
Guaranteeing Fair Servi
e to Persistent Dependent TasksAmotz Bar-Noy� Alain Mayery Baru
h S
hieber� Madhu Sudan�August 17, 2001Abstra
tWe introdu
e a new s
heduling problem that is motivated by appli
ations in the areaof a

ess and
ow-
ontrol in high-speed and wireless networks. An instan
e of the problem
onsists of a set of persistent tasks that have to be s
heduled repeatedly. Ea
h task has ademand to be s
heduled \as often as possible". There is no expli
it limit on the numberof tasks that
an be s
heduled
on
urrently. However, su
h limits are imposed impli
itlybe
ause some tasks may be in
on
i
t and
annot be s
heduled simultaneously. These
on
i
ts are presented in the form of a
on
i
t graph. We de�ne parameters whi
h quantifythe fairness and regularity of a given s
hedule. We then pro
eed to show lower bounds onthese parameters, and present fair and eÆ
ient s
heduling algorithms for the
ase wherethe
on
i
t graph is an interval graph. Some of the results presented here extend to the
ase of perfe
t graphs and
ir
ular-ar
 graphs as well.

�IBM Resear
h Division, T. J. Watson Resear
h Center, Yorktown Heights, NY 10598.Email: famotz,sbar,madhug�watson.ibm.
om.yDept. of Computer S
ien
e, Columbia University, New York, NY 10027. Email: mayer�
s.
olumbia.edu.Part of this work was done while the author was at the IBM T. J. Watson Resear
h Center. Partially sup-ported by an IBM Graduate Fellowship, NSF grant CCR-93-16209, and CISE Institutional Infrastru
ture GrantCDA-90-24735

1 Introdu
tionIn this paper we
onsider a new form of a s
heduling problem that is
hara
terized by twofeatures:Persisten
e: A task does not simply terminate on
e it is s
heduled. Instead, ea
h task mustbe s
heduled in�nitely many times. The goal is to s
hedule every task as frequently aspossible.Dependen
y: Some tasks
on
i
t with ea
h other and hen
e
annot be s
heduled
on
ur-rently. These
on
i
ts are represented by a
on
i
t graph. This graph imposes
onstraintson the sets of tasks that may be s
heduled
on
urrently. Note that these
onstraints arenot based simply on the
ardinality of the sets, but rather on the identity of the taskswithin the sets.We
onsider both the problems of allo
ation, i.e., how often should a task be s
heduled andregularity, i.e., how evenly spa
ed are lengths of the intervals between su

essive s
hedulingof a spe
i�
 task. We present a more formal des
ription of this problem next and dis
uss ourprimary motivation immediately afterwards. While all our de�nitions are presented for general
on
i
t graphs, our appli
ations, bounds, and algorithms are for spe
ial sub
lasses { perfe
tgraphs, interval graphs and
ir
ular ar
-graphs.Problem statement: An instan
e of the s
heduling problem
onsists of a
on
i
t graph Gwith n verti
es. The verti
es of G are the tasks to be s
heduled and the edges of G de�ne pairsof tasks that
annot be s
heduled
on
urrently. The output of the s
heduling algorithm is anin�nite sequen
e of subsets of the verti
es, I1; I2; : : :, where It lists the tasks that are s
heduledat time t. Note that It must be an independent set of G for all t.In the form above, it is hard to analyze the running time of the s
heduling algorithm. We
onsider instead a �nite version of the above problem and use it to analyze the running time.Input: A
on
i
t graph G and a time t.Output: An independent set It denoting the set of tasks s
heduled at time unit t.The obje
tive of the s
heduling algorithm is to a
hieve a fair allo
ation and a regulars
hedule. We next give some motivation and des
ribe the
ontext of our work. As we will see,none of the existing measures
an appropriately
apture the \goodness" of a s
hedule in ourframework. Hen
e we pro
eed to introdu
e measures whi
h allow a better presentation of ourresults.1.1 MotivationSession s
heduling in high-speed lo
al-area networks. The main motivation for thiswork arises from the session s
heduling problem on a network
alled MetaRing. MetaRing1

([CO93℄) is a re
ent high-speed lo
al-area ring-network that allows \spatial bandwidth reuse",i.e., in
ontrast to other ring networks whi
h may only allow one sour
e destination pair to
ommuni
ate on the the ring at a time, the MetaRing
an allow several su
h pairs to
ommu-ni
ate with ea
h other, provided the pairs do not use the same link for the
ommuni
ation.This
on
urrent a

ess and transmission of user sessions is implemented using only minimalintermediate bu�ering of pa
kets. A typi
al use of the MetaRing network involves severalusers trying to establish \sessions". A session is a simply a sour
e destination pair, wherethe sour
e wishes to send data over to the destination. The data is generated over time andneeds to be shipped over at regular intervals, if not immediately. In the general setting, theset of sessions
an
hange dynami
ally. We restri
t our attention to the stati

ase. Thisrestri
tion is justi�ed by the fa
t that sessions typi
ally last for a long while. As a result ofthe minimal intermediate bu�ering, a session
an send its data over only if it has ex
lusive useof all the links in its route. Consequently, sessions whose routes share a link are in
on
i
t.These
on
i
ts must be regulated by breaking the data sent in a session into units of quotasthat are transmitted a

ording to some s
hedule. This s
hedule has to be eÆ
ient and fair.EÆ
ient means that the total number of quotas transmitted (throughput) is maximized. Fairmeans that the throughput of ea
h session is maximized, and that the time between su

essivea
tivation of a session is minimized, so that large bu�ers at the sour
e nodes
an be avoided.It has been re
ognized ([CCO93℄) that the a

ess and
ow-
ontrol in su
h a network shoulddepend on lo
ality in the
on
i
t graph. However, no �rm theoreti
al basis for an algorithmi
framework has been proposed up to now. To express this problem as our s
heduling problemwe
reate a
ir
ular-ar
 graph the verti
es of whi
h are the sessions, and in whi
h verti
esare adja
ent if the
orresponding paths asso
iated with the sessions interse
t. Sin
e an in-dependent set in this graph is a
olle
tion of mutually non-
on
i
ting sessions, they
an all
ommuni
ate simultaneously. Thus a s
hedule is a sequen
e of independent sets in this graph.Our goal will be to produ
e su
h a s
hedule whi
h is eÆ
ient and fair, in a sense to be madepre
ise later.Time sharing in wireless networks. A se
ond naturally o

urring s
enario where ourmodel
an be applied is in the s
heduling of base-station transmissions in a
ellular network.We now des
ribe this setting in detail. Most indoor designs of wireless networks are based ona
ellular ar
hite
ture with a very small
ell size (see, e.g., [Goo90℄.) The
ellular ar
hite
ture
omprises two levels { a stationary level and a mobile level. The stationary level
onsists of�xed base stations that are inter
onne
ted through a ba
kbone network. The mobile level
onsists of mobile units that
ommuni
ate with the base stations via wireless links. Thegeographi
 area within whi
h mobile units
an
ommuni
ate with a parti
ular base station isreferred to as a
ell. Neighboring
ells overlap with ea
h other, thus ensuring
ontinuity of
ommuni
ations. The mobile units
ommuni
ate among themselves, as well as with the �xedinformation networks, through the base stations and the ba
kbone network. The
ontinuity of
ommuni
ations is a
ru
ial issue in su
h networks. A mobile user who
rosses boundaries of
ells should be able to
ontinue its
ommuni
ation via the new base-station. To ensure this,base-stations periodi
ally need to transmit their identity using the wireless
ommuni
ation.In some implementations the wireless links use infra-red waves. Therefore, two base-station2

the
ells of whi
h overlap are in
on
i
t and
annot transmit their identity simultaneously.These
on
i
ts have to be regulated by a time-sharing s
heme. This time sharing has to beeÆ
ient and fair. EÆ
ient means that the s
heme should a

ommodate the maximal numberof base stations. Fair means that the time between two
onse
utive transmissions of the samebase-station should be less then the time it takes a user to
ross its
orresponding
ell. On
eagain this problem
an be posed as our graph s
heduling problem where the verti
es of thegraph are the base-stations and an edge indi
ates that the base stations belong to overlapping
ells. Independent sets again represent la
k of
on
i
t and a s
hedule will thus be a sequen
eof independent sets.1.2 Relationship to past workPrevious resear
h on s
heduling problems in our framework
onsidered either persisten
e ofthe tasks or dependen
y among the tasks but not both.An early work by Liu and Layland [LL73℄
onsiders persistent s
heduling of tasks in a singlepro
essor environment. In their problem, tasks have deadlines spe
ifying a time limit by whenthe ith s
heduling of a given task must have o

urred. They give an algorithm whi
h a
hievesfull pro
essor utilization for this task. More re
ently, the problem of s
heduling persistent taskshas been studied in the work of Baruah et al. [BCPV96℄. Their setting is
loser to ours and wedes
ribe their problem in detail: They
onsidered the problem of s
heduling a set of n taskswith given (arbitrary) frequen
ies onm ma
hines. (The
ase m = 1 is equivalent to an instan
eof our problem in whi
h the
on
i
t graph is a
lique.) To measure regularity of a s
hedule fortheir problem they introdu
ed the notion of P -fairness. A s
hedule for this problem is P -fair(proportionate-fair) if at ea
h time t for ea
h task i the absolute value of the di�eren
e in thenumber of times i has been s
heduled and fit is stri
tly less than 1, where fi is the frequen
yof task i. They provided an algorithm for
omputing a P -fair solution to their problem. Theirproblem fails to
apture our situation due to two reasons. First, we would like to
onstrain thesets of tasks that
an be s
heduled
on
urrently a

ording to the topology of the
on
i
t graphand not a

ording to their
ardinality. Moreover, in their problem every feasible frequen
yrequirement
an be s
heduled in a P -fair manner. For our s
heduling problem, we show thatsu
h a P -fair s
hedule
annot always be a
hieved. To deal with feasible frequen
ies that
annotbe s
heduled in a P -fair manner, we de�ne weaker versions of regularity.The dependen
y property
aptures most of the work done based on the well-known \Din-ing Philosophers" paradigm (see for example [Dijk71℄, [Lyn80℄, [CM84℄, [AS90℄, [CS92℄, and[BP92℄). In this setting, Lyn
h [Lyn80℄ was the �rst to expli
itly
onsider the response timefor ea
h task. The goal of su

essive works was to make the response time of a node to dependonly on its lo
al neighborhood in the
on
i
t graph (see, e.g., [BP92℄). While response time interms of a node's degree is adequate for \one-shot" tasks, it does not
apture our requirementthat a task should be s
heduled in a regular and fair fashion over a period of time.
3

1.3 Notations and de�nitionsA s
hedule S is an in�nite sequen
e of independent sets I1; I2; : : : ; It; : : : Let S(i; t) denote theindi
ator variable that represents the s
hedule; it is 1 if task i is s
heduled at time t and 0otherwise. Let f (t)i (S) =Pt�=1 S(i; �)=t, we refer to f (t)i (S) as the pre�x frequen
y of task i attime t in s
hedule S. Let fi(S) = lim inft!1ff (t)i (S)g. We refer to fi(S) as the frequen
y of taski in s
hedule S. We say that a s
hedule S is periodi
 with period T , if Ij = IT+j = I2T+j = � � �for all 1 � j � T . In periodi
 s
hedules we will refer to f (T)i (S) as the frequen
y of task i. (Inboth f (t)i (S) and fi(S) we drop the index S whenever the identity of the s
hedule S is
learfrom the
ontext.)De�nition 1 A ve
tor of frequen
ies f̂ = (f1; : : : ; fn) is feasible if there exists a s
hedule Ssu
h that the frequen
y of the i-th task in s
hedule S is at least fi.De�nition 2 A s
hedule S realizes a ve
tor of frequen
ies f̂ if the frequen
y of the i-th task ins
hedule S is at least fi. A s
hedule S
-approximates a ve
tor of frequen
ies f̂ if the frequen
yof the i-th task in s
hedule S is at least fi=
.A measure of fairness. Fairness is determined via a partial order � that we de�ne on theset of frequen
y ve
tors.De�nition 3 Given two frequen
y ve
tors f̂ = (f1; : : : ; fn) and ĝ = (g1; : : : ; gn), f̂ � ĝ (f̂ isless fair than ĝ) if there exists an index i and a threshold f su
h that fi < f � gi, and for allj su
h that gj � f , fj � gj.Less formally, if f̂ � ĝ, then ĝ \performs" better for some task i and all tasks with frequen
ysmaller than the i-th task, i.e., those tasks that are least s
heduled. It
ould be the
ase thatf̂ \performs" better for the other tasks, however our
on
ern in fair allo
ation is with the lessfrequently s
heduled tasks.In Appendix A we prove that the relation � is indeed a partial order.De�nition 4 A ve
tor of frequen
ies f̂ is max-min fair if no feasible ve
tor ĝ satis�es f̂ � ĝ.Less formally, in a max-min fair frequen
y ve
tor, one
annot in
rease the frequen
y of sometask at the expense of less frequently s
heduled tasks. This means that our goal is to let ea
htask i have more of the resour
e as long as we have to take the resour
e away only from taskswhi
h are better o�, i.e., those that have more of the resour
e than task i.Measures of regularity. We provide two measures by whi
h one
an evaluate a s
hedulefor its regularity. We
all these measures the response time and the drift.Given a s
hedule S, the response time for task i, denoted ri, is the largest interval of timefor whi
h task i waits between su

essive s
hedulings. More pre
isely,ri = maxft2 � t1j0 � t1 < t2 s.t. 8t1<t<t2S(i; t) = 0g:4

For any time t, the number of expe
ted o

urren
es of task i
an be expressed as fit. Butnote that if ri is larger than 1=fi, it is possible that, for some period of time, a s
hedule allowsa task to \drift away" from its expe
ted number of o

urren
es. In order to
apture this, weintrodu
e a se
ond measure for the regularity of a s
hedule. We denote by di the drift of atask i. It indi
ates how mu
h a s
hedule allows task i to drift away from its expe
ted numberof s
heduled units: di = maxt fjfi � t� tXr=1S(i; r)jg:Note that if a s
hedule S a
hieves drift di < 1 for all i, then it is P-fair as de�ned in [BCPV96℄.A s
hedule a
hieves its strongest form of regularity if ea
h task i is s
heduled every 1=fitime-units (ex
ept for its �rst appearan
e). We say that a s
hedule is rigid if for ea
h taski there exists a starting point si su
h that the task is s
heduled on exa
tly the time unitssi + j(1=fi), for j � 0.Graph sub
lasses. A graph is perfe
t if for all its indu
ed subgraphs the size of the maximum
lique is equal to the
hromati
 number (
f. [Gol80℄). A graph is an interval graph (
ir
ular-ar
graph) if its verti
es
orrespond to intervals on a line (
ir
le), and two verti
es are adja
ent ifthe
orresponding intervals interse
t (
f. [Tu
71℄).1.4 ResultsIn Se
tion 2 we motivate our de�nition of max-min fairness and show several of its properties.First, we provide an equivalent (alternate) de�nition of feasibility whi
h shows that de
idingfeasibility of a frequen
y ve
tor is
omputable. Next, we prove that every graph has a uniquemax-min fair frequen
y ve
tor. Then, we show that the task of even weakly-approximatingthe max-min fair frequen
ies on general graphs is NP-hard. As we mentioned above, manypra
ti
al appli
ations of this problem arise from simpler networks, su
h as buses and rings(i.e., interval
on
i
t graphs and
ir
ular-ar

on
i
t graphs). For the
ase of perfe
t-graphs(and hen
e for interval graphs), we des
ribe an eÆ
ient algorithm for
omputing max-min fairfrequen
ies. We prove that the period T of a s
hedule realizing su
h frequen
ies on a perfe
tgraph satis�es T = 2O(n) and that there exist interval graphs su
h that T = 2
(n).The rest of our results deal with the problem of �nding the most \regular" s
hedule thatrealizes any feasible frequen
y ve
tor. In Se
tion 3 we show the existen
e of interval graphsfor whi
h there is no P -fair s
hedule that realizes their max-min fair frequen
ies. In Se
tion 4we des
ribe an algorithm for
omputing a s
hedule that realizes any given feasible frequen
ieson interval graphs. The s
hedule
omputed by the algorithm a
hieves response-time of d4=fieand drift of O(plog Tn�). A slight modi�
ation of this algorithm yields a s
hedule that 2-approximates the given frequen
ies. The advantage of this s
hedule is that it a
hieves a boundof one on the drift and hen
e a bound of d2=fie on the response time. In Se
tion 5 we presentan algorithm for
omputing a s
hedule that 12-approximates any given feasible frequen
ieson interval graphs and has the advantage of being rigid. All algorithms run in polynomial5

time. In Se
tion 6 we show how to transform any algorithm for
omputing a s
hedule that
-approximates any given feasible frequen
ies on interval graphs into an algorithm for
omputinga s
hedule that 2
-approximates any given feasible frequen
ies on
ir
ular-ar
 graphs. Theresponse-time and drift of the resulting s
hedule are doubled as well.Finally, in Se
tion 7 we summarize our results, list a number of open problems and sket
hwhat additional properties are required to obtain solutions for a
tual networks.2 Max-min Fair Allo
ationOur de�nition for max-min fair allo
ation is based on the de�nition used by Ja�e [Jaf81℄and Bertsekas and Gallager [BG87℄, but di�ers in one key ingredient { namely our notion offeasibility. We study some elementary properties of our de�nition in this se
tion. In parti
ular,we show that our de�nition guarantees a unique max-min fair frequen
y ve
tor for every
on
i
tgraph. We also show the hardness of
omputing the frequen
y ve
tor for general graphs.However, for the spe
ial
ase of perfe
t graphs our notion turns out to be the same as that of[BG87℄.The de�nition of [Jaf81℄ and [BG87℄ is
onsidered as the traditional way of measuringthroughput fairness in
ommuni
ation networks and is also based on the partial order � asused in our de�nition. The primary di�eren
e between our de�nition and theirs is in thede�nition of feasibility. Bertsekas and Gallager [BG87℄ use a de�nition, whi
h we
all
liquefeasibility, that is de�ned as follows:A ve
tor of frequen
ies (f1; : : : ; fn) is
lique feasible for a
on
i
t graph G, ifPi2C fi � 1 for all
liques C in the graph G.The notion of max-min fairness of Bertsekas and Gallager [BG87℄ is now exa
tly our notion,with feasibility repla
ed by
lique feasibility.The de�nition of [BG87℄ is useful for
apturing the notion of fra
tional allo
ation of aresour
e su
h as bandwidth in a
ommuni
ation networks. However, in our appli
ation weneed to
apture a notion of integral allo
ation of resour
es and hen
e their de�nition does notsuÆ
e for our purposes. By de�nition, every frequen
y ve
tor that is feasible in our sense is
lique feasible. However, the
onverse is not true. Consider the
ase where the
on
i
t graphis the �ve-
y
le. For this graph the ve
tor (1=2; 1=2; 1=2; 1=2; 1=2) is
lique feasible, but nos
hedule
an realize this frequen
y ve
tor.2.1 An alternate de�nition of feasibilityGiven a
on
i
t graph G, let I denote the family of all independent sets in G. For I 2 I, let�(I) denote the
hara
teristi
 ve
tor of I.Theorem 5 A ve
tor of frequen
ies f̂ is feasible if and only if f̂ is a
onvex
ombination ofthe �(I)'s; that is, there exist weights f�IgI2I, su
h that PI2I �I = 1 and PI2I �I�(I) = f̂ .6

Proof: Claim 6 proves the easier dire
tion. Claim 7 proves the other dire
tion only for the
ase when f̂
an be expressed as a rational
onvex
ombination of the independent sets. Theproof for the
ase when f̂ is not a rational
onvex
ombination is given in Appendix B. 2Claim 6 If a frequen
y ve
tor f̂ is feasible then there exists a sequen
e of weights f�IgI2Isu
h that PI �I = 1 and PI �I�(I) = f̂ .Proof: To obtain a
ontradi
tion assume otherwise. By
ontinuity there exists an � > 0,su
h that the ve
tor (1��)f̂
annot be expressed as a
onvex
ombination of the �(I)'s. Basedon the de�nition of feasibility, there exists a s
hedule S whi
h a
hieves a frequen
y of at leastf̂ . In parti
ular, there exists a time T = T� su
h that f (T)i � fi � � for all 1 � i � n. Let �Ibe the frequen
y of the independent set I in the �rst T time units in the s
hedule S. ThenPI �I = 1 and PI �I�(I) � (1� �)f̂ ,
ontradi
ting the
hoi
e of �. 2Claim 7 If a frequen
y ve
tor f̂
an be expressed as a rational
onvex
ombination of theindependent sets, then f̂ is feasible.Proof: Suppose that there exist rational weights f�IgI2I , su
h that PI2I �I = 1 andPI2I �I�(I) = f̂ . Express �I as pI=qI where pI and qI are integral and let T = LCMfqIg.Observe that NI � �IT is integral. For ea
h I we NI times s
hedule the independent set Iover a period of T intervals (in any arbitrary units of time). It is
lear that there are enoughslots for ea
h independent set to be s
heduled NI times. 2The main impa
t of Theorem 5 is that it shows that the spa
e of all feasible frequen
iesis well behaved (i.e., it is a
losed,
onne
ted,
ompa
t spa
e). In addition, it shows thatdetermining whether a frequen
y ve
tor is feasible is a
omputable task (a fa
t that may nothave been easy to see from the earlier de�nition). We now use this de�nition to observe thefollowing interesting
onne
tion:Proposition 8 Given a
on
i
t graph G, the notions of feasibility and
lique feasibility areequivalent if and only if G is perfe
t.Proof: The proof follows dire
tly from well-known polyhedral properties of perfe
t graphs.(See [GLS87℄, [Knu94℄.) In the notation of Knuth [Knu94℄ the spa
e of all feasible ve
tors isthe polytope STAB(G) and the spa
e of all
lique-feasible ve
tors is the polytope QSTAB(G).The result follows from the theorem on page 38 in [Knu94℄ whi
h says that a graph G is perfe
tif and only if STAB(G) = QSTAB(G). 22.2 Uniqueness and
omputability of max-min fair frequen
iesIn this subse
tion we prove that the max-min fair frequen
y ve
tor is unique. We also showthat �nding this ve
tor (or even approximating it) is
omputationally hard.Theorem 9 For any
on
i
t graph there exists a unique max-min fair frequen
y ve
tor.Proof: For a ve
tor f̂ let sortf̂ denote the ve
tor obtained by permuting the ve
tor f̂ so thatits
oordinates appear in nonde
reasing order. Let the relation �lex on the feasible frequen
y7

ve
tors be the lexi
ographi
 ordering on sortf̂ . More pre
isely, f̂ �lex ĝ if either sortf̂ = sortĝor there exists an index i � 1 su
h that sortf̂i < sortĝi and sortf̂j = sortĝj for all 1 � j < i.(Note that �lex is not a partial order sin
e it is not anti-symmetri
.) It is easy to verify thatif f̂ �lex ĝ, and sortf̂ 6= sortĝ then f � g. Let the ve
tor f̂ be a max-min fair ve
tor. (Su
h ave
tor exists in the spa
e of feasible ve
tors, sin
e this spa
e is
ompa
t.) The ve
tor f̂ is alsolarger a

ording to the ordering �lex than any ve
tor ĝ su
h that sortf̂ 6= sortĝ. We now showthat there is no ve
tor ĝ su
h that sortf̂ = sortĝ. This implies that it is the unique max-minfair frequen
y ve
tor.To obtain a
ontradi
tion, suppose that there exists a ve
tor ĝ su
h that sortf̂ = sortĝ.First observe that the ve
tor ĥ = (f̂ + ĝ)=2 is feasible. This is true be
ause f̂ and ĝ
an beexpressed as a
onvex
ombination of the independent sets and ĥ is a
onvex
ombination off̂ and ĝ. Thus ĥ is a
onvex
ombination of the independent sets. Now assume without lossof generality that the indi
es of the ve
tors are arranged in in
reasing order of fi + gi. Let jbe the smallest index su
h that fj 6= gj . Say, fj is the smaller of the two. Then ((f̂ + ĝ)=2)j isgreater than fj and for all verti
es i with smaller frequen
ies, fi = ((f̂ + ĝ)=2)i. This impliesthat f̂ �lex (f̂ + ĝ)=2. A
ontradi
tion. 2We now turn to the issue of the
omputability of the max-min fair frequen
ies. While wedo not know the exa
t
omplexity of
omputing max-min fair frequen
ies (in parti
ular, we donot know if de
iding whether a frequen
y ve
tor is feasible is in NP [
oNP), it does seem to bevery hard in general. Here, we
onsider the sub-problem of
omputing the smallest frequen
yassigned to any vertex by a max-min allo
ation and show the following:Theorem 10 There exists an � > 0, su
h that given a
on
i
t graph on n verti
es, approxi-mating the smallest frequen
y assigned to any vertex in a max-min fair allo
ation to within afa
tor of n� is NP-hard.Proof: We relate the
omputation of max-min fair frequen
ies in a general graph to the
om-putation of the fra
tional
hromati
 number of a graph. We then use the re
ent hardness resultfor approximating the (fra
tional)
hromati
 number, due to Lund and Yannakakis [LY93℄ toshow that
omputing max-min fair frequen
ies in general graphs is very hard.The fra
tional
hromati
 number problem (
f. [LY93℄) is de�ned as follows:To ea
h independent set I in the graph, assign a weight wI , so as to minimizethe quantity PI wI , subje
t to the
onstraint that for every vertex v in the graph,the quantity PI3v wI is at least 1. The quantity PI wI is
alled the fra
tional
hromati
 number of the graph.Observe that if the wI 's are for
ed to be integral, then the fra
tional
hromati
 number is the
hromati
 number of the graph.The following
laim shows a relationship between the fra
tional
hromati
 number and theassignment of feasible max-min fair frequen
ies.Claim 11 Let (f1; f2; : : : ; fn) be a feasible assignment of frequen
ies to the verti
es in a graphG. Then 1=(mini fi) is an upper bound on the fra
tional
hromati
 number of the graph.8

Conversely, if k is the fra
tional
hromati
 number of a graph, then a s
hedule that sets thefrequen
y of every vertex to be 1=k is feasible.The proof of the above
laim is straightforward given the de�nitions of fra
tional
hromati
number and feasibility. We now show how to use the
laim to prove the theorem.The above
laim,
ombined with the hardness of
omputing the fra
tional
hromati
 number[LY93℄, suÆ
es to show the NP-hardness of de
iding whether a given assignment of frequen
iesis feasible for a given graph. To show that the
laim also implies the hardness of approximatingthe smallest frequen
y in the max-min fair frequen
y ve
tor we inspe
t the Lund-Yannakakis
onstru
tion a bit more
losely. Their
onstru
tion yields a graph in whi
h every vertexparti
ipates in a
lique of size k su
h that de
iding if the (fra
tional)
hromati
 number is k orkn� is NP-hard. In the former
ase, the max-min fair frequen
y assignment to every vertex isat least 1=k. In the latter
ase at least some vertex will have frequen
y smaller that 1=(kn�).Thus this implies that approximating the smallest frequen
y in the max-min fair frequen
iesto within a fa
tor of n� is NP-hard. 22.3 Max-Min fair frequen
ies on perfe
t graphsWe now
onsider perfe
t graphs. We show how to
ompute in polynomial time max-min fairfrequen
ies for this
lass of graphs and give bounds on the period of a s
hedule realizing su
hfrequen
ies. As our main fo
us of the subsequent se
tions will be interval graphs, we will giveour algorithms and bounds �rst in terms of this sub
lass and then show how to generalize theresults to perfe
t graphs.We start by des
ribing an algorithm for
omputing max-min fair frequen
ies on intervalgraphs. As we know that
lique-feasibility equals feasibility (by Proposition 8), we
an use anadaptation of [BG87℄:Algorithm 1. Let C be the
olle
tion of maximal
liques in the interval graph. (Noti
e thatC has at most n elements and
an be
omputed in polynomial time.) For ea
h
lique C 2 Cthe algorithm maintains a residual
apa
ity whi
h is initially 1. To ea
h vertex the algorithmasso
iates a label assigned/unassigned. All verti
es are initially unassigned. Dividing theresidual
apa
ity of a
lique by the number of unassigned verti
es in this
lique yields therelative residual
apa
ity. Iteratively, we
onsider the
lique with the smallest
urrent relativeresidual
apa
ity and assign to ea
h of the
lique's unassigned verti
es this
apa
ity as itsfrequen
y. For ea
h su
h vertex in the
lique we mark it assigned and subtra
t its frequen
yfrom the residual
apa
ity of every
lique that
ontains it. We repeat the pro
ess till everyvertex has been assigned some frequen
y.It is not hard to see that Algorithm 1
orre
tly
omputes max-min fair frequen
ies inpolynomial-time. We now use its behavior to prove a tight bound on the period of a s
hedulefor an interval graph. The following theorem establishes this bound:Theorem 12 Let fi = pi=qi be the frequen
ies in a max-min fair s
hedule for an interval graph9

Figure 1: An interval graph with n = 23 intervals for whi
h T = LCMni=1fqig � 2n+25 �1.G, where pi and qi are relatively prime. Then, the period for the s
hedule T = LCMni=1fqigsatis�es, T = 2O(n). Furthermore, there exist interval graphs for whi
h T = 2
(n).We prove this theorem with the help of the following two lemmas:Lemma 13 LCMni=1fqig � 2n=2.Proof: Let nj denotes the number of intervals that are assigned frequen
y pjqj in iterationj. That is, pjqj is the minimum relative residual
apa
ity at iteration j. From the way therelative residual
apa
ities are updated, it follows that qi divides Qij=1 nj for all 1 � i � n.The lemma follows sin
e assuming there were ` iterations, qi divides Qj̀=1 nj, and Qj̀=1 njattains its maximum when ` = n=2 and ni = 2 for all 1 � i � `. 2Lemma 14 There exists an interval graph for whi
h LCMni=1fqig � 2n+25 �1.Proof: We show an interval graph in whi
h maxni=1fqig � 2n+25 �1, the lemma follows sin
etrivially LCMni=1fqig � maxni=1fqig. For simpli
ity we assume that 5 divides n+2. The readermay �nd it easier to follow the
onstru
tion for n = 23 depi
ted in Figure 1. Let x = 3(n+2)5and y = n+25 � 1. In the
onstru
tion x intervals start at 0 (the top 15 intervals in Figure 1),and two intervals start at i for all 1 � i � y (the bottom 8 intervals in Figure 1). Notethat indeed 2y + x = n. Out of the �rst x intervals, three intervals terminate at i for ea
h1 � i � y + 1. Note that indeed 3(y + 1) = x. For 1 � i � y, out of the two intervals startingat i, one interval terminates at i+ 1 and one
ontinues until y + 1.Now, sin
e at 0 the size of the
lique is x and at i the size of the
lique is x�3i+(i�1)+2 =x� 2i+1, it follows that the algorithm for the frequen
y assignment handles the
liques fromleft to right and there are y+1 di�erent values for frequen
ies denoted by w0; : : : ; wy. We getw0 = 1x ;w1 = 3w02 = 32x ;w2 = 3w0 + w12 = 94x:10

In general, by indu
tion we prove that wi = 3x � 2i�12i for 1 � i � y.wi+1 = 3w0 + wi2 = 32x + 3x � 2i � 12i+1 = 3x � 12 + 2i � 12i+1 = 3x � 2i+1 � 12i+1 :Sin
e the denominator of wy is greater or equal to 2y and neither 3 nor 2y � 1 has a
ommondivisor with 2y, it follows that maxni=1fqig � 2n+25 �1. 2Algorithm 1 works for all graphs where
lique feasibility determines feasibility; i.e., perfe
tgraphs. However, the algorithm does not remain
omputationally eÆ
ient sin
e it involvess
anning all the
liques in the graph. Still, Theorem 12
an be dire
tly extended to the
lassof perfe
t graphs. We now use this fa
t to des
ribe a polynomial-time algorithm for assigningmax-min fair frequen
ies to perfe
t graphs.Algorithm 2. This algorithm maintains the labelling pro
edure assigned/unassigned of Al-gorithm 1. At ea
h phase, the algorithm starts with a set of assigned frequen
ies and tries to�nd the largest f su
h that all unassigned verti
es
an be assigned the frequen
y f . To
omputef in polynomial time, the algorithm uses the fa
t that de
iding if a given set of frequen
ies isfeasible is redu
ible to the task of
omputing the size of the largest weighted
lique in a graphwith weights on verti
es. The latter task is well known to be
omputable in polynomial-timefor perfe
t graphs. Using this de
ision pro
edure the algorithm performs a binary sear
h to�nd the largest a
hievable f . (The binary sear
h does not have to be too re�ned due to theupper bound on the denominators of the frequen
ies given in Theorem 12.) Having found thelargest f , the algorithm �nds a set of verti
es whi
h are saturated under f as follows: Let � besome small number, with the property that the di�eren
e between any two distin
t assignedfrequen
ies is more than �. By Theorem 12, � = 2�n2 is suÆ
ient. Now the algorithm raises,one at a time, the frequen
y of ea
h unassigned vertex to f + �, while maintaining the otherunassigned frequen
ies at f . If the so obtained set of frequen
ies is not feasible, then it marksthe vertex as assigned and its frequen
y is assigned to be f . The algorithm now repeats thephase until all verti
es have been assigned some frequen
y.3 Non-existen
e of P-fair allo
ationsWe show that a P -fair s
heduling under max-min fair frequen
ies need not exist for everyinterval graph.Theorem 15 There exist interval graphs G for whi
h there is no P-fair s
hedule that realizestheir max-min frequen
y assignment.Proof: In order to prove the theorem we produ
e a
ounter example as follows. We
hoosea parameter k and for every permutation � of the elements f1; : : : ; kg, we de�ne an intervalgraph G�. We show a ne
essary
ondition that � must satisfy if G� has a P-fair s
hedule.Lastly, we show that there exists a permutation � of 12 elements whi
h does not satisfy this
ondition. 11

A(1)

A(2)

A(3)

A(4)

C(1)

C(2)

C(3)

C(4)

B(1)

B(2)

B(3)

B(4)Figure 2: The graph G� for � = (3; 1; 2; 4)Given a permutation � on k elements, G�
onsists of 3k intervals. For 1 � 1 � k, de�nethe intervals A(i) = (i� 1; i℄, B(i) = (i; k+ �(i) + 1℄ and C(i) = (k+ i+1; k+ i+2℄. Observethat the max-min frequen
y assignment to G� is the following: All the tasks B(1); : : : ; B(k)have frequen
y 1=k; task A(i) has frequen
y (k � i + 1)=k for 1 � i � k; and task C(i) hasfrequen
y i=k for 1 � i � k. (See Figure 2.)We now observe the properties of a P-fair s
hedule for the tasks in G�. (i) The time periodis k. (ii) The s
hedule is entirely spe
i�ed by the s
hedule for the tasks B(i). (iii) This s
heduleis a permutation � of k elements, where �(i) is the time unit for whi
h B(i) is s
heduled. Tosee what kind of permutations �
onstitute P-fair s
hedules of G� we de�ne the notion of whena permutation is fair for another permutation.De�nition 16 A permutation �1 is fair for a permutation �2 if for all 1 � i; j � k, �1 and�2 satisfy the
onditions
ondij de�ned as follows:ijk � 1 < jf` : �1(`) � j and �2(`) � igj < ijk + 1 :Claim 17 If a permutation � is a P-fair s
hedule for G� then � is fair for the identity per-mutation and permutation �.Proof: For �xed i, we
laim that the
onditions
ondij for �1 = � and �2 being the identitypermutation, are exa
tly the
onditions for a P-fair allo
ation of A(i + 1). Similarly, the
onditions
ondij for �1 = � and �2 = � are the
onditions for a P-fair allo
ation of C(k � i).Thus, a permutation � represents a P-fair s
hedule for G� if and only if � is fair for both �and the identity permutation.We now show why the
onditions
ondij for �1 = � and �2 being the identity permutation,are exa
tly the
onditions for a P-fair allo
ation of A(i + 1). The
laim about the
onditions
ondij for �1 = � and �2 = � is analogous. Re
all that the frequen
y of task A(i+1) is (k�i)=kand that A(i + 1)
an be s
heduled only when tasks B(`), for 1 � ` � i, are not s
heduled.Consider the s
hedule up to time j � k. In order for the s
hedule to be P-fair, the number ofo

urren
es of tasks B(`), for 1 � ` � `, up to this time must be between j� (k�i)jk �1 = ijk �1and j � (k�i)jk + 1 = ijk + 1. Note that the number of times these tasks are s
heduled is the
ardinality of the set f` : �1(`) � j and ` � ig, whi
h translates to
ondij for �1 = � and �2being the identity permutation. 2Let � = (1; 3; 4; 7; 8; 9; 11; 5; 12; 10; 2; 6) be a permutation on 12 elements. The followingarguments show that no permutation � is fair to both the identity permutation and the per-12

mutation �.1. We de�ne a blo
k as any
ontiguous set of elements in the range 1 to 12. We say that �pla
es an element i in the blo
k [j; `℄.2. Without loss of generality assume that � pla
es the element 1 in the blo
k [1; 6℄.3. Consider the elements in the following six pairs f1; 2g, f3; 4g, f5; 6g, f7; 8g, f9; 10g, andf11; 12g. If the permutation � is fair for the identity permutation, then it must pla
eexa
tly one element of ea
h pair in the blo
k [1; 6℄. To see this, note that if � pla
es bothelements 1 and 2 in the blo
k [1; 6℄, then jf` : �(`) � 6 and ` � 2gj = 2; violating
ond2;6.Thus only element 1 is in blo
k [1; 6℄. Indu
tively, it
an be shown that if � pla
es bothelements 2i� 1 and 2i, for 1 < i � 6, in the blo
k [1; 6℄, then
ond2i;6 is violated.4. A similar argument applied to � implies that � must pla
e exa
tly one element of ea
hof the six pairs f1; 3g, f4; 7g, f8; 9g, f11; 5g, f12; 10g, and f2; 6g in the blo
k [1; 6℄ if � isfair for �.5. Arguments 2, 3, and 4 imply that the �rst half of �
onsists of the elements f1; 4; 8; 10; 11; 6gand the se
ond half
onsists of the elements f3; 7; 9; 12; 5; 2g.6. Again, sin
e � is fair for the identity permutation, � must pla
e exa
tly one of theelements of ea
h of the triplets f1; 2; 3g, f4; 5; 6g, and f7; 8; 9g in ea
h of the blo
ks [1; 4℄,[5; 8℄, and [9; 12℄ in order not to violate
onditions:
ond3;4,
ond3;8, and
ond3;12.7. Similarly, sin
e � is fair for �, � must pla
e exa
tly one of the elements of the tripletf�(7); �(8); �(9)g = f11; 5; 12g in ea
h of the blo
ks [1; 4℄, [5; 8℄, and [9; 12℄.8. Sin
e 1 appears in the blo
k [1; 6℄ and both 2 and 3 appear in the blo
k [7; 12℄, it followsfrom Argument 6 that exa
tly one of the elements 2 and 3 is pla
ed in the blo
k [7; 8℄ by�.9. A similar argument applied to the triplet f7; 8; 9g implies that exa
tly one of 7 and 9 ispla
ed in the blo
k [7; 8℄ by �.10. Lastly, we examine the triplet f�(7); �(8); �(9)g = f11; 5; 12g. It follows from Argument 7that one of 5 and 12 must appear in the blo
k [7; 8℄.Sin
e �
annot pla
e three elements in a blo
k of size two, we obtain the
ontradi
tion.The proof of Theorem 15 follows. 24 Realizing frequen
ies exa
tlyIn this se
tion we �rst show how to
onstru
t a s
hedule whi
h realizes any feasible set offrequen
ies (and hen
e in parti
ular max-min frequen
ies) exa
tly on an interval graph. Weprove its
orre
tness and give a bound of d4=fie on the response time for ea
h interval i. We13

then pro
eed to introdu
e a potential fun
tion whi
h
an be used to yield a bound of O(n 12+�)on the drift for every interval. An easy
onsequen
e of our algorithm is for the spe
ial
ase inwhi
h the frequen
ies are of the form 1=2i, the drift
an be bounded by 1 and thus the waitingtime
an be bounded by d2=fie. This yields a 2-approximation algorithm with high regularity.Input to the Algorithm: A unit of time t and a
on
i
t graph G whi
h is an intervalgraph. The graph G is represented by a set I = fI1; : : : ; Ing of intervals on the unit interval[0; 1℄ of the x-
oordinate, where Ii = [i:s; i:e℄ for 1 � i � n. Every interval Ii has a frequen
yfi = pi=qi with the following
onstraint: PIi3x fi � 1 for all 0 � x � 1. For simpli
ity, weassume from now on that these
onstraints on the frequen
ies are met with equality and thatt � T = LCMfqig.Output of the Algorithm: An independent set It de�ning the set of tasks s
heduled fortime t su
h that the s
heduled S, given by fItgTt=1 realizes frequen
ies fi.The algorithm is re
ursive. Let si denote the number of times a task i has to appear inT time units, i.e., si = Tpi=qi. The algorithm has log T levels of re
ursion. In the �rst levelwe de
ide on the o

urren
es of the tasks in ea
h half of the period. That is, for ea
h task wede
ide how many of its o

urren
es appear in the �rst half of the period and how many in these
ond half. This yields a problem of a re
ursive nature in the two halves. In order to �ndthe s
hedule at time t, it suÆ
es to solve the problem re
ursively in the half whi
h
ontains t.(Note that in
ase T is odd one of the halves is longer than the other.) Clearly, if a task hasan even number of o

urren
es in T it would appear the same number of times in ea
h half inorder to minimize the drift. The problem is with tasks that have an odd number of o

urren
essi. Clearly, ea
h half should have at least bsi
 of the o

urren
es. The additional o

urren
ehas to be assigned to one of the halves in a way that both resulting sub-problems would stillbe feasible. This is the main diÆ
ulty of the assignment and is solved in the pro
edure Sweep.Pro
edure Sweep: In this pro
edure we
ompute the assignment of the additional o

ur-ren
e for all tasks that have an odd number of o

urren
es. The input to this pro
edure is aset of intervals I1; : : : ; Im (those having odd si's) with the restri
tion that ea
h
lique in theresulting interval sub-graph is of even size. (Later, we show how to over
ome this restri
tion.)The output is a partition of these intervals into two sets su
h that ea
h
lique is equally dividedamong the sets. This is done by a sweep along the x-
oordinate of the intervals. During thesweep every interval will be assigned a variable whi
h at the end is set to 0 or 1 (i.e., �rst halfof the period or se
ond half of the period). Suppose that we sweep point x. We say that aninterval Ii is a
tive while we sweep point x if x 2 Ii. The assignment rules are as follows:
14

For ea
h interval Ii that starts at x:If the
urrent number of a
tive intervals is even:A new variable is assigned to Ii (Ii is unpaired).Otherwise; the
urrent number of a
tive intervals is odd:Ii is paired to the
urrently unpaired interval Ij, and it is assigned thenegation of Ij's variable.Comment: No matter what value is later assigned to this variable, Ii andIj will end up in opposite halves.For ea
h interval Ii that ends at x:If the
urrent number of a
tive intervals is even:Nothing is done.Otherwise; the
urrent number of a
tive intervals is odd:If Ii is paired with Ij :Ij is now paired with the
urrently unpaired interval Ik. Also, Ij 'svariable is mat
hed with the negation of Ik's variable.Comment: This will ensure that Ij and Ik are put in opposite halves,or equivalently, Ii and Ik are put in the same halves.If Ii is unpaired:Assign arbitrarily 0 or 1 to Ii's variable.It will be proven later that these rules ensure that whenever the number of a
tive intervalsis even, then exa
tly half of the intervals will be assigned 0 and half will be assigned 1. We notethat sin
e the
on
i
t graph is an interval graph we are assured that when we apply the aboverules pairing up arbitrary intervals will not result in a
ir
ular dependen
y of the variables(e.g., x = y = �x).Re
all that we assumed that the size of ea
h
lique is even. To over
ome this restri
tion weneed the following simple lemma. For x 2 [0; 1℄, denote by Cx the set of all the input intervals(with odd and even si's) that
ontain x; Cx will be referred to as a
lique.Lemma 18 The period T is even if and only if jfi : Ii 2 C ^ si is oddgj is even for every
lique C.Proof: Note that PIi2C fi = 1) PIi2C si = T) PIi2C; si is odd si +PIi2C; si is even si =T . Sin
e the se
ond summand is always even, T is even if and only if the �rst summand is alsoeven. 2This lemma implies that if T is even then the size of ea
h
lique in the input to pro
edureSweep is indeed even. If T is odd, then a dummy interval In+1 whi
h extends over all otherintervals and whi
h has exa
tly one o

urren
e is added to the set I before
alling Sweep.Again, by Lemma 18, we are sure that in this modi�ed set I the size of ea
h
lique is even.This would in
rease the period by one. The additional time unit will be allotted only to thedummy interval and thus
an be ignored. We note that to produ
e the s
hedule at time t we15

just have to follow the re
ursive
alls that in
lude t in their period.Applying this algorithm to the max-min frequen
ies yields a polynomial in n algorithm.This is true be
ause there are no more than log T su
h
alls and be
ause T = 2O(n) for max-minfair frequen
ies.Lemma 19 The algorithm produ
es a
orre
t s
hedule for every feasible set of frequen
ies.Proof: We need to prove that feasibility is maintained with every re
ursive step. We showthat the following invariant is maintained by Sweep:For every x for whi
h the number of a
tive intervals in Cx is even, exa
tly half ofthe intervals will be assigned 0 and half will be assigned 1.This invariant is easily maintained when a new interval starts: If the
urrent number of intervalsis odd, then the new interval is paired up with the
urrently unpaired interval, and thus willbe s
heduled in the opposite half of its partner. The invariant holds also when an interval endssin
e by our rules whenever an interval ends any two unpaired interval are immediately pairedup.Now, if T is odd, then a dummy interval is added and hen
e sweep produ
es a feasiblesolution for T + 1. In this
ase the algorithm assigns the \smaller" half of T to the half towhi
h Sweep assigned the dummy interval and feasibility is maintained. 2Lemma 20 If the set of frequen
ies is of the form 1=2i then the resulting s
hedule is P-fair.(i.e., the drift
an be bounded by 1) and the response time is bounded by d2=fie.Proof: Sin
e our algorithm always divides even si into equal halves, the following invariantis maintained: In re
ursion level j, if si > 1 then si is even. Also note that T = 2k, wheremini fi = 1=2k and thus ea
h si is of the form 2 i�k. Now, following the algorithm, it
an beeasily shown that there is at least one o

urren
e of task i in ea
h time interval of size 2k� i .This implies that b t2k� i
 �Ptr=1 S(i; r) � d t2k� i e and thus P -fairness follows. Sin
e the driftis bounded by one the response time is bounded by d2=fie. 2Lemma 21 The response time for every interval Ii is bounded by d4=fie.Proof: Lemma 20 implies the
ase in whi
h the frequen
ies are powers of two. Moreover, in
ase the frequen
ies are not powers of two, we
an virtually partition ea
h task into two taskswith frequen
ies ai and bi respe
tively, so that fi = ai + bi, ai is a power of two, and bi < ai.Then, the s
hedule of the task with frequen
y ai has drift 1. This implies that its responsetime is at most d2=aie � d4=fie. 2Remark: It
an be shown that the bound of the above lemma is tight for our algorithm.We summarize the results in this se
tion in the following theorem:Theorem 22 Given an arbitrary interval graph as a
on
i
t graph, the algorithm exa
tlyrealizes any feasible frequen
y ve
tor and guarantees that the response time is at most d4=fie.16

4.1 Bounding the driftSin
e the algorithm has O(log T) levels of re
ursion and ea
h level may in
rease the drift byone, it follows that the maximum drift is bounded by O(log T). In this se
tion we prove thatwe
an de
rease the maximum drift to be O(plog Tn�), for any �xed �, where n is the numberof tasks. By Lemma 13 this implies that in the worst
ase the drift for max-min fair frequen
iesis bounded by O(n 12+�).Our method to get a better drift is based on the following observation: At ea
h re
ursivestep of the algorithm two sets of tasks are produ
ed su
h that ea
h set has to be pla
ed in adi�erent half of the time-interval
urrently
onsidered. However, we are free to
hoose whi
hset goes to whi
h half. We use this degree of freedom to de
rease the bound on the drift. Tomake the presentation
learer we assume that T is a power of two and that the time units are0; : : : ; T � 1. The arguments
an be modi�ed to hold in the general
ase.Consider a sub-interval of size T=2j starting after time t` = i � T=2j � 1 and ending attr = (i + 1) � T=2j � 1, for 0 � i � 2j � 1. In the �rst j re
ursion levels we already �xedthe number of o

urren
es of ea
h task up to t`. Given this number, the drift d` at timet` is �xed. Similarly, the drift dr at time tr is also �xed. At the next re
ursion level wesplit the o

urren
es assigned to the interval [t` + 1; tr℄, and thus �xing the drift dm at timetm = (t` + tr)=2. Optimally, we would like the drifts after the next re
ursion level at ea
htime unit t 2 [t` + 1; tr℄ to be the weighted average of the drifts d` and dr. In other words,let � = (t � t`)=(tr � t`), then, we would like the drift at time t to be �dr + (1 � �)d`. Inparti
ular, we would like the drift at tm to be (d` + dr)=2. This drift
an be a
hieved for tmonly if the o

urren
es in the interval [t`+1; tr℄
an be split equally. However, in
ase we havean odd number of o

urren
es to split, the drift at tm is (d` + dr)=2 � 1=2, depending on ourde
ision in whi
h half interval to put the extra o

urren
e. Note that the weighted average ofthe drifts of all other points
hanges a

ordingly. That is, if the new dm is (d` + dr)=2 + x,for x 2 f�1=2g, then the weighted average in t 2 [t` + 1; (tr + t`)=2℄ is �dr + (1� �)d` + 2�x,where � = (t � t`)=(tr � t`) � 1=2, and the weighted average in t 2 [(tr + t`)=2 + 1; tr℄ is�dr + (1� �)d` + 2(1 � �)x, where � = (t� t`)=(tr � t`) > 1=2.Consider now the two sets of tasks S1 and S2 that we have to assign to the two sub-intervals(of the same size) at level k of the re
ursion. For ea
h of the possible two assignments, we
ompute a \potential" based on the resulting drifts at time tm. For a given possibility letD[tm; i; k℄ denote the resulting drift of task i at tm after k re
ursion levels. De�ne the potentialof tm after k levels as POT (tm; k) = Pni=1D(tm; i; j)�, for some �xed even
onstant �. We
hoose the possibility with the lowest potential. We now prove that using this poli
y the driftof any task after log T steps is bounded by O(plog T � n 1�).Consider a time t and a task i. The drift of task i at t is the out
ome of at most log Tre
ursion levels. De�ne the drift of task i at t after k levels, denoted D(t; i; k), as the weightedaverage drift at t given the �xed drifts after k levels. It is easy to see that the initial drift iszero, and the �nal weighted average drift is the a
tual drift at t. Also, in ea
h level the driftmay either stay the same (in
ase we have to split an even number of o

urren
es of task i), oris
hanged by �x where 0 � x � 1=2. Note that x is positive if and only if the
hange in the17

drift at the
urrent median point
losest to t is +1=2. We extend the de�nition of potentialsto all time points t in the obvious way; that is, POT (t; k) = Pni=1D(t; i; k)�. We show thatthe potential after log T levels is bounded by O(T �=2 � n). This implies the desired bound onthe drift of ea
h task at t sin
e the potential is the sum of the drifts to the power of �.Lemma 23 For all 0 � t � T � 1, and all 1 � k � log T ,POT (t; k) � POT (t; k � 1) +
 � nXi=1D(t; i; k � 1)��2for some
onstant
.Proof: The in
rement of the potential at time t at the k-th level is bounded by the maximumover all disjoint sets S1; S2 � f1; : : : ; ng, su
h that jS1j = jS2j ofminS1;S2 8<:Xi2S1[D(t; i; k � 1) + x℄� + Xi2S2[D(t; i; k � 1)� x℄�;Xi2S2[D(t; i; k � 1) + x℄� + Xi2S1[D(t; i; k � 1)� x℄�9=;� Xi2S1[S2[D(t; i; k � 1)℄�for some 0 � x � 1=2. Sin
e the minimum is always bounded by the average, the
hange isbounded by12 8<: Xi2S1[S2[D(t; i; k � 1) + x℄� + [D(t; i; k � 1)� x℄� � 2[D(t; i; k � 1)℄�9=; :Finally, the maximum over all disjoint sets S1; S2 � f1; : : : ; ng, su
h that jS1j = jS2j is a
hievedfor S1 [S2 = f1; : : : ; ng, and it is O(Pni=1[D(t; i; k � 1) + x℄��2). 2Lemma 24 For all 0 � t � T � 1, and all 0 � k � log T ,nXi=1[D(t; i; k)℄��2 � (
 � log T)�2�1 � nwhere
 is the
onstant of Lemma 23.Proof: To obtain a
ontradi
tion assume that there exists 0 � t � T � 1 and 0 < k � log Tfor whi
h the bound does not hold. Consider the minimum su
h k. By Lemma 23 and theminimality of k, we get that By Lemma 23, we get that POT (t; k) � POT (t; k � 1) +
 �Pni=1D(t; i; k � 1)��2. Reapplying Lemma 23 and sin
e the fun
tion D(t; i; k) is in
reasing ink we get POT (t; k) � k
 �Pni=1D(t; i; k � 1)��2. Finally by the minimality of k, POT (t; k) �k
 � (
 � log T)�2�1 � n =
�2 � (log T)�2�1 � n � k. By our de�nition POT (t; k) = Pni=1D(t; i; k)�.By H�older inequality nXi=1D(t; i; k)� � n Pni=1D(t; i; k)��2n ! ���2 :18

However, by our assumptionn Pni=1D(t; i; k)��2n ! ���2 > n0�(
 � log T)�2�1nn 1A ���2 = (
 � log T)�2 � n:Combining the two inequalities we get(log T)�2 < (log T)�2�1 � kBut this inequality implies that k > log T ; a
ontradi
tion. 2Theorem 25 The maximum drift is bounded by O(plog T � n�), for any �xed �.Proof: By Lemmas 23 and 24, the potential POT (t; log T), for all 1 � t � T , is boundedby log T � O((log T)�2�1 � n) = O((log T)�2 � n). This implies the bound on ea
h drift, sin
e thepotential is the sum of the drifts to the power of �. The
onstant � is
hosen to be 1� . 25 Realizing frequen
ies rigidlyIn this se
tion we show how to
onstru
t a s
hedule that 12-approximates any feasible frequen
yve
tor in a rigid fashion on an interval graph. We redu
e our Rigid S
hedule problem to theDynami
 Storage Allo
ation problem. The Dynami
 Storage Allo
ation problem is de�nedas follows. We are given obje
ts to be stored in a
omputer memory. Ea
h obje
t has twoparameters: (i) its size; that is, the number of
ells needed to store it, and (ii) the time intervalin whi
h it should be stored. Ea
h obje
t must be stored in adja
ent
ells. The problem is to�nd the minimal size memory that
an a

ommodate at any given time all of the obje
ts thatare needed to be stored at that time. The Dynami
 Storage Allo
ation problem is a spe
ial
ase of the multi-
oloring problem on interval graphs de�ned below.A multi-
oloring of a weighted graph G with the weight fun
tion w : V ! N , is a fun
tionF : V ! 2N su
h that (i) for all v 2 V the size of F (v) is w(v), and (ii) if (v; u) 2 E thenF (v)\F (u) = ;. The multi-
oloring problem is to �nd a multi-
oloring with minimal numberof
olors. This problem is known to be an NP-Hard problem [GJ79℄.Two interesting spe
ial
ases of the Multi-Coloring problem are when the
olors of a vertexmust be either
ontiguous or \spread well" among all
olors. We
all the �rst
ase the Cont-MC problem and the se
ond
ase the Spread-MC problem. More formally, in a solution toCont-MC if F (u) = fx1 < � � � < xkg, then xi+1 = xi + 1 for all 1 � i < k. Whereas in asolution to Spread-MC that uses T
olors, if F (u) = fx1 < � � � < xkg then (i) k divides T , and(ii) xi+1 = xi + T=k, for all 1 � i < k, and xk + T=k � T = x1.It is not hard to verify that for interval graphs the Cont-MC problem is equivalent to theDynami
 Storage Allo
ation problem des
ribed above. Simply asso
iate ea
h obje
t with avertex in the graph and give it a weight equal to the number of
ells it requires. Put anedge between two verti
es if their time intervals interse
t. The
olors assigned to a vertex areinterpreted as the
ells in whi
h the obje
t is stored.19

On the other hand, the Spread-MC problem
orresponds to the Rigid S
hedule problemas follows. First, we repla
e the frequen
y f(v) by a weight w(v). Let k(v) = d� log2 f(v)e,and let k = maxv2V fk(v)g, then w(v) = 2k�k(v). Clearly, f(v)=2 � w(v)=2k � f(v). Now,assume that the output for the Spread-MC problem uses T
olors and let the
olors of v befx1 < � � � < xkg where x2 � x1 = �. We interpret this as follows: v is s
heduled in timesx1 + i� for all i � 0. It is not diÆ
ult to verify that the resulting s
hedule is rigid and it2-approximates the given frequen
ies.Although the Dynami
 Storage Allo
ation problem is a spe
ial
ase of the multi-
oloringproblem it is still known to be an NP-Hard problem [GJ79℄. Using similar arguments it
anbe shown that the Rigid S
heduling problem is also NP-Hard. Therefore, we are looking foran approximation algorithm. In what follows we present an approximation algorithm thatprodu
es a rigid s
heduling that 12-approximates the given frequen
ies. For this we
onsiderinstan
es of the Cont-MC and Spread-MC problems in whi
h the input weights are powers oftwo.De�nition 26 A solution for an instan
e of Cont-MC is both aligned and
ontiguous if forall v 2 V , F (v) = fj � w(v); : : : ; (j + 1) � w(v) � 1g for some j � 0.In [Kie91℄, Kierstead presents an algorithm for Cont-MC that has an approximation fa
tor3. A
areful inspe
tion of this algorithm shows that it produ
es solutions that are both alignedand
ontiguous for all instan
es in whi
h the weights are power of two.We show how to translate a solution for su
h an instan
e of the Cont-MC problem that isboth aligned and
ontiguous into a solution for an instan
e of the Spread-MC problem withthe same input weights.For 0 � x < 2k, let �(x) be the k-bit number the binary representation of whi
h is theinverse of the binary representation of x.Proposition 27 For 1 � i � k and 0 � j < 2k�i = �, f�(j2i); : : : ; �(j2i + 2i � 1)g =f�(j2i); �(j2i) + �; : : : ; �(j2i) + (2i � 1)�g.This proposition says that an output of Cont-MC that uses

olors
an be transformedinto an output of Spread-MC that uses at most 2

olors.Consider an instan
e of the Spread-MC problem in whi
h all the input weights are powersof two. Apply the solution of Kierstead [Kie91℄ to solve the Cont-MC instan
e with the sameinput. This solution is both aligned and
ontiguous, and uses at most 3T 0
olors where T 0 is thenumber of
olors needed by an optimal
oloring. Let T � 3T 0 be the smallest power of 2 thatis greater than T 0. It follows that T � 6T 0. Applying the transformation of Proposition 27 onthe output of the solution to Cont-MC yields a solution to Spread-MC with at most T
olors.This in turn, yields an approximation fa
tor of at most 12 for the Rigid S
heduling problem,sin
e w(v)=T � f(v)=2.Theorem 28 The above algorithm
omputes a rigid s
hedule that 12-approximates any feasiblefrequen
y ve
tor on an interval graph. 20

6 Cir
ular-Ar
 graphsIn this se
tion we show how to transform any algorithm A for
omputing a s
hedule that
-approximates any given feasible frequen
y ve
tor on interval graphs into an algorithm A0for
omputing a s
hedule that 2
-approximates any given feasible frequen
ies on
ir
ular-ar
graphs.Let f̂ be a feasible frequen
y ve
tor on a
ir
ular-ar
 graph G.Step 1: Find the maximum
lique C in G.Let G0 = G�C. Note that G0 is an interval graph. Let ĝ1 and ĝ2 be the frequen
y ve
torsresulting from restri
ting f̂ to the verti
es of G0 and C, respe
tively. Note that ĝ1 and ĝ2 arefeasible on G0 and C, respe
tively.Step 2: Using A, �nd s
hedules S1 and S2 that
-approximate ĝ1 and ĝ2 on G0 and C, respe
-tively.Step 3: Interleave S1 and S2.Clearly, the resulting s
hedule 2
-approximates f̂ on the
ir
ular-ar
 graph G. Note alsothat all the three steps
an be
omputed in polynomial time.7 Con
lusions and future resear
hIn this paper we have introdu
ed a new s
heduling problem. It is
hara
terized by the per-sisten
e and interdependen
y of the tasks involved. We have developed new measures thatquantify the fairness and regularity of a s
hedule. We have shown that every
on
i
t graphhas a unique max-min fair frequen
y assignment and that, in general, this assignment is hardeven to approximate. However, for perfe
t graphs, it turns out that max-min fair frequen-
ies are easy to
ompute and we have given an algorithm for this purpose. The s
hedulingalgorithms des
ribed in this paper exhibit a trade-o� between the a

ura
y with whi
h givenfrequen
ies are realized and their regularity. Furthermore, we have shown that a drift of one(i.e., P-fairness) is not a
hievable even for simple interval
on
i
t graphs. This
an be viewedas an indi
ation that the problem in this paper is inherently more
omplex than the one
onsidered in [BCPV96℄.Many open problems remain. The exa
t
omplexity of
omputing a max-min fair frequen
yassignment in general graphs is not known and there is no
hara
terization of when su
h anassignment is easy to
ompute. All the s
heduling algorithms in the paper use the inherentlinearity of interval or
ir
ular-ar
 graphs. It would be interesting to �nd s
heduling algorithmsfor the wider
lass of perfe
t graphs. The algorithm for interval graphs that realizes frequen
iesexa
tly exhibits a
onsiderable gap in its drift. It is not
lear from whi
h dire
tion this gap
an be
losed.Our algorithms assume a
entral s
heduler that makes all the de
isions. Both from theo-reti
al and pra
ti
al point of view it is important to design s
heduling algorithms working in21

more realisti
 environments su
h as high-speed lo
al-area networks and wireless networks (asmentioned in Se
tion 1.1). The distinguishing requirements in su
h an environment in
lude adistributed implementation via a lo
al signaling s
heme, a
on
i
t graph whi
h may
hangewith time, and restri
tions on spa
e per node and size of a signal. The performan
e measuresand general setting, however, remain the same. A �rst step towards su
h algorithms has beenre
ently
arried out by Mayer, Ofek, and Yung in [MOY96℄.

22

A
knowledgmentWe would like to thank Don Coppersmith and Moti Yung for many useful dis
ussions.Referen
es[AS90℄ B. Awerbu
h and M. Saks, A Dining Philosophers Algorithm with PolynomialResponse Time. Pro
. 31st IEEE Symp. on Foundations of Computer S
ien
e (1990), 65{75.[BCPV96℄ S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, Proportionate Progress:A Notion of Fairness in Resour
e Allo
ation. Algorithmi
a, 15(6):600{625 (1996).[BG87℄ D. Bertsekas and R. Gallager, Data Networks. Prenti
e Hall (1987).[BP92℄ J. Bar-Ilan and D. Peleg, Distributed Resour
e Allo
ation Algorithms. Pro
. 6thInternational Workshop on Distributed Algorithms (1992), 277{291.[CCO93℄ J. Chen, I. Cidon, and Y. Ofek, A Lo
al Fairness Algorithm for Giga-bit LANs/MANs with Spatial Reuse. IEEE J. on Sele
ted Areas in Communi
ation,11(8):1183{1192 (1993).[CM84℄ K. Chandy and J. Misra, The Drinking Philosophers Problem. ACM Trans. onProgramming Languages and Systems, 6:632{646 (1984).[CO93℄ I. Cidon and Y. Ofek, MetaRing { A Full-Duplex Ring with Fairness and SpatialReuse. IEEE Trans. on Communi
ations, 41(1):110{120 (1993).[CS92℄ M. Choy and A. Singh, EÆ
ient Fault Tolerant Algorithms for Resour
e Allo
ationin Distributed System. Pro
. 24th ACM Symp. on Theory of Computing (1992), 593{602.[Dijk71℄ E. W. Dijkstra, Hierar
hi
al Ordering of Sequential Pro
esses. A
ta Informati
a,1:115{138 (1971).[GJ79℄ M. Garey and D. Johnson, Computers and Intra
tability, a Guide to the Theoryof NP-Completeness, W. H. Freeman, San Fran
is
o, 1979.[Gol80℄ M. Golumbi
, Algorithmi
 Graph Theory and Perfe
t Graphs. A
ademi
 Press, NewYork, 1980.[GLS87℄ M. Gr�ots
hel, L. L�ovasz and A.S
hrijver, Geometri
 Algorithms and Combi-natorial Optimization. Springer-Verlag, Berlin, 1987.[Goo90℄ D. J. Goodman, Cellular Pa
ket Communi
ations. IEEE Trans. on Communi
ations,38:1272{1280 (1990).[Jaf81℄ J. Jaffe, Bottlene
k Flow Control. IEEE Trans. on Communi
ations, 29(7):954{962(1981). 23

[Kie91℄ H. A. Kierstead, A Polynomial Time Approximation Algorithm for Dynami
 Stor-age Allo
ation. Dis
rete Mathemati
s, 88:231{237 (1991).[Knu94℄ D. E. Knuth, The Sandwi
h Theorem, The Ele
troni
 Journal of Combinatori
s,1:1{48 (1994).[LL73℄ C. L. Liu and J. W. Layland, S
heduling Algorithms for Multiprogramming in aHard-Real-Time Environment. Journal of the ACM, 20(1):46{61 (1973).[LY93℄ C. Lund and M. Yannakakis, On the Hardness of Approximating MinimizationProblems. Pro
. 25th ACM Symp. on Theory of Computing (1993), 286{293.[Lyn80℄ N. Lyn
h, Fast Allo
ation of Nearby Resour
es in a Distributed System. Pro
. 12thACM Symp. on Theory of Computing (1980), 70{81.[MOY96℄ A. Mayer, Y. Ofek, and M. Yung, Lo
al S
heduling with Partial State Infor-mation for Approximate Max-min Fair Rates. Pro
. IEEE INFOCOM'96 (1996).[Tu
71℄ A. Tu
ker, Matrix
hara
terizations of
ir
ular-ar
 graphs. Pa
i�
 Journal of Math-emati
s, 39:535{545, (1971).

24

A The partial order �In this appendix we prove that the relation � is a partial order. We �rst observe that thede�nition
an be restated as f̂ � ĝ if there exists an index i and a threshold f su
h thatfi < f � gi (the index property), and for all 1 � j � n, gj � minff; fjg (the thresholdproperty). The following two
laims establish that � is a partial order.Claim 29 The relation � is anti-symmetri
.Proof: To obtain a
ontradi
tion assume that there exist two ve
tors f̂ and ĝ su
h thatf̂ � ĝ and ĝ � f̂ . This implies that there exist two indi
es i and ` and two thresholds f and gsu
h that:1. fi < f � gi, and for all 1 � j � n, gj � minff; fjg.2. g` < g � f`, and for all 1 � j � n, fj � minfg; gjg.Sin
e g` � minff; f`g, f` > g`, and g > g`, it follows that g > f . Similarly, sin
e fi �minfg; gig, gi > fi, and f > fi, it follows that f > g. We get the
ontradi
tion. 2Claim 30 The relation � is transitive.Proof: Suppose that f̂ � ĝ and ĝ � ĥ. We show that f̂ � ĥ. Sin
e f̂ � ĝ and ĝ � ĥ thereexist two indi
es i and ` and two thresholds f and g su
h that:1. fi < f � gi, and for all 1 � j � n, gj � minff; fjg.2. g` < g � h`, and for all 1 � j � n, hj � minfg; gjg.We
hoose h = minff; gg as the threshold for f̂ � ĥ. Now, for all 1 � j � n,hj � minfg; gjg � minfg;minff; fjgg � minfminff; gg; fjg � minfh; fjg :We still have to prove that there exists an index with the desired property. Assume �rstthat h = f � g, then we
hoose i as the index and we need to show that fi < h � hi. Sin
eh = f it follows that fi < h. Sin
e hi � minfgi; gg, h � g, and gi � f = h, it follows thathi � h. Now assume that h = g < f , then we
hoose ` as the index. Here we need to showthat f` < h � h`. Sin
e g � h` it follows that h � h`. Sin
e g` � minff; f`g, g > g`, andh = g < f , it follows that h > f`. 2
25

B The
omplete proof of Theorem 7We
omplete the proof of Theorem 5 for the
ase when f̂ is not a rational
onvex
ombination.Claim 31 If a frequen
y ve
tor f̂
an be expressed as a
onvex
ombination of the independentsets, then f̂ is feasible.Proof: Suppose that there exist weights f�IgI2I , su
h thatPI2I �I = 1 andPI2I �I�(I) =f̂ . We show how to obtain a s
hedule S that realizes the frequen
y ve
tor f̂ . For every k <1,we pi
k g(k)i to be a rational number between fi � 2�k and fi, and apply Claim 7 to
onstru
ta s
hedule Ak of �nite length, denoted T (Ak), that realizes the frequen
y ve
tor ^g(k).We go on to
onstru
t s
hedules S1; S2; : : : ; Sk with the following properties.Property 1: S
hedule Sk has �nite length T (Sk).Property 2: For ea
h task 1 � i � n, s
hedule Sk a
hieves a frequen
y of at least fi�2�(k�1)for task i.Property 3: S
hedule Sk�1 is a pre�x of s
hedule Sk.Property 4: In the in�nite s
hedule SkSkSk � � � (i.e., the s
hedule given by
on
atenatingthe s
hedule Sk in�nitely many times), for any task 1 � i � n and time t > T (Sk),f (t)i (SkSkSk � � �) � fi � 2�(k�2). (Re
all that f (t)i (S) is the pre�x frequen
y of task i attime t in s
hedule S.)Property 5: For any task 1 � i � n and time t > T (Sk�1), f (t)i (Sk) � fi � 2�(k�3).We
onstru
t the Sk's indu
tively. The base
ase S1 exists trivially (every non-emptys
hedule satis�es the required properties). Assume the s
hedules S1; : : : ; Sk�1 exist. S
heduleSk is given by the
on
atenation of n1 s
hedulings of Sk�1 followed by n2 s
hedulings of Ak.We now show that under an appropriate
hoi
e of n1 and n2, the s
hedule Sk satis�es theabove properties. Let Di be the maximum among the drift of task i in the s
hedule Sk�1 andthe drift of task i in the s
hedule Ak. Let D = maxifDig. Letn1 = & 2kD4T (Sk�1)' and n2 = �2n1T (Sk�1)T (Ak) � :Property 1: The period of Sk isT (Sk) = n1T (Sk�1) + n2T (Ak)whi
h is �nite sin
e n1 and n2 are �nite.
26

Property 2: The frequen
y of task i in Sk is at leastn1T (Sk�1)(fi � 2�(k�2)) + n2T (Ak)(fi � 2�k)n1T (Sk�1) + n2T (Ak) =fi � 2�(k�1) � n1T (Sk�1)2�(k�1) � n2T (Ak)2�kn1T (Sk�1) + n2T (Ak) :We wish to show that the above quantity is at least fi � 2�(k�1). This simpli�es ton2 � 2n1T (Sk�1)T (Sk) ;a
ondition whi
h is satis�ed by our
hoi
e of n1 and n2.Property 3: Sin
e n1 � 1, it follows that Sk�1 is a pre�x of Sk.Property 4: Sin
e Sk�1 is a pre�x of Sk it follows that in the in�nite s
hedule SkSkSk � � �,for any task 1 � i � n and time t > T (Sk),f (t)i (SkSkSk � � �) = (fi � 2�(k�1))T (Sk) + (fi � 2�(k�2))[t� T (Sk)℄�Di= (fi � 2�(k�2))t+ 2�(k�1)T (Sk)�Di:We wish to show that this is at least t(fi � 2�(k�2)). This
ondition simpli�es to2k�1Di � T (Sk) = n1T (Sk�1) + n2T (Sk):On
e again, the
hoi
e of n1 and n2 satis�es this
ondition.Property 5: For any task 1 � i � n and time T (Sk�1) < t � n1T (Sk�1), Property 4 ofs
hedule Sk�1 guarantees that f (t)i (Sk) � fi � 2�(k�3). Now,
onsider t > n1T (Sk�1). Thenumber of times a task i is s
heduled in Sk by time t is at least(f � 2�(k�2))n1T (Sk�1) + (f � 2�k)(t� n1T (Sk�1))�Di =(f � 2�(k�3))t+ 2�(k�2)n1T (Sk�1) + 7 � 2�k(t� n1T (Sk�1))�Di:We wish to show that this quantity is at least t(f � 2�(k�3)). This inequality is implied by the
ondition 4n1T (Sk�1) � 2kDi, whi
h is satis�ed by the
hoi
e of n1.We use the sequen
es S1; : : : ; Sk; : : : to de�ne an in�nite sequen
e S (whi
h is essentiallythe limiting element of the sequen
e fSig). To determine whi
h independent set to s
hedule attime t in S, we let k be the smallest index su
h that T (Sk) � t. We s
hedule the independentset s
heduled by Sk at time t.To see that S realizes the desired frequen
y ve
tor f̂ , we prove that for every � > 0, thereexists T <1, su
h that for all t � T and for all tasks 1 � i � n, f (t)i (S) � fi � �.Given � > 0, let k be the minimum integer su
h that 2�(k�2) � � and let T = T (Sk) + 1.Given t � T , let k0 be the largest index su
h that t > T (Sk0). Clearly, k0 � k. Observe thatfor any j < 1, Sj is a pre�x of S. Thus, the pre�x of s
hedule S up to time t is a pre�x ofSk0+1. By Property 5 of Sk0+1, f (t)i (Sk0+1) � fi � 2�(k0�2) � fi � 2�(k�2) � fi � �. 227

