .Thus corresponding to each clause we have 6 betweenness constraints. Consideran assignment to the variables in � satisfying ` clauses out of m. Without loss ofgenerality assume that the assignment sets x1; : : : ; xk = false and xk+1; : : : ; xn =true. Order the points pi and T and F as follows:p1 � � �pk F pk+1 � � �pn T:

A Geometric Approach to Betweenness 5For j going from 1 to m, the literal points q(1)j , q(2)j and q(3)j are then placed betweenpk and F or between F and pk+1, depending on their truth value. (A true literalis placed between F and pk+1 while a false literal is between pk and F .) Finallythe points r(12)j and r(123)j are placed as far to the right as possible subject to thebetweenness constraints. This tends to make r(123)j lie between F and T if any oneof the literals in the jth clause is true. This arrangement always satis�es at least �veof the betweenness constraints associated with the k-th clause. The only constraintit may not satisfy is the constraint \r(123)j is between F and T": and this constraintis satis�ed if and only if at least one of the literals in the j-th clause is true. Thusthis ordering satis�es 5m + ` of the betweenness constraints. Conversely it maybe veri�ed that if an arrangement of the points (again, with F left of T) satis�es5m + ` betweenness constraints, then the assignment that assigns true to all thosevariables whose corresponding points lie to the right of F , satis�es at least ` clausesin the formula �. (There must be at least ` values of j for which the arrangementsatis�es all 6 betweenness constraints involving qj's and rj's. For these values of j,the corresponding assignment satis�es the j-th clause.)Thus given a 3-CNF formula � with m clauses we have constructed a betweennessinstance I with m0 = 6m constraints. Further more given an ordering satisfying(1�")m0 constraints, we can reconstruct an assignment satisfying at least (1�")m0�5m = m(1� 6") clauses of �.Corollary 2.5. The �-approximation version of the betweenness problem onsatis�able instances is NP-hard, for every � > 47=48.Next we show what can achieved by the obvious randomized algorithm for thebetweenness problem.The natural randomized algorithm for the betweenness problem arranges thepoints in a random order along the line. The probability that a speci�c constraintis satis�ed by such a randomly chosen order is 1=3. Thus the expected number ofconstraints satis�ed by a random order is at least a third of all the constraints. Bythe method of conditional probabilities one can �nd such order in polynomial time.Since this order satis�es 1=3rd of all constraints, it is within 1=3rd of the optimalordering. The result is summarized below.Proposition 2.6. The 1=3-approximation version of the betweenness problemcan be solved in polynomial time.Before going on to more sophisticated techniques for solving this problem, let usexamine the main weakness of the above algorithm. We �rst argue that no algorithmcan do better than attempting to satisfy a third of all given constraints. Consider aninstance of the betweenness problem on three points with three constraints insistingthat each point be between the other two. Clearly we can satisfy only one of theabove three constraints, which proves the claim. Thus the primary weakness of theabove algorithm is not in the (absolute) number of constraints it satis�es, but inthe fact that it attempts to do so for every instance of the betweenness problem;even those that are obviously not satis�able. Thus to achieve better approximationfactors, one needs to be able to recognize instances of the betweenness problems thatare not satis�able. But this is an NP-hard task. In fact, Corollary 2.5 indicatesthat one cannot even distinguish instances that are satis�able from those for whichan " fraction of the constraints remain unsatis�ed under any assignment. In whatfollows we use a semide�nite relaxation of our problem to distinguish cases that arenot satis�able from cases where at least 50% of the given clauses are satis�able. Wethen go on to show that using this relaxation we can achieve a better approximation

6 Chor and Sudanthan the naive randomized algorithm.3. Semide�niteProgramming. In this section we brie
y introduce the paradigmof semide�nite programming. We describe why it is solvable in polynomial time.A complementary technique to that of semide�nite programming is the incompleteCholesky decomposition. We describe how the combination allows one to �nd embed-dings of points in �nite-dimensional Euclidean space, subject to certain constraints.Definition 3.1. For positive integers m and n, a semide�nite program is de�nedover a collection of n2 real variables fxijgn;ni=1;j=1. The input consists of a set of mn2real numbers fa(k)ij gn;n;mi=1;j=1;k=1, a vector of m real numbers fb(k)gmk=1 and a vector ofn2 real numbers fcijgn;ni=1;j=1. The objective is to �nd fxijgn;ni=1;j=1 so as tomaximize nXi=1 nXj=1 cijxijsubject to8k 2 f1; : : : ;mg nXi=1 nXj=1 a(k)ij xij � b(k):and The matrix X = fxijg is symmetricand positive semide�nite.Recall that the following are equivalent ways of de�ning when a symmetric matrixX is positive semide�nite.1. All the eigenvalues of X are non-negative.2. For all vectors y 2 Rn, yTXy � 0.3. There exists a real matrix V such that V T � V = X.It is well-known that the ellipsoid algorithm of Khaciyan [11] can be used to solveany semide�nite program approximately in the following sense: Given a parameter" > 0, the algorithm runs in time polynomial in the input size and log(1=") and �ndsa feasible solution achieving an objective of at least optimum - " (see, for instance [8]).In order to use the semide�nite programming approach for solving combinatorialoptimization problems, one more tool is useful. This is the ability to �nd a matrix Vas guaranteed to exist in Part 3 of the de�nition of positive semide�niteness above.The method that yields such a matrix is the incomplete Cholesky decomposition.The matrix V can be used to interpret the solution obtained by the semide�niteprogramming problem geometrically. Interpret the columns of the n� n matrix V asn vectors v1; : : : ; vn in Rn. Now the variables xij of the matrix X simply correspondto the inner product of vi and vj. Thus a linear constraint on the xij's is simply alinear constraint on the inner products of the vectors vi's. And the objective functionis simply a linear function on the inner products.Thus the following provides an equivalent geometric interpretation of SDP:Find n vectors v1; : : : ; vn so as to maximize the quantity Pi;j cij <vi; vj >,subject to the constraints Pi;j a(k)ij < vi; vj > � b(k), for everyk 2 f1; : : : ;mg.Alternately one can interpret SDP as solving an optimization problem that at-tempts to �nd n points in n-dimensional Euclidean space, subject to linear constraints

A Geometric Approach to Betweenness 7on the squares of the distance between the points. This is done by observing that thesquare of the distance between points vi and vj (denoted d2ij) is simply< (vi � vj); (vi � vj) >=< vi; vi > + < vj ; vj > �2 < vi; vj > :Thus a linear inequality on the d2ij's is also a linear inequality on the inner productsof the vi's. (Actually the distance squared interpretation is equivalent to SDP sincewe can express < vi; vj > as (d2i0 + d2j0 � d2ij)=2.)From this interpretation of SDP we can solve any problem of the form:Geometric SDP: Embed n points in Rn such that the squares ofthe distance between the points, denoted dij, satisfy the constraintsPi;j a(k)ij d2ij � b(k) while trying to maximize Pi;j cijd2ij. In the "-additive approximation version the algorithm is allowed to return (forevery feasible input) a solution such that each constraint is violatedby at most ", i.e.,Pi;j a(k)ij d2ij � b(k) + ", and the objective achievedis at least the optimum - ".In what follows we will use the last interpretation of SDP to solve the betweennessproblem. In particular, we use the proposition below.Proposition 3.2. For every " > 0, the "-additive approximation version of thegeometric SDP can be solved in time polynomial in the input size and log(1=").4. The Algorithm. The general idea of our algorithm is to express the be-tweenness constraints as a set of real quadratic inequalities. By considering an n{dimensional relaxation of the problem, we get an instance of semide�nite program-ming, and can �nd a feasible solution in Rn (if one exists). We study simple geometricproperties of this solution set. We use them to argue that a projection of the set on arandom line satis�es at least half the betweenness constraints (with high probability).Then we show how to derandomize the algorithm.Consider a set of m betweenness constraints on n real variables x1; : : : ; xn. Sup-pose these constraints are satis�able, and that x1 < x2 < : : : < xn is a satisfy-ing linear order. We can clearly embed the points in the unit interval, and assignxi = (i � 1)=(n � 1) (i = 1; : : : ; n). Let xi; xj; xk be a triplet such that xj is re-quired to be between xi and xk. For the assignment above, it is readily seen that(xi�xj)2+(xk�xj)2 < (xi�xk)2. Furthermore, the x's are at least 1=(n� 1) apartand at most 1 apart. Thus, for every pair of distinct indices i; j, the x's satisfy theinequalities 1=(n� 1)2 � (xi�xj)2 � 1. This motivates the following geometric SDPrelaxation for the betweenness problem.Embed n points in Rn subject to the constraints1(n�1)2 � d2ij � 1; 8 i 6= jd2ij + d2jk � d2ik; for every constraint (xi; xj; xk) (SDP1(I))We strengthen this relaxation slightly before showing how to use it to �nd anapproximate solution to the instance of the betweenness problem. Recall that the x'sare at least 1=(n� 1) apart and at most 1 apart. Therefore for any triple (xi; xj; xk)the ratio between (xi�xj)2+(xj �xk)2 and (xi�xk)2 is maximized when xi and xkare extreme points (0 and 1), and xj is as close as possible to one of them (1=(n� 1)or (n� 2)=(n� 1)). For these values, the ratio is� 1n� 1�2 +�1� 1n� 1�2 = 1� 2n � 1 + 2(n� 1)2 :

8 Chor and Sudanp2�n � 1 � r rvi vkFig. 1. Possible location for the midpoint vjDenote this value by �n. Notice that �n = 1 � 2=n + o(1=n) depends only on thenumber of variables.We are now ready to set up our �nal SDP relaxation:Embed n points in Rn subject to the constraints1(n�1)2 � d2ij � 1; 8 i 6= jd2ij + d2jk � �nd2ik; for every constraint (xi; xj; xk) (SDP(I))The argument leading to the construction of the instance SDP(I) says that theSDP is feasible if the instance I is satis�able and in fact there exists an embedding ofthe points in one dimension satisfying all the constraints. We summarize this below.Proposition 4.1. For every instance I of the betweenness problem, if I is sat-is�able, then the semide�nite program SDP(I) is feasible.As argued in Section 3 (see Proposition 3.2), we can use the ellipsoid algorithm totest the feasibility of SDP(I) and if it is feasible, to �nd an approximation of a feasiblesolution (if one exists). Let v1; : : : ; vn 2 Rn be an approximately feasible solution,and let vi; vj; vk 2 Rn be a triplet that corresponds to a betweenness constraint. We�rst prove some geometric facts about the points vi; vj; vk and then use this to designour approximation algorithm.Consider any two dimensional plane through the points vi; vj; vk. (If vi; vj; vk arenot collinear then this plane is unique, else we pick any such plane arbitrarily.) Let2r be the distance between vi and vk (1=(n� 1)� " � 2r � 1 + "). In what followswe shall skip the term " since it can be made arbitrarily small (and in particular,exponentially small in n).We now consider the angle �i;j;k = 6 vivjvk. We claim that this angle is obtuse(i.e., at least �=2). To see this, we project the points down to the two dimensionalplane containing vi; vj and vk. Furthermore, we rotate and translate the points sothat vi = (�r; 0), vk = (r; 0) and vj = (x; y). Now we can use the explicit formulaed2ij = (x + r)2 + y2, d2jk = (r � x)2 + y2 and d2ik = 4r2. The constraint on thesedistances yields: (x� r)2 + y2 + (x+ r)2 + y2 � 4�nr2 ;

A Geometric Approach to Betweenness 9which implies x2 + y2 � (2�n � 1)r2 :This means that vj , the \midpoint" in the betweenness constraint, lies inside a ballof radius rp2�n � 1 whose center is the middle point (vi+vk)=2, and outside the twosmall balls of radius 1=(n� 1) around vi and vk (see �gure 1).This proves that the angle �i;j;k = 6 vivjvk is indeed obtuse. The following claimproves a tighter bound on �i;j;k.Claim 4.2. The angle �i;j;k satis�es �i;j;k � (1 +
(1=n))�=2.Proof. We apply the cosine rulecos �i;j;k = (d2ij + d2jk � d2ik)=(2dijdjk)=(x2 + y2 � r2)=�p(x2 + y2 + r2)2 � 4r2x2�� (x2 + y2 � r2)=(x2 + y2 + r2)� (�n � 1)=�n< �n � 1= � 2n + �� 1n2� :Denoting �i;j;k = h+ �=2 and using the Taylor series expansioncos(h + �=2) = �h + h36 � h5120 + : : :we get �h+ �(h3) � � 2n + �� 1n2�so h =
(1n), namely �i;j;k � (1 +
(1=n))�=2.We are now ready to describe our algorithm. The algorithm proceeds by pickinguniformly at random a line through the origin, and projecting the n points v1; : : : ; vnon this random line. Let x01; : : : ; x0n be the n resulting points.Claim 4.3. Let �i;j;k denote the angle 6 vivjvk. Then the probability that x0j liesbetween x0i and x0k equals �i;j;k=�.Proof. Instead of considering an arbitrary line through the origin, we consider aparallel line that goes through the point vj . This does not change the betweennessrelation of the projections. Neither is this relation changed when considering theprojection of this line on the two dimensional plane de�ned by vi; vj; vk. Consider thesection of the circle de�ned by the two lines that go through vj and are perpendicularto the lines vivj and vkvj. It is not hard to see that only lines going through thissection violate the betweenness constraint of the projections. This section occupiesan angle of � � �i;j;k (see �gure 2). The claim follows.Combining Claims 4.2 and 4.3, we get:Corollary 4.4. Suppose SDP(I) has a feasible solution. Then for any of the mconstraints, the probability that x0j lies between x0i and x0k is at least 1=2 +
(1=n).As a consequence, the expected number of betweenness constraints satis�ed byx01; : : : ; x0n is at least m=2 +
(m=n) = m(1=2 +
(1=n)). This yields the followinglemma that forms a (weak) converse to Proposition 4.1.

10 Chor and Sudan
vjvi vk

� � �i;j;k
Fig. 2. Lines going through the circular section violate the constraint.Lemma 4.5. For any instance I of the betweenness problem, if SDP(I) is feasible,then there exists a total order satisfying at least m=2 +
(m=n) of the betweennessconstraints in I.Thus we get a randomized polynomial time algorithm that either �nds that theconstraints are infeasible, or generates a linear order that satis�es at least half theconstraints.We now outline a method for derandomizing our algorithm. Given an embeddingof the betweenness problem, we can de�ne a graph and an embedding of the graphin Rn, such that the expected size of the MAX CUT found for this embedding of thegraph equals the expected number of betweenness constraints that are satis�ed by arandom projection.For every ordered pair of points (vi; vj) of the betweenness problem, introducethe vertex wij with embedding vi � vj . If i; j; k is a betweenness constraint, then putan edge between wij and wkj. This de�nes the graph and its embedding.Now consider any hyperplane through the origin that cuts across the edge betweenwij and wkj. Let the slope of the normal to the hyperplane be the vector r. Assumew.l.o.g. that r:wij < 0 and r:wjk < 0, then r:vi < r:vj and r:vj < r:vk. Thus j liesbetween i and k. Conversely if projection onto the vector r satis�es the betweennessconstraint for i; j; k; then the edge between wij and wjk must be cut.Mahajan and Ramesh [13] give a method to deterministically �nd a vector r whosecut value equals the expected cut value. They use this algorithm to derandomize theMAX CUT and Max 2SAT algorithm of Goemans and Williamson [5]. By usingtheir algorithm we get a vector such that projection on to this vector satis�es asmany constraints as the expected number satis�ed by a random vector.Remark: Observe that the above reduction is not a generic reduction frombetweenness to MAX CUT. It uses the fact that the graph produced for the MAXCUT problem has a speci�ed embedding, in order to map a solution of the MAX CUTproblem to a solution of the betweenness problem.We conclude the section by stating the main theorem of this paper.

A Geometric Approach to Betweenness 11Theorem 4.6. The 1=2-approximation version of the betweenness problem canbe solved in polynomial time. Speci�cally, there exists a polynomial time algorithmwhich takes as input an instance of the betweenness algorithm on n points and mconstraints and either outputs \not feasible" or outputs a total order satisfying atleast m=2 +
(m=n) constraints.5. Tightness of our analysis. In this section we show that our analysis of thesemide�nite program is almost tight. We do so by exhibiting two families of instancesof the betweenness problem on m constraints, such that the optimum value is at mostm(1=2 + o(1)), but (a slight perturbation of) the SDP is nevertheless feasible.The �rst example is related to the d-dimensional hypercube. For every integerd > 1, we construct the instance Id as follows. Id has 2d points corresponding tothe 2d vertices of the d-dimensional hypercube. Id has m = �d2�2d constraints - onefor every simple path of length 2 in the hypercube, with the betweenness constraintexpecting the middle vertex of the path to be between the endpoints.Consider a small perturbation of our SDP, where we set d2i;j + d2j;k � d2i;k foreach betweenness constraint. This SDP is clearly feasible | the natural embeddingof the hypercube in d-dimensions (as a hypercube) ensures that every path of length2 subtends an angle of 90o at their midpoint.Now consider a linear ordering of the points. Consider any point p and all thepaths that have p as their midpoint: The number of such paths is �d2�. Now let d1 of theneighbors of p be on its left and d2 of its neighbors be on its right (where d1+d2 = d).The number of betweenness constraints expecting p to be in the middle that getsatis�ed is d1d2 � d2=4. Thus the fraction of betweenness constraints associatedwith any point that get satis�ed is at most (d2=4)=(d(d � 1)=2) = d=(2(d � 1)) =1=2 + 1=(2(d� 1)) = 1=2 + o(1).The second example, suggested to us by Michel Goemans, is related to the cutsin the complete graph Kn on n variables. For every integer n > 1, we construct theinstance Cn as follows. Cn has n + 1 points, a \center point" v0 and n \vertices"v1; : : : ; vn. Cn has m = �n2� constraints { one for every edge in the complete graph.For every 1 � i < k � n, we have the betweenness constraint that v0 is between viand vk.We now consider the following perturbation of our SDP, where d2i;j + d2j;k �(1�1=n)d2i;k for each betweenness constraint. To see that this SDP is feasible, considerthe following embedding: The vertex vi is embedded as the point (0; : : : ; 0; 1; 0; : : : ; 0),where the 1 occurs in the ith coordinate. The vertex v0 is embedded as the point(1=n; : : : ; 1=n). Observe that the distance between vi and vj is p2 and the distancebetween vi and v0 is p1� 1=n. Thus for any two indices i; k 6= 0 the inequalityd2i;0 + d20;k � (1 � 1=n)d2i;k, which corresponds to the betweenness constraints, issatis�ed (in fact equality holds). Now in order to satisfy the SDP (recall that werequired all pairwise distances to be at most 1) we simply scale down the simplex sothat the distance between the vertices is 1, embed the center v0 in the origin, andeach vertex vi in the corresponding simplex vertex. This embedding satis�es all theSDP constraints.Again, any linear ordering of the n + 1 points induces a cut in the graph Kn(vertices to the left of v0, vertices to the right of v0). An edge corresponds to asatis�ed betweenness constraint if and only if the edge is across the cut. Thereforethe maximum number of satis�able constraints equals the sized of a maximum cut inKn, namely (n=2)2 = m(1=2 + o(1)).The advantage of this maximum cut example is that it shows tightness of the

12 Chor and Sudananalysis with respect to quadratic inequalities of the formd2i;j + d2k;j � �nd2i;k ;where �n = 1� 1=n� o(1=n). Our original SDP has the formd2i;j + d2k;j � �nd2i;kwhere �n = 1 � 2=n + o(1=n). By starting with the complete graph example, andpadding it with extra dummy variables that do not take part in any constraint, wecan construct an example where only 1=2+ o(1) of the constraints are satis�able, yetthe original SDP (with �n) is feasible (in fact any
n = o(1) can work here). It is notclear how to come up with a non-arti�cial construction, i.e., without padding, havingthese properties.6. Concluding Remarks. We remark that metric information can be easilyincorporated into our algorithm. As a simple example, suppose that for some of theconstraints, we know not only that xj is between xi and xk, but that it is exactly inthe middle, namely xj = (xi + xk)=2. In this case, we add the inequalityd2i;j + d2k;j � d2i;k=4instead of d2i;j + d2k;j � �nd2i;k :Any feasible solution will have vj exactly in the middle of vi and vk, and the sameholds with respect to the �nal projections.Finally, notice that our formulation of the problem as SDP only tested for fea-sibility of the constraints. It is interesting to see if the inclusion of an appropriateobjective function, and possibly of additional inequalities, can be used to improve theperformance guarantee of the algorithm. Other approaches to the problem, possiblypurely combinatorial ones, are also of interest.Acknowledgments. We are grateful to Michel Goemans for providing us withthe max cut example, and for helpful discussions on semi-de�nite programming. Manythanks to Amir Ben-Dor for numerous helpful discussions on the betweenness problem.We would also like to thank Ron Shamir for acquainting us with reference [14] andfor useful discussions, Oded Goldreich and the anonymous referee for their commentson earlier versions of this paper, and Amos Beimel and Dan Pelleg for their expertadvice on x�g. REFERENCES[1] N. Alon and N. Kahale, Approximating the independence number via the �-function,Manuscript, August 1994.[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof Veri�cation and Hard-ness of Approximation Problems, Journal of the ACM, to appear. An extended abstractappears in Proc. 33rd Annual IEEE Symposium on Foundations of Computer Science,pp. 14{23, 1992.[3] D. Cox, M. Burmeister, E. Price, S. Kim, R. Myers, Radiation Hybrid Mapping: A So-matic Cell Genetic Method for Constructing High Resolution Maps of Mammalian Chro-mosomes, Science, Vol. 250, 1990, pp. 245{250.[4] U. Feige and M. Goemans, Approximating the value of two prover proof systems, with appli-cations to MAX 2SAT and MAX DICUT, Proceedings of the Third Israel Symposium onTheory and Computing Systems, Tel Aviv, Israel, 1995, pp. 182-189.

A Geometric Approach to Betweenness 13[5] M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut andsatis�ability problems using semide�nite programming, Journal of the ACM, 42(6):1115{1145, November 1995.[6] S. Goss and H. Harris, New Methods for Mapping Genes in Human Chromosomes, Nature,Vol. 255, 1975, pp. 680{684.[7] M. Gr�otschel, L. Lov�asz and A. Schrijver, The ellipsoid method and its consequences incombinatorial optimization, Combinatorica, 1:169{197, 1981.[8] M. Gr�otschel, L. Lov�asz and A. Schrijver, Geometric Algorithms and Combinatorial Op-timization. Springer-Verlag, Berlin, 1987.[9] J. H�astad, Some optimal inapproximability results, Proceedings of the Twenty-Ninth AnnualACM Symposium on Theory of Computing, El Paso, Texas, 1997, pp. 1-10.[10] D. Karger, R. Motwani and M. Sudan, Approximate graph coloring via semide�nite pro-gramming, Journal of the ACM, to appear. Extended abstract in Proc. of the 35th AnnualSymposium on Foundations of Computer Science, Santa Fe, New Mexico, 1994, pp. 2-13.[11] L. Khaciyan, A polynomial algorithm in linear programming, (English translation appears in)Soviet Mathematics Doklady, vol. 20, pp. 191{194, 1979.[12] L. Lov�asz, On the Shannon capacity of a graph, IEEE Transactions on Information Theory,IT-25:1{7, 1979.[13] S. Mahajan and H. Ramesh, Derandomizing Semide�nite Programming Based ApproximationAlgorithms, Proceedings of the 36th Annual Symposium on Foundations of ComputerScience, pp. 162-169, 1995.[14] J. Opatrny, Total Ordering Problem, SIAM Journal on Computing, vol. 8 no. 1, February1979, pp. 111{114.[15] D. Slonim, L. Stein, L. Kruglyak, and E. Lander, RHMAPPER: An interac-tive computer package for constructing radiation hybrids maps, 1996. Available athttp://www.genome.wi.mit.edu/ftp/pub/software/rhmapper/.[16] D. Slonim, L. Stein, L. Kruglyak, and E. Lander, Building Human Genome Maps withRadiation Hybrids, Journal of Computational Biology, vol. 4 no. 4, Winter 1997, pp. 487{504.[17] L. Trevisan, G.B. Sorkin, M. Sudan, and D.P. Williamson, Gadgets, approximation, andlinear programming, Proceedings of the 37th Annual Symposium on Foundations of Com-puter Science, Burlington, Vermont, 1996, pp. 617-626.

