
Guaranteeing Fair Servie to Persistent Dependent TasksAmotz Bar-Noy� Alain Mayery Baruh Shieber� Madhu Sudan�August 17, 2001AbstratWe introdue a new sheduling problem that is motivated by appliations in the areaof aess and ow-ontrol in high-speed and wireless networks. An instane of the problemonsists of a set of persistent tasks that have to be sheduled repeatedly. Eah task has ademand to be sheduled \as often as possible". There is no expliit limit on the numberof tasks that an be sheduled onurrently. However, suh limits are imposed impliitlybeause some tasks may be in onit and annot be sheduled simultaneously. Theseonits are presented in the form of a onit graph. We de�ne parameters whih quantifythe fairness and regularity of a given shedule. We then proeed to show lower bounds onthese parameters, and present fair and eÆient sheduling algorithms for the ase wherethe onit graph is an interval graph. Some of the results presented here extend to thease of perfet graphs and irular-ar graphs as well.

�IBM Researh Division, T. J. Watson Researh Center, Yorktown Heights, NY 10598.Email: famotz,sbar,madhug�watson.ibm.om.yDept. of Computer Siene, Columbia University, New York, NY 10027. Email: mayer�s.olumbia.edu.Part of this work was done while the author was at the IBM T. J. Watson Researh Center. Partially sup-ported by an IBM Graduate Fellowship, NSF grant CCR-93-16209, and CISE Institutional Infrastruture GrantCDA-90-24735

1 IntrodutionIn this paper we onsider a new form of a sheduling problem that is haraterized by twofeatures:Persistene: A task does not simply terminate one it is sheduled. Instead, eah task mustbe sheduled in�nitely many times. The goal is to shedule every task as frequently aspossible.Dependeny: Some tasks onit with eah other and hene annot be sheduled onur-rently. These onits are represented by a onit graph. This graph imposes onstraintson the sets of tasks that may be sheduled onurrently. Note that these onstraints arenot based simply on the ardinality of the sets, but rather on the identity of the taskswithin the sets.We onsider both the problems of alloation, i.e., how often should a task be sheduled andregularity, i.e., how evenly spaed are lengths of the intervals between suessive shedulingof a spei� task. We present a more formal desription of this problem next and disuss ourprimary motivation immediately afterwards. While all our de�nitions are presented for generalonit graphs, our appliations, bounds, and algorithms are for speial sublasses { perfetgraphs, interval graphs and irular ar-graphs.Problem statement: An instane of the sheduling problem onsists of a onit graph Gwith n verties. The verties of G are the tasks to be sheduled and the edges of G de�ne pairsof tasks that annot be sheduled onurrently. The output of the sheduling algorithm is anin�nite sequene of subsets of the verties, I1; I2; : : :, where It lists the tasks that are sheduledat time t. Note that It must be an independent set of G for all t.In the form above, it is hard to analyze the running time of the sheduling algorithm. Weonsider instead a �nite version of the above problem and use it to analyze the running time.Input: A onit graph G and a time t.Output: An independent set It denoting the set of tasks sheduled at time unit t.The objetive of the sheduling algorithm is to ahieve a fair alloation and a regularshedule. We next give some motivation and desribe the ontext of our work. As we will see,none of the existing measures an appropriately apture the \goodness" of a shedule in ourframework. Hene we proeed to introdue measures whih allow a better presentation of ourresults.1.1 MotivationSession sheduling in high-speed loal-area networks. The main motivation for thiswork arises from the session sheduling problem on a network alled MetaRing. MetaRing1

([CO93℄) is a reent high-speed loal-area ring-network that allows \spatial bandwidth reuse",i.e., in ontrast to other ring networks whih may only allow one soure destination pair toommuniate on the the ring at a time, the MetaRing an allow several suh pairs to ommu-niate with eah other, provided the pairs do not use the same link for the ommuniation.This onurrent aess and transmission of user sessions is implemented using only minimalintermediate bu�ering of pakets. A typial use of the MetaRing network involves severalusers trying to establish \sessions". A session is a simply a soure destination pair, wherethe soure wishes to send data over to the destination. The data is generated over time andneeds to be shipped over at regular intervals, if not immediately. In the general setting, theset of sessions an hange dynamially. We restrit our attention to the stati ase. Thisrestrition is justi�ed by the fat that sessions typially last for a long while. As a result ofthe minimal intermediate bu�ering, a session an send its data over only if it has exlusive useof all the links in its route. Consequently, sessions whose routes share a link are in onit.These onits must be regulated by breaking the data sent in a session into units of quotasthat are transmitted aording to some shedule. This shedule has to be eÆient and fair.EÆient means that the total number of quotas transmitted (throughput) is maximized. Fairmeans that the throughput of eah session is maximized, and that the time between suessiveativation of a session is minimized, so that large bu�ers at the soure nodes an be avoided.It has been reognized ([CCO93℄) that the aess and ow-ontrol in suh a network shoulddepend on loality in the onit graph. However, no �rm theoretial basis for an algorithmiframework has been proposed up to now. To express this problem as our sheduling problemwe reate a irular-ar graph the verties of whih are the sessions, and in whih vertiesare adjaent if the orresponding paths assoiated with the sessions interset. Sine an in-dependent set in this graph is a olletion of mutually non-oniting sessions, they an allommuniate simultaneously. Thus a shedule is a sequene of independent sets in this graph.Our goal will be to produe suh a shedule whih is eÆient and fair, in a sense to be madepreise later.Time sharing in wireless networks. A seond naturally ourring senario where ourmodel an be applied is in the sheduling of base-station transmissions in a ellular network.We now desribe this setting in detail. Most indoor designs of wireless networks are based ona ellular arhiteture with a very small ell size (see, e.g., [Goo90℄.) The ellular arhitetureomprises two levels { a stationary level and a mobile level. The stationary level onsists of�xed base stations that are interonneted through a bakbone network. The mobile levelonsists of mobile units that ommuniate with the base stations via wireless links. Thegeographi area within whih mobile units an ommuniate with a partiular base station isreferred to as a ell. Neighboring ells overlap with eah other, thus ensuring ontinuity ofommuniations. The mobile units ommuniate among themselves, as well as with the �xedinformation networks, through the base stations and the bakbone network. The ontinuity ofommuniations is a ruial issue in suh networks. A mobile user who rosses boundaries ofells should be able to ontinue its ommuniation via the new base-station. To ensure this,base-stations periodially need to transmit their identity using the wireless ommuniation.In some implementations the wireless links use infra-red waves. Therefore, two base-station2

the ells of whih overlap are in onit and annot transmit their identity simultaneously.These onits have to be regulated by a time-sharing sheme. This time sharing has to beeÆient and fair. EÆient means that the sheme should aommodate the maximal numberof base stations. Fair means that the time between two onseutive transmissions of the samebase-station should be less then the time it takes a user to ross its orresponding ell. Oneagain this problem an be posed as our graph sheduling problem where the verties of thegraph are the base-stations and an edge indiates that the base stations belong to overlappingells. Independent sets again represent lak of onit and a shedule will thus be a sequeneof independent sets.1.2 Relationship to past workPrevious researh on sheduling problems in our framework onsidered either persistene ofthe tasks or dependeny among the tasks but not both.An early work by Liu and Layland [LL73℄ onsiders persistent sheduling of tasks in a singleproessor environment. In their problem, tasks have deadlines speifying a time limit by whenthe ith sheduling of a given task must have ourred. They give an algorithm whih ahievesfull proessor utilization for this task. More reently, the problem of sheduling persistent taskshas been studied in the work of Baruah et al. [BCPV96℄. Their setting is loser to ours and wedesribe their problem in detail: They onsidered the problem of sheduling a set of n taskswith given (arbitrary) frequenies onm mahines. (The ase m = 1 is equivalent to an instaneof our problem in whih the onit graph is a lique.) To measure regularity of a shedule fortheir problem they introdued the notion of P -fairness. A shedule for this problem is P -fair(proportionate-fair) if at eah time t for eah task i the absolute value of the di�erene in thenumber of times i has been sheduled and fit is stritly less than 1, where fi is the frequenyof task i. They provided an algorithm for omputing a P -fair solution to their problem. Theirproblem fails to apture our situation due to two reasons. First, we would like to onstrain thesets of tasks that an be sheduled onurrently aording to the topology of the onit graphand not aording to their ardinality. Moreover, in their problem every feasible frequenyrequirement an be sheduled in a P -fair manner. For our sheduling problem, we show thatsuh a P -fair shedule annot always be ahieved. To deal with feasible frequenies that annotbe sheduled in a P -fair manner, we de�ne weaker versions of regularity.The dependeny property aptures most of the work done based on the well-known \Din-ing Philosophers" paradigm (see for example [Dijk71℄, [Lyn80℄, [CM84℄, [AS90℄, [CS92℄, and[BP92℄). In this setting, Lynh [Lyn80℄ was the �rst to expliitly onsider the response timefor eah task. The goal of suessive works was to make the response time of a node to dependonly on its loal neighborhood in the onit graph (see, e.g., [BP92℄). While response time interms of a node's degree is adequate for \one-shot" tasks, it does not apture our requirementthat a task should be sheduled in a regular and fair fashion over a period of time.
3

1.3 Notations and de�nitionsA shedule S is an in�nite sequene of independent sets I1; I2; : : : ; It; : : : Let S(i; t) denote theindiator variable that represents the shedule; it is 1 if task i is sheduled at time t and 0otherwise. Let f (t)i (S) =Pt�=1 S(i; �)=t, we refer to f (t)i (S) as the pre�x frequeny of task i attime t in shedule S. Let fi(S) = lim inft!1ff (t)i (S)g. We refer to fi(S) as the frequeny of taski in shedule S. We say that a shedule S is periodi with period T , if Ij = IT+j = I2T+j = � � �for all 1 � j � T . In periodi shedules we will refer to f (T)i (S) as the frequeny of task i. (Inboth f (t)i (S) and fi(S) we drop the index S whenever the identity of the shedule S is learfrom the ontext.)De�nition 1 A vetor of frequenies f̂ = (f1; : : : ; fn) is feasible if there exists a shedule Ssuh that the frequeny of the i-th task in shedule S is at least fi.De�nition 2 A shedule S realizes a vetor of frequenies f̂ if the frequeny of the i-th task inshedule S is at least fi. A shedule S -approximates a vetor of frequenies f̂ if the frequenyof the i-th task in shedule S is at least fi=.A measure of fairness. Fairness is determined via a partial order � that we de�ne on theset of frequeny vetors.De�nition 3 Given two frequeny vetors f̂ = (f1; : : : ; fn) and ĝ = (g1; : : : ; gn), f̂ � ĝ (f̂ isless fair than ĝ) if there exists an index i and a threshold f suh that fi < f � gi, and for allj suh that gj � f , fj � gj.Less formally, if f̂ � ĝ, then ĝ \performs" better for some task i and all tasks with frequenysmaller than the i-th task, i.e., those tasks that are least sheduled. It ould be the ase thatf̂ \performs" better for the other tasks, however our onern in fair alloation is with the lessfrequently sheduled tasks.In Appendix A we prove that the relation � is indeed a partial order.De�nition 4 A vetor of frequenies f̂ is max-min fair if no feasible vetor ĝ satis�es f̂ � ĝ.Less formally, in a max-min fair frequeny vetor, one annot inrease the frequeny of sometask at the expense of less frequently sheduled tasks. This means that our goal is to let eahtask i have more of the resoure as long as we have to take the resoure away only from taskswhih are better o�, i.e., those that have more of the resoure than task i.Measures of regularity. We provide two measures by whih one an evaluate a shedulefor its regularity. We all these measures the response time and the drift.Given a shedule S, the response time for task i, denoted ri, is the largest interval of timefor whih task i waits between suessive shedulings. More preisely,ri = maxft2 � t1j0 � t1 < t2 s.t. 8t1<t<t2S(i; t) = 0g:4

For any time t, the number of expeted ourrenes of task i an be expressed as fit. Butnote that if ri is larger than 1=fi, it is possible that, for some period of time, a shedule allowsa task to \drift away" from its expeted number of ourrenes. In order to apture this, weintrodue a seond measure for the regularity of a shedule. We denote by di the drift of atask i. It indiates how muh a shedule allows task i to drift away from its expeted numberof sheduled units: di = maxt fjfi � t� tXr=1S(i; r)jg:Note that if a shedule S ahieves drift di < 1 for all i, then it is P-fair as de�ned in [BCPV96℄.A shedule ahieves its strongest form of regularity if eah task i is sheduled every 1=fitime-units (exept for its �rst appearane). We say that a shedule is rigid if for eah taski there exists a starting point si suh that the task is sheduled on exatly the time unitssi + j(1=fi), for j � 0.Graph sublasses. A graph is perfet if for all its indued subgraphs the size of the maximumlique is equal to the hromati number (f. [Gol80℄). A graph is an interval graph (irular-argraph) if its verties orrespond to intervals on a line (irle), and two verties are adjaent ifthe orresponding intervals interset (f. [Tu71℄).1.4 ResultsIn Setion 2 we motivate our de�nition of max-min fairness and show several of its properties.First, we provide an equivalent (alternate) de�nition of feasibility whih shows that deidingfeasibility of a frequeny vetor is omputable. Next, we prove that every graph has a uniquemax-min fair frequeny vetor. Then, we show that the task of even weakly-approximatingthe max-min fair frequenies on general graphs is NP-hard. As we mentioned above, manypratial appliations of this problem arise from simpler networks, suh as buses and rings(i.e., interval onit graphs and irular-ar onit graphs). For the ase of perfet-graphs(and hene for interval graphs), we desribe an eÆient algorithm for omputing max-min fairfrequenies. We prove that the period T of a shedule realizing suh frequenies on a perfetgraph satis�es T = 2O(n) and that there exist interval graphs suh that T = 2
(n).The rest of our results deal with the problem of �nding the most \regular" shedule thatrealizes any feasible frequeny vetor. In Setion 3 we show the existene of interval graphsfor whih there is no P -fair shedule that realizes their max-min fair frequenies. In Setion 4we desribe an algorithm for omputing a shedule that realizes any given feasible frequenieson interval graphs. The shedule omputed by the algorithm ahieves response-time of d4=fieand drift of O(plog Tn�). A slight modi�ation of this algorithm yields a shedule that 2-approximates the given frequenies. The advantage of this shedule is that it ahieves a boundof one on the drift and hene a bound of d2=fie on the response time. In Setion 5 we presentan algorithm for omputing a shedule that 12-approximates any given feasible frequenieson interval graphs and has the advantage of being rigid. All algorithms run in polynomial5

time. In Setion 6 we show how to transform any algorithm for omputing a shedule that -approximates any given feasible frequenies on interval graphs into an algorithm for omputinga shedule that 2-approximates any given feasible frequenies on irular-ar graphs. Theresponse-time and drift of the resulting shedule are doubled as well.Finally, in Setion 7 we summarize our results, list a number of open problems and skethwhat additional properties are required to obtain solutions for atual networks.2 Max-min Fair AlloationOur de�nition for max-min fair alloation is based on the de�nition used by Ja�e [Jaf81℄and Bertsekas and Gallager [BG87℄, but di�ers in one key ingredient { namely our notion offeasibility. We study some elementary properties of our de�nition in this setion. In partiular,we show that our de�nition guarantees a unique max-min fair frequeny vetor for every onitgraph. We also show the hardness of omputing the frequeny vetor for general graphs.However, for the speial ase of perfet graphs our notion turns out to be the same as that of[BG87℄.The de�nition of [Jaf81℄ and [BG87℄ is onsidered as the traditional way of measuringthroughput fairness in ommuniation networks and is also based on the partial order � asused in our de�nition. The primary di�erene between our de�nition and theirs is in thede�nition of feasibility. Bertsekas and Gallager [BG87℄ use a de�nition, whih we all liquefeasibility, that is de�ned as follows:A vetor of frequenies (f1; : : : ; fn) is lique feasible for a onit graph G, ifPi2C fi � 1 for all liques C in the graph G.The notion of max-min fairness of Bertsekas and Gallager [BG87℄ is now exatly our notion,with feasibility replaed by lique feasibility.The de�nition of [BG87℄ is useful for apturing the notion of frational alloation of aresoure suh as bandwidth in a ommuniation networks. However, in our appliation weneed to apture a notion of integral alloation of resoures and hene their de�nition does notsuÆe for our purposes. By de�nition, every frequeny vetor that is feasible in our sense islique feasible. However, the onverse is not true. Consider the ase where the onit graphis the �ve-yle. For this graph the vetor (1=2; 1=2; 1=2; 1=2; 1=2) is lique feasible, but noshedule an realize this frequeny vetor.2.1 An alternate de�nition of feasibilityGiven a onit graph G, let I denote the family of all independent sets in G. For I 2 I, let�(I) denote the harateristi vetor of I.Theorem 5 A vetor of frequenies f̂ is feasible if and only if f̂ is a onvex ombination ofthe �(I)'s; that is, there exist weights f�IgI2I, suh that PI2I �I = 1 and PI2I �I�(I) = f̂ .6

Proof: Claim 6 proves the easier diretion. Claim 7 proves the other diretion only for thease when f̂ an be expressed as a rational onvex ombination of the independent sets. Theproof for the ase when f̂ is not a rational onvex ombination is given in Appendix B. 2Claim 6 If a frequeny vetor f̂ is feasible then there exists a sequene of weights f�IgI2Isuh that PI �I = 1 and PI �I�(I) = f̂ .Proof: To obtain a ontradition assume otherwise. By ontinuity there exists an � > 0,suh that the vetor (1��)f̂ annot be expressed as a onvex ombination of the �(I)'s. Basedon the de�nition of feasibility, there exists a shedule S whih ahieves a frequeny of at leastf̂ . In partiular, there exists a time T = T� suh that f (T)i � fi � � for all 1 � i � n. Let �Ibe the frequeny of the independent set I in the �rst T time units in the shedule S. ThenPI �I = 1 and PI �I�(I) � (1� �)f̂ , ontraditing the hoie of �. 2Claim 7 If a frequeny vetor f̂ an be expressed as a rational onvex ombination of theindependent sets, then f̂ is feasible.Proof: Suppose that there exist rational weights f�IgI2I , suh that PI2I �I = 1 andPI2I �I�(I) = f̂ . Express �I as pI=qI where pI and qI are integral and let T = LCMfqIg.Observe that NI � �IT is integral. For eah I we NI times shedule the independent set Iover a period of T intervals (in any arbitrary units of time). It is lear that there are enoughslots for eah independent set to be sheduled NI times. 2The main impat of Theorem 5 is that it shows that the spae of all feasible frequeniesis well behaved (i.e., it is a losed, onneted, ompat spae). In addition, it shows thatdetermining whether a frequeny vetor is feasible is a omputable task (a fat that may nothave been easy to see from the earlier de�nition). We now use this de�nition to observe thefollowing interesting onnetion:Proposition 8 Given a onit graph G, the notions of feasibility and lique feasibility areequivalent if and only if G is perfet.Proof: The proof follows diretly from well-known polyhedral properties of perfet graphs.(See [GLS87℄, [Knu94℄.) In the notation of Knuth [Knu94℄ the spae of all feasible vetors isthe polytope STAB(G) and the spae of all lique-feasible vetors is the polytope QSTAB(G).The result follows from the theorem on page 38 in [Knu94℄ whih says that a graph G is perfetif and only if STAB(G) = QSTAB(G). 22.2 Uniqueness and omputability of max-min fair frequeniesIn this subsetion we prove that the max-min fair frequeny vetor is unique. We also showthat �nding this vetor (or even approximating it) is omputationally hard.Theorem 9 For any onit graph there exists a unique max-min fair frequeny vetor.Proof: For a vetor f̂ let sortf̂ denote the vetor obtained by permuting the vetor f̂ so thatits oordinates appear in nondereasing order. Let the relation �lex on the feasible frequeny7

vetors be the lexiographi ordering on sortf̂ . More preisely, f̂ �lex ĝ if either sortf̂ = sortĝor there exists an index i � 1 suh that sortf̂i < sortĝi and sortf̂j = sortĝj for all 1 � j < i.(Note that �lex is not a partial order sine it is not anti-symmetri.) It is easy to verify thatif f̂ �lex ĝ, and sortf̂ 6= sortĝ then f � g. Let the vetor f̂ be a max-min fair vetor. (Suh avetor exists in the spae of feasible vetors, sine this spae is ompat.) The vetor f̂ is alsolarger aording to the ordering �lex than any vetor ĝ suh that sortf̂ 6= sortĝ. We now showthat there is no vetor ĝ suh that sortf̂ = sortĝ. This implies that it is the unique max-minfair frequeny vetor.To obtain a ontradition, suppose that there exists a vetor ĝ suh that sortf̂ = sortĝ.First observe that the vetor ĥ = (f̂ + ĝ)=2 is feasible. This is true beause f̂ and ĝ an beexpressed as a onvex ombination of the independent sets and ĥ is a onvex ombination off̂ and ĝ. Thus ĥ is a onvex ombination of the independent sets. Now assume without lossof generality that the indies of the vetors are arranged in inreasing order of fi + gi. Let jbe the smallest index suh that fj 6= gj . Say, fj is the smaller of the two. Then ((f̂ + ĝ)=2)j isgreater than fj and for all verties i with smaller frequenies, fi = ((f̂ + ĝ)=2)i. This impliesthat f̂ �lex (f̂ + ĝ)=2. A ontradition. 2We now turn to the issue of the omputability of the max-min fair frequenies. While wedo not know the exat omplexity of omputing max-min fair frequenies (in partiular, we donot know if deiding whether a frequeny vetor is feasible is in NP [oNP), it does seem to bevery hard in general. Here, we onsider the sub-problem of omputing the smallest frequenyassigned to any vertex by a max-min alloation and show the following:Theorem 10 There exists an � > 0, suh that given a onit graph on n verties, approxi-mating the smallest frequeny assigned to any vertex in a max-min fair alloation to within afator of n� is NP-hard.Proof: We relate the omputation of max-min fair frequenies in a general graph to the om-putation of the frational hromati number of a graph. We then use the reent hardness resultfor approximating the (frational) hromati number, due to Lund and Yannakakis [LY93℄ toshow that omputing max-min fair frequenies in general graphs is very hard.The frational hromati number problem (f. [LY93℄) is de�ned as follows:To eah independent set I in the graph, assign a weight wI , so as to minimizethe quantity PI wI , subjet to the onstraint that for every vertex v in the graph,the quantity PI3v wI is at least 1. The quantity PI wI is alled the frationalhromati number of the graph.Observe that if the wI 's are fored to be integral, then the frational hromati number is thehromati number of the graph.The following laim shows a relationship between the frational hromati number and theassignment of feasible max-min fair frequenies.Claim 11 Let (f1; f2; : : : ; fn) be a feasible assignment of frequenies to the verties in a graphG. Then 1=(mini fi) is an upper bound on the frational hromati number of the graph.8

Conversely, if k is the frational hromati number of a graph, then a shedule that sets thefrequeny of every vertex to be 1=k is feasible.The proof of the above laim is straightforward given the de�nitions of frational hromatinumber and feasibility. We now show how to use the laim to prove the theorem.The above laim, ombined with the hardness of omputing the frational hromati number[LY93℄, suÆes to show the NP-hardness of deiding whether a given assignment of frequeniesis feasible for a given graph. To show that the laim also implies the hardness of approximatingthe smallest frequeny in the max-min fair frequeny vetor we inspet the Lund-Yannakakisonstrution a bit more losely. Their onstrution yields a graph in whih every vertexpartiipates in a lique of size k suh that deiding if the (frational) hromati number is k orkn� is NP-hard. In the former ase, the max-min fair frequeny assignment to every vertex isat least 1=k. In the latter ase at least some vertex will have frequeny smaller that 1=(kn�).Thus this implies that approximating the smallest frequeny in the max-min fair frequeniesto within a fator of n� is NP-hard. 22.3 Max-Min fair frequenies on perfet graphsWe now onsider perfet graphs. We show how to ompute in polynomial time max-min fairfrequenies for this lass of graphs and give bounds on the period of a shedule realizing suhfrequenies. As our main fous of the subsequent setions will be interval graphs, we will giveour algorithms and bounds �rst in terms of this sublass and then show how to generalize theresults to perfet graphs.We start by desribing an algorithm for omputing max-min fair frequenies on intervalgraphs. As we know that lique-feasibility equals feasibility (by Proposition 8), we an use anadaptation of [BG87℄:Algorithm 1. Let C be the olletion of maximal liques in the interval graph. (Notie thatC has at most n elements and an be omputed in polynomial time.) For eah lique C 2 Cthe algorithm maintains a residual apaity whih is initially 1. To eah vertex the algorithmassoiates a label assigned/unassigned. All verties are initially unassigned. Dividing theresidual apaity of a lique by the number of unassigned verties in this lique yields therelative residual apaity. Iteratively, we onsider the lique with the smallest urrent relativeresidual apaity and assign to eah of the lique's unassigned verties this apaity as itsfrequeny. For eah suh vertex in the lique we mark it assigned and subtrat its frequenyfrom the residual apaity of every lique that ontains it. We repeat the proess till everyvertex has been assigned some frequeny.It is not hard to see that Algorithm 1 orretly omputes max-min fair frequenies inpolynomial-time. We now use its behavior to prove a tight bound on the period of a shedulefor an interval graph. The following theorem establishes this bound:Theorem 12 Let fi = pi=qi be the frequenies in a max-min fair shedule for an interval graph9

Figure 1: An interval graph with n = 23 intervals for whih T = LCMni=1fqig � 2n+25 �1.G, where pi and qi are relatively prime. Then, the period for the shedule T = LCMni=1fqigsatis�es, T = 2O(n). Furthermore, there exist interval graphs for whih T = 2
(n).We prove this theorem with the help of the following two lemmas:Lemma 13 LCMni=1fqig � 2n=2.Proof: Let nj denotes the number of intervals that are assigned frequeny pjqj in iterationj. That is, pjqj is the minimum relative residual apaity at iteration j. From the way therelative residual apaities are updated, it follows that qi divides Qij=1 nj for all 1 � i � n.The lemma follows sine assuming there were ` iterations, qi divides Qj̀=1 nj, and Qj̀=1 njattains its maximum when ` = n=2 and ni = 2 for all 1 � i � `. 2Lemma 14 There exists an interval graph for whih LCMni=1fqig � 2n+25 �1.Proof: We show an interval graph in whih maxni=1fqig � 2n+25 �1, the lemma follows sinetrivially LCMni=1fqig � maxni=1fqig. For simpliity we assume that 5 divides n+2. The readermay �nd it easier to follow the onstrution for n = 23 depited in Figure 1. Let x = 3(n+2)5and y = n+25 � 1. In the onstrution x intervals start at 0 (the top 15 intervals in Figure 1),and two intervals start at i for all 1 � i � y (the bottom 8 intervals in Figure 1). Notethat indeed 2y + x = n. Out of the �rst x intervals, three intervals terminate at i for eah1 � i � y + 1. Note that indeed 3(y + 1) = x. For 1 � i � y, out of the two intervals startingat i, one interval terminates at i+ 1 and one ontinues until y + 1.Now, sine at 0 the size of the lique is x and at i the size of the lique is x�3i+(i�1)+2 =x� 2i+1, it follows that the algorithm for the frequeny assignment handles the liques fromleft to right and there are y+1 di�erent values for frequenies denoted by w0; : : : ; wy. We getw0 = 1x ;w1 = 3w02 = 32x ;w2 = 3w0 + w12 = 94x:10

In general, by indution we prove that wi = 3x � 2i�12i for 1 � i � y.wi+1 = 3w0 + wi2 = 32x + 3x � 2i � 12i+1 = 3x � 12 + 2i � 12i+1 = 3x � 2i+1 � 12i+1 :Sine the denominator of wy is greater or equal to 2y and neither 3 nor 2y � 1 has a ommondivisor with 2y, it follows that maxni=1fqig � 2n+25 �1. 2Algorithm 1 works for all graphs where lique feasibility determines feasibility; i.e., perfetgraphs. However, the algorithm does not remain omputationally eÆient sine it involvessanning all the liques in the graph. Still, Theorem 12 an be diretly extended to the lassof perfet graphs. We now use this fat to desribe a polynomial-time algorithm for assigningmax-min fair frequenies to perfet graphs.Algorithm 2. This algorithm maintains the labelling proedure assigned/unassigned of Al-gorithm 1. At eah phase, the algorithm starts with a set of assigned frequenies and tries to�nd the largest f suh that all unassigned verties an be assigned the frequeny f . To omputef in polynomial time, the algorithm uses the fat that deiding if a given set of frequenies isfeasible is reduible to the task of omputing the size of the largest weighted lique in a graphwith weights on verties. The latter task is well known to be omputable in polynomial-timefor perfet graphs. Using this deision proedure the algorithm performs a binary searh to�nd the largest ahievable f . (The binary searh does not have to be too re�ned due to theupper bound on the denominators of the frequenies given in Theorem 12.) Having found thelargest f , the algorithm �nds a set of verties whih are saturated under f as follows: Let � besome small number, with the property that the di�erene between any two distint assignedfrequenies is more than �. By Theorem 12, � = 2�n2 is suÆient. Now the algorithm raises,one at a time, the frequeny of eah unassigned vertex to f + �, while maintaining the otherunassigned frequenies at f . If the so obtained set of frequenies is not feasible, then it marksthe vertex as assigned and its frequeny is assigned to be f . The algorithm now repeats thephase until all verties have been assigned some frequeny.3 Non-existene of P-fair alloationsWe show that a P -fair sheduling under max-min fair frequenies need not exist for everyinterval graph.Theorem 15 There exist interval graphs G for whih there is no P-fair shedule that realizestheir max-min frequeny assignment.Proof: In order to prove the theorem we produe a ounter example as follows. We hoosea parameter k and for every permutation � of the elements f1; : : : ; kg, we de�ne an intervalgraph G�. We show a neessary ondition that � must satisfy if G� has a P-fair shedule.Lastly, we show that there exists a permutation � of 12 elements whih does not satisfy thisondition. 11

A(1)

A(2)

A(3)

A(4)

C(1)

C(2)

C(3)

C(4)

B(1)

B(2)

B(3)

B(4)Figure 2: The graph G� for � = (3; 1; 2; 4)Given a permutation � on k elements, G� onsists of 3k intervals. For 1 � 1 � k, de�nethe intervals A(i) = (i� 1; i℄, B(i) = (i; k+ �(i) + 1℄ and C(i) = (k+ i+1; k+ i+2℄. Observethat the max-min frequeny assignment to G� is the following: All the tasks B(1); : : : ; B(k)have frequeny 1=k; task A(i) has frequeny (k � i + 1)=k for 1 � i � k; and task C(i) hasfrequeny i=k for 1 � i � k. (See Figure 2.)We now observe the properties of a P-fair shedule for the tasks in G�. (i) The time periodis k. (ii) The shedule is entirely spei�ed by the shedule for the tasks B(i). (iii) This sheduleis a permutation � of k elements, where �(i) is the time unit for whih B(i) is sheduled. Tosee what kind of permutations � onstitute P-fair shedules of G� we de�ne the notion of whena permutation is fair for another permutation.De�nition 16 A permutation �1 is fair for a permutation �2 if for all 1 � i; j � k, �1 and�2 satisfy the onditions ondij de�ned as follows:ijk � 1 < jf` : �1(`) � j and �2(`) � igj < ijk + 1 :Claim 17 If a permutation � is a P-fair shedule for G� then � is fair for the identity per-mutation and permutation �.Proof: For �xed i, we laim that the onditions ondij for �1 = � and �2 being the identitypermutation, are exatly the onditions for a P-fair alloation of A(i + 1). Similarly, theonditions ondij for �1 = � and �2 = � are the onditions for a P-fair alloation of C(k � i).Thus, a permutation � represents a P-fair shedule for G� if and only if � is fair for both �and the identity permutation.We now show why the onditions ondij for �1 = � and �2 being the identity permutation,are exatly the onditions for a P-fair alloation of A(i + 1). The laim about the onditionsondij for �1 = � and �2 = � is analogous. Reall that the frequeny of task A(i+1) is (k�i)=kand that A(i + 1) an be sheduled only when tasks B(`), for 1 � ` � i, are not sheduled.Consider the shedule up to time j � k. In order for the shedule to be P-fair, the number ofourrenes of tasks B(`), for 1 � ` � `, up to this time must be between j� (k�i)jk �1 = ijk �1and j � (k�i)jk + 1 = ijk + 1. Note that the number of times these tasks are sheduled is theardinality of the set f` : �1(`) � j and ` � ig, whih translates to ondij for �1 = � and �2being the identity permutation. 2Let � = (1; 3; 4; 7; 8; 9; 11; 5; 12; 10; 2; 6) be a permutation on 12 elements. The followingarguments show that no permutation � is fair to both the identity permutation and the per-12

mutation �.1. We de�ne a blok as any ontiguous set of elements in the range 1 to 12. We say that �plaes an element i in the blok [j; `℄.2. Without loss of generality assume that � plaes the element 1 in the blok [1; 6℄.3. Consider the elements in the following six pairs f1; 2g, f3; 4g, f5; 6g, f7; 8g, f9; 10g, andf11; 12g. If the permutation � is fair for the identity permutation, then it must plaeexatly one element of eah pair in the blok [1; 6℄. To see this, note that if � plaes bothelements 1 and 2 in the blok [1; 6℄, then jf` : �(`) � 6 and ` � 2gj = 2; violating ond2;6.Thus only element 1 is in blok [1; 6℄. Indutively, it an be shown that if � plaes bothelements 2i� 1 and 2i, for 1 < i � 6, in the blok [1; 6℄, then ond2i;6 is violated.4. A similar argument applied to � implies that � must plae exatly one element of eahof the six pairs f1; 3g, f4; 7g, f8; 9g, f11; 5g, f12; 10g, and f2; 6g in the blok [1; 6℄ if � isfair for �.5. Arguments 2, 3, and 4 imply that the �rst half of � onsists of the elements f1; 4; 8; 10; 11; 6gand the seond half onsists of the elements f3; 7; 9; 12; 5; 2g.6. Again, sine � is fair for the identity permutation, � must plae exatly one of theelements of eah of the triplets f1; 2; 3g, f4; 5; 6g, and f7; 8; 9g in eah of the bloks [1; 4℄,[5; 8℄, and [9; 12℄ in order not to violate onditions: ond3;4, ond3;8, and ond3;12.7. Similarly, sine � is fair for �, � must plae exatly one of the elements of the tripletf�(7); �(8); �(9)g = f11; 5; 12g in eah of the bloks [1; 4℄, [5; 8℄, and [9; 12℄.8. Sine 1 appears in the blok [1; 6℄ and both 2 and 3 appear in the blok [7; 12℄, it followsfrom Argument 6 that exatly one of the elements 2 and 3 is plaed in the blok [7; 8℄ by�.9. A similar argument applied to the triplet f7; 8; 9g implies that exatly one of 7 and 9 isplaed in the blok [7; 8℄ by �.10. Lastly, we examine the triplet f�(7); �(8); �(9)g = f11; 5; 12g. It follows from Argument 7that one of 5 and 12 must appear in the blok [7; 8℄.Sine � annot plae three elements in a blok of size two, we obtain the ontradition.The proof of Theorem 15 follows. 24 Realizing frequenies exatlyIn this setion we �rst show how to onstrut a shedule whih realizes any feasible set offrequenies (and hene in partiular max-min frequenies) exatly on an interval graph. Weprove its orretness and give a bound of d4=fie on the response time for eah interval i. We13

then proeed to introdue a potential funtion whih an be used to yield a bound of O(n 12+�)on the drift for every interval. An easy onsequene of our algorithm is for the speial ase inwhih the frequenies are of the form 1=2i, the drift an be bounded by 1 and thus the waitingtime an be bounded by d2=fie. This yields a 2-approximation algorithm with high regularity.Input to the Algorithm: A unit of time t and a onit graph G whih is an intervalgraph. The graph G is represented by a set I = fI1; : : : ; Ing of intervals on the unit interval[0; 1℄ of the x-oordinate, where Ii = [i:s; i:e℄ for 1 � i � n. Every interval Ii has a frequenyfi = pi=qi with the following onstraint: PIi3x fi � 1 for all 0 � x � 1. For simpliity, weassume from now on that these onstraints on the frequenies are met with equality and thatt � T = LCMfqig.Output of the Algorithm: An independent set It de�ning the set of tasks sheduled fortime t suh that the sheduled S, given by fItgTt=1 realizes frequenies fi.The algorithm is reursive. Let si denote the number of times a task i has to appear inT time units, i.e., si = Tpi=qi. The algorithm has log T levels of reursion. In the �rst levelwe deide on the ourrenes of the tasks in eah half of the period. That is, for eah task wedeide how many of its ourrenes appear in the �rst half of the period and how many in theseond half. This yields a problem of a reursive nature in the two halves. In order to �ndthe shedule at time t, it suÆes to solve the problem reursively in the half whih ontains t.(Note that in ase T is odd one of the halves is longer than the other.) Clearly, if a task hasan even number of ourrenes in T it would appear the same number of times in eah half inorder to minimize the drift. The problem is with tasks that have an odd number of ourrenessi. Clearly, eah half should have at least bsi of the ourrenes. The additional ourrenehas to be assigned to one of the halves in a way that both resulting sub-problems would stillbe feasible. This is the main diÆulty of the assignment and is solved in the proedure Sweep.Proedure Sweep: In this proedure we ompute the assignment of the additional our-rene for all tasks that have an odd number of ourrenes. The input to this proedure is aset of intervals I1; : : : ; Im (those having odd si's) with the restrition that eah lique in theresulting interval sub-graph is of even size. (Later, we show how to overome this restrition.)The output is a partition of these intervals into two sets suh that eah lique is equally dividedamong the sets. This is done by a sweep along the x-oordinate of the intervals. During thesweep every interval will be assigned a variable whih at the end is set to 0 or 1 (i.e., �rst halfof the period or seond half of the period). Suppose that we sweep point x. We say that aninterval Ii is ative while we sweep point x if x 2 Ii. The assignment rules are as follows:
14

For eah interval Ii that starts at x:If the urrent number of ative intervals is even:A new variable is assigned to Ii (Ii is unpaired).Otherwise; the urrent number of ative intervals is odd:Ii is paired to the urrently unpaired interval Ij, and it is assigned thenegation of Ij's variable.Comment: No matter what value is later assigned to this variable, Ii andIj will end up in opposite halves.For eah interval Ii that ends at x:If the urrent number of ative intervals is even:Nothing is done.Otherwise; the urrent number of ative intervals is odd:If Ii is paired with Ij :Ij is now paired with the urrently unpaired interval Ik. Also, Ij 'svariable is mathed with the negation of Ik's variable.Comment: This will ensure that Ij and Ik are put in opposite halves,or equivalently, Ii and Ik are put in the same halves.If Ii is unpaired:Assign arbitrarily 0 or 1 to Ii's variable.It will be proven later that these rules ensure that whenever the number of ative intervalsis even, then exatly half of the intervals will be assigned 0 and half will be assigned 1. We notethat sine the onit graph is an interval graph we are assured that when we apply the aboverules pairing up arbitrary intervals will not result in a irular dependeny of the variables(e.g., x = y = �x).Reall that we assumed that the size of eah lique is even. To overome this restrition weneed the following simple lemma. For x 2 [0; 1℄, denote by Cx the set of all the input intervals(with odd and even si's) that ontain x; Cx will be referred to as a lique.Lemma 18 The period T is even if and only if jfi : Ii 2 C ^ si is oddgj is even for everylique C.Proof: Note that PIi2C fi = 1) PIi2C si = T) PIi2C; si is odd si +PIi2C; si is even si =T . Sine the seond summand is always even, T is even if and only if the �rst summand is alsoeven. 2This lemma implies that if T is even then the size of eah lique in the input to proedureSweep is indeed even. If T is odd, then a dummy interval In+1 whih extends over all otherintervals and whih has exatly one ourrene is added to the set I before alling Sweep.Again, by Lemma 18, we are sure that in this modi�ed set I the size of eah lique is even.This would inrease the period by one. The additional time unit will be allotted only to thedummy interval and thus an be ignored. We note that to produe the shedule at time t we15

just have to follow the reursive alls that inlude t in their period.Applying this algorithm to the max-min frequenies yields a polynomial in n algorithm.This is true beause there are no more than log T suh alls and beause T = 2O(n) for max-minfair frequenies.Lemma 19 The algorithm produes a orret shedule for every feasible set of frequenies.Proof: We need to prove that feasibility is maintained with every reursive step. We showthat the following invariant is maintained by Sweep:For every x for whih the number of ative intervals in Cx is even, exatly half ofthe intervals will be assigned 0 and half will be assigned 1.This invariant is easily maintained when a new interval starts: If the urrent number of intervalsis odd, then the new interval is paired up with the urrently unpaired interval, and thus willbe sheduled in the opposite half of its partner. The invariant holds also when an interval endssine by our rules whenever an interval ends any two unpaired interval are immediately pairedup.Now, if T is odd, then a dummy interval is added and hene sweep produes a feasiblesolution for T + 1. In this ase the algorithm assigns the \smaller" half of T to the half towhih Sweep assigned the dummy interval and feasibility is maintained. 2Lemma 20 If the set of frequenies is of the form 1=2i then the resulting shedule is P-fair.(i.e., the drift an be bounded by 1) and the response time is bounded by d2=fie.Proof: Sine our algorithm always divides even si into equal halves, the following invariantis maintained: In reursion level j, if si > 1 then si is even. Also note that T = 2k, wheremini fi = 1=2k and thus eah si is of the form 2 i�k. Now, following the algorithm, it an beeasily shown that there is at least one ourrene of task i in eah time interval of size 2k� i .This implies that b t2k� i �Ptr=1 S(i; r) � d t2k� i e and thus P -fairness follows. Sine the driftis bounded by one the response time is bounded by d2=fie. 2Lemma 21 The response time for every interval Ii is bounded by d4=fie.Proof: Lemma 20 implies the ase in whih the frequenies are powers of two. Moreover, inase the frequenies are not powers of two, we an virtually partition eah task into two taskswith frequenies ai and bi respetively, so that fi = ai + bi, ai is a power of two, and bi < ai.Then, the shedule of the task with frequeny ai has drift 1. This implies that its responsetime is at most d2=aie � d4=fie. 2Remark: It an be shown that the bound of the above lemma is tight for our algorithm.We summarize the results in this setion in the following theorem:Theorem 22 Given an arbitrary interval graph as a onit graph, the algorithm exatlyrealizes any feasible frequeny vetor and guarantees that the response time is at most d4=fie.16

4.1 Bounding the driftSine the algorithm has O(log T) levels of reursion and eah level may inrease the drift byone, it follows that the maximum drift is bounded by O(log T). In this setion we prove thatwe an derease the maximum drift to be O(plog Tn�), for any �xed �, where n is the numberof tasks. By Lemma 13 this implies that in the worst ase the drift for max-min fair frequeniesis bounded by O(n 12+�).Our method to get a better drift is based on the following observation: At eah reursivestep of the algorithm two sets of tasks are produed suh that eah set has to be plaed in adi�erent half of the time-interval urrently onsidered. However, we are free to hoose whihset goes to whih half. We use this degree of freedom to derease the bound on the drift. Tomake the presentation learer we assume that T is a power of two and that the time units are0; : : : ; T � 1. The arguments an be modi�ed to hold in the general ase.Consider a sub-interval of size T=2j starting after time t` = i � T=2j � 1 and ending attr = (i + 1) � T=2j � 1, for 0 � i � 2j � 1. In the �rst j reursion levels we already �xedthe number of ourrenes of eah task up to t`. Given this number, the drift d` at timet` is �xed. Similarly, the drift dr at time tr is also �xed. At the next reursion level wesplit the ourrenes assigned to the interval [t` + 1; tr℄, and thus �xing the drift dm at timetm = (t` + tr)=2. Optimally, we would like the drifts after the next reursion level at eahtime unit t 2 [t` + 1; tr℄ to be the weighted average of the drifts d` and dr. In other words,let � = (t � t`)=(tr � t`), then, we would like the drift at time t to be �dr + (1 � �)d`. Inpartiular, we would like the drift at tm to be (d` + dr)=2. This drift an be ahieved for tmonly if the ourrenes in the interval [t`+1; tr℄ an be split equally. However, in ase we havean odd number of ourrenes to split, the drift at tm is (d` + dr)=2 � 1=2, depending on ourdeision in whih half interval to put the extra ourrene. Note that the weighted average ofthe drifts of all other points hanges aordingly. That is, if the new dm is (d` + dr)=2 + x,for x 2 f�1=2g, then the weighted average in t 2 [t` + 1; (tr + t`)=2℄ is �dr + (1� �)d` + 2�x,where � = (t � t`)=(tr � t`) � 1=2, and the weighted average in t 2 [(tr + t`)=2 + 1; tr℄ is�dr + (1� �)d` + 2(1 � �)x, where � = (t� t`)=(tr � t`) > 1=2.Consider now the two sets of tasks S1 and S2 that we have to assign to the two sub-intervals(of the same size) at level k of the reursion. For eah of the possible two assignments, weompute a \potential" based on the resulting drifts at time tm. For a given possibility letD[tm; i; k℄ denote the resulting drift of task i at tm after k reursion levels. De�ne the potentialof tm after k levels as POT (tm; k) = Pni=1D(tm; i; j)�, for some �xed even onstant �. Wehoose the possibility with the lowest potential. We now prove that using this poliy the driftof any task after log T steps is bounded by O(plog T � n 1�).Consider a time t and a task i. The drift of task i at t is the outome of at most log Treursion levels. De�ne the drift of task i at t after k levels, denoted D(t; i; k), as the weightedaverage drift at t given the �xed drifts after k levels. It is easy to see that the initial drift iszero, and the �nal weighted average drift is the atual drift at t. Also, in eah level the driftmay either stay the same (in ase we have to split an even number of ourrenes of task i), oris hanged by �x where 0 � x � 1=2. Note that x is positive if and only if the hange in the17

drift at the urrent median point losest to t is +1=2. We extend the de�nition of potentialsto all time points t in the obvious way; that is, POT (t; k) = Pni=1D(t; i; k)�. We show thatthe potential after log T levels is bounded by O(T �=2 � n). This implies the desired bound onthe drift of eah task at t sine the potential is the sum of the drifts to the power of �.Lemma 23 For all 0 � t � T � 1, and all 1 � k � log T ,POT (t; k) � POT (t; k � 1) + � nXi=1D(t; i; k � 1)��2for some onstant .Proof: The inrement of the potential at time t at the k-th level is bounded by the maximumover all disjoint sets S1; S2 � f1; : : : ; ng, suh that jS1j = jS2j ofminS1;S2 8<:Xi2S1[D(t; i; k � 1) + x℄� + Xi2S2[D(t; i; k � 1)� x℄�;Xi2S2[D(t; i; k � 1) + x℄� + Xi2S1[D(t; i; k � 1)� x℄�9=;� Xi2S1[S2[D(t; i; k � 1)℄�for some 0 � x � 1=2. Sine the minimum is always bounded by the average, the hange isbounded by12 8<: Xi2S1[S2[D(t; i; k � 1) + x℄� + [D(t; i; k � 1)� x℄� � 2[D(t; i; k � 1)℄�9=; :Finally, the maximum over all disjoint sets S1; S2 � f1; : : : ; ng, suh that jS1j = jS2j is ahievedfor S1 [S2 = f1; : : : ; ng, and it is O(Pni=1[D(t; i; k � 1) + x℄��2). 2Lemma 24 For all 0 � t � T � 1, and all 0 � k � log T ,nXi=1[D(t; i; k)℄��2 � (� log T)�2�1 � nwhere is the onstant of Lemma 23.Proof: To obtain a ontradition assume that there exists 0 � t � T � 1 and 0 < k � log Tfor whih the bound does not hold. Consider the minimum suh k. By Lemma 23 and theminimality of k, we get that By Lemma 23, we get that POT (t; k) � POT (t; k � 1) + �Pni=1D(t; i; k � 1)��2. Reapplying Lemma 23 and sine the funtion D(t; i; k) is inreasing ink we get POT (t; k) � k �Pni=1D(t; i; k � 1)��2. Finally by the minimality of k, POT (t; k) �k � (� log T)�2�1 � n = �2 � (log T)�2�1 � n � k. By our de�nition POT (t; k) = Pni=1D(t; i; k)�.By H�older inequality nXi=1D(t; i; k)� � n Pni=1D(t; i; k)��2n ! ���2 :18

However, by our assumptionn Pni=1D(t; i; k)��2n ! ���2 > n0�(� log T)�2�1nn 1A ���2 = (� log T)�2 � n:Combining the two inequalities we get(log T)�2 < (log T)�2�1 � kBut this inequality implies that k > log T ; a ontradition. 2Theorem 25 The maximum drift is bounded by O(plog T � n�), for any �xed �.Proof: By Lemmas 23 and 24, the potential POT (t; log T), for all 1 � t � T , is boundedby log T � O((log T)�2�1 � n) = O((log T)�2 � n). This implies the bound on eah drift, sine thepotential is the sum of the drifts to the power of �. The onstant � is hosen to be 1� . 25 Realizing frequenies rigidlyIn this setion we show how to onstrut a shedule that 12-approximates any feasible frequenyvetor in a rigid fashion on an interval graph. We redue our Rigid Shedule problem to theDynami Storage Alloation problem. The Dynami Storage Alloation problem is de�nedas follows. We are given objets to be stored in a omputer memory. Eah objet has twoparameters: (i) its size; that is, the number of ells needed to store it, and (ii) the time intervalin whih it should be stored. Eah objet must be stored in adjaent ells. The problem is to�nd the minimal size memory that an aommodate at any given time all of the objets thatare needed to be stored at that time. The Dynami Storage Alloation problem is a speialase of the multi-oloring problem on interval graphs de�ned below.A multi-oloring of a weighted graph G with the weight funtion w : V ! N , is a funtionF : V ! 2N suh that (i) for all v 2 V the size of F (v) is w(v), and (ii) if (v; u) 2 E thenF (v)\F (u) = ;. The multi-oloring problem is to �nd a multi-oloring with minimal numberof olors. This problem is known to be an NP-Hard problem [GJ79℄.Two interesting speial ases of the Multi-Coloring problem are when the olors of a vertexmust be either ontiguous or \spread well" among all olors. We all the �rst ase the Cont-MC problem and the seond ase the Spread-MC problem. More formally, in a solution toCont-MC if F (u) = fx1 < � � � < xkg, then xi+1 = xi + 1 for all 1 � i < k. Whereas in asolution to Spread-MC that uses T olors, if F (u) = fx1 < � � � < xkg then (i) k divides T , and(ii) xi+1 = xi + T=k, for all 1 � i < k, and xk + T=k � T = x1.It is not hard to verify that for interval graphs the Cont-MC problem is equivalent to theDynami Storage Alloation problem desribed above. Simply assoiate eah objet with avertex in the graph and give it a weight equal to the number of ells it requires. Put anedge between two verties if their time intervals interset. The olors assigned to a vertex areinterpreted as the ells in whih the objet is stored.19

On the other hand, the Spread-MC problem orresponds to the Rigid Shedule problemas follows. First, we replae the frequeny f(v) by a weight w(v). Let k(v) = d� log2 f(v)e,and let k = maxv2V fk(v)g, then w(v) = 2k�k(v). Clearly, f(v)=2 � w(v)=2k � f(v). Now,assume that the output for the Spread-MC problem uses T olors and let the olors of v befx1 < � � � < xkg where x2 � x1 = �. We interpret this as follows: v is sheduled in timesx1 + i� for all i � 0. It is not diÆult to verify that the resulting shedule is rigid and it2-approximates the given frequenies.Although the Dynami Storage Alloation problem is a speial ase of the multi-oloringproblem it is still known to be an NP-Hard problem [GJ79℄. Using similar arguments it anbe shown that the Rigid Sheduling problem is also NP-Hard. Therefore, we are looking foran approximation algorithm. In what follows we present an approximation algorithm thatprodues a rigid sheduling that 12-approximates the given frequenies. For this we onsiderinstanes of the Cont-MC and Spread-MC problems in whih the input weights are powers oftwo.De�nition 26 A solution for an instane of Cont-MC is both aligned and ontiguous if forall v 2 V , F (v) = fj � w(v); : : : ; (j + 1) � w(v) � 1g for some j � 0.In [Kie91℄, Kierstead presents an algorithm for Cont-MC that has an approximation fator3. A areful inspetion of this algorithm shows that it produes solutions that are both alignedand ontiguous for all instanes in whih the weights are power of two.We show how to translate a solution for suh an instane of the Cont-MC problem that isboth aligned and ontiguous into a solution for an instane of the Spread-MC problem withthe same input weights.For 0 � x < 2k, let �(x) be the k-bit number the binary representation of whih is theinverse of the binary representation of x.Proposition 27 For 1 � i � k and 0 � j < 2k�i = �, f�(j2i); : : : ; �(j2i + 2i � 1)g =f�(j2i); �(j2i) + �; : : : ; �(j2i) + (2i � 1)�g.This proposition says that an output of Cont-MC that uses olors an be transformedinto an output of Spread-MC that uses at most 2 olors.Consider an instane of the Spread-MC problem in whih all the input weights are powersof two. Apply the solution of Kierstead [Kie91℄ to solve the Cont-MC instane with the sameinput. This solution is both aligned and ontiguous, and uses at most 3T 0 olors where T 0 is thenumber of olors needed by an optimal oloring. Let T � 3T 0 be the smallest power of 2 thatis greater than T 0. It follows that T � 6T 0. Applying the transformation of Proposition 27 onthe output of the solution to Cont-MC yields a solution to Spread-MC with at most T olors.This in turn, yields an approximation fator of at most 12 for the Rigid Sheduling problem,sine w(v)=T � f(v)=2.Theorem 28 The above algorithm omputes a rigid shedule that 12-approximates any feasiblefrequeny vetor on an interval graph. 20

6 Cirular-Ar graphsIn this setion we show how to transform any algorithm A for omputing a shedule that-approximates any given feasible frequeny vetor on interval graphs into an algorithm A0for omputing a shedule that 2-approximates any given feasible frequenies on irular-argraphs.Let f̂ be a feasible frequeny vetor on a irular-ar graph G.Step 1: Find the maximum lique C in G.Let G0 = G�C. Note that G0 is an interval graph. Let ĝ1 and ĝ2 be the frequeny vetorsresulting from restriting f̂ to the verties of G0 and C, respetively. Note that ĝ1 and ĝ2 arefeasible on G0 and C, respetively.Step 2: Using A, �nd shedules S1 and S2 that -approximate ĝ1 and ĝ2 on G0 and C, respe-tively.Step 3: Interleave S1 and S2.Clearly, the resulting shedule 2-approximates f̂ on the irular-ar graph G. Note alsothat all the three steps an be omputed in polynomial time.7 Conlusions and future researhIn this paper we have introdued a new sheduling problem. It is haraterized by the per-sistene and interdependeny of the tasks involved. We have developed new measures thatquantify the fairness and regularity of a shedule. We have shown that every onit graphhas a unique max-min fair frequeny assignment and that, in general, this assignment is hardeven to approximate. However, for perfet graphs, it turns out that max-min fair frequen-ies are easy to ompute and we have given an algorithm for this purpose. The shedulingalgorithms desribed in this paper exhibit a trade-o� between the auray with whih givenfrequenies are realized and their regularity. Furthermore, we have shown that a drift of one(i.e., P-fairness) is not ahievable even for simple interval onit graphs. This an be viewedas an indiation that the problem in this paper is inherently more omplex than the oneonsidered in [BCPV96℄.Many open problems remain. The exat omplexity of omputing a max-min fair frequenyassignment in general graphs is not known and there is no haraterization of when suh anassignment is easy to ompute. All the sheduling algorithms in the paper use the inherentlinearity of interval or irular-ar graphs. It would be interesting to �nd sheduling algorithmsfor the wider lass of perfet graphs. The algorithm for interval graphs that realizes frequeniesexatly exhibits a onsiderable gap in its drift. It is not lear from whih diretion this gapan be losed.Our algorithms assume a entral sheduler that makes all the deisions. Both from theo-retial and pratial point of view it is important to design sheduling algorithms working in21

more realisti environments suh as high-speed loal-area networks and wireless networks (asmentioned in Setion 1.1). The distinguishing requirements in suh an environment inlude adistributed implementation via a loal signaling sheme, a onit graph whih may hangewith time, and restritions on spae per node and size of a signal. The performane measuresand general setting, however, remain the same. A �rst step towards suh algorithms has beenreently arried out by Mayer, Ofek, and Yung in [MOY96℄.

22

AknowledgmentWe would like to thank Don Coppersmith and Moti Yung for many useful disussions.Referenes[AS90℄ B. Awerbuh and M. Saks, A Dining Philosophers Algorithm with PolynomialResponse Time. Pro. 31st IEEE Symp. on Foundations of Computer Siene (1990), 65{75.[BCPV96℄ S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, Proportionate Progress:A Notion of Fairness in Resoure Alloation. Algorithmia, 15(6):600{625 (1996).[BG87℄ D. Bertsekas and R. Gallager, Data Networks. Prentie Hall (1987).[BP92℄ J. Bar-Ilan and D. Peleg, Distributed Resoure Alloation Algorithms. Pro. 6thInternational Workshop on Distributed Algorithms (1992), 277{291.[CCO93℄ J. Chen, I. Cidon, and Y. Ofek, A Loal Fairness Algorithm for Giga-bit LANs/MANs with Spatial Reuse. IEEE J. on Seleted Areas in Communiation,11(8):1183{1192 (1993).[CM84℄ K. Chandy and J. Misra, The Drinking Philosophers Problem. ACM Trans. onProgramming Languages and Systems, 6:632{646 (1984).[CO93℄ I. Cidon and Y. Ofek, MetaRing { A Full-Duplex Ring with Fairness and SpatialReuse. IEEE Trans. on Communiations, 41(1):110{120 (1993).[CS92℄ M. Choy and A. Singh, EÆient Fault Tolerant Algorithms for Resoure Alloationin Distributed System. Pro. 24th ACM Symp. on Theory of Computing (1992), 593{602.[Dijk71℄ E. W. Dijkstra, Hierarhial Ordering of Sequential Proesses. Ata Informatia,1:115{138 (1971).[GJ79℄ M. Garey and D. Johnson, Computers and Intratability, a Guide to the Theoryof NP-Completeness, W. H. Freeman, San Franiso, 1979.[Gol80℄ M. Golumbi, Algorithmi Graph Theory and Perfet Graphs. Aademi Press, NewYork, 1980.[GLS87℄ M. Gr�otshel, L. L�ovasz and A.Shrijver, Geometri Algorithms and Combi-natorial Optimization. Springer-Verlag, Berlin, 1987.[Goo90℄ D. J. Goodman, Cellular Paket Communiations. IEEE Trans. on Communiations,38:1272{1280 (1990).[Jaf81℄ J. Jaffe, Bottlenek Flow Control. IEEE Trans. on Communiations, 29(7):954{962(1981). 23

[Kie91℄ H. A. Kierstead, A Polynomial Time Approximation Algorithm for Dynami Stor-age Alloation. Disrete Mathematis, 88:231{237 (1991).[Knu94℄ D. E. Knuth, The Sandwih Theorem, The Eletroni Journal of Combinatoris,1:1{48 (1994).[LL73℄ C. L. Liu and J. W. Layland, Sheduling Algorithms for Multiprogramming in aHard-Real-Time Environment. Journal of the ACM, 20(1):46{61 (1973).[LY93℄ C. Lund and M. Yannakakis, On the Hardness of Approximating MinimizationProblems. Pro. 25th ACM Symp. on Theory of Computing (1993), 286{293.[Lyn80℄ N. Lynh, Fast Alloation of Nearby Resoures in a Distributed System. Pro. 12thACM Symp. on Theory of Computing (1980), 70{81.[MOY96℄ A. Mayer, Y. Ofek, and M. Yung, Loal Sheduling with Partial State Infor-mation for Approximate Max-min Fair Rates. Pro. IEEE INFOCOM'96 (1996).[Tu71℄ A. Tuker, Matrix haraterizations of irular-ar graphs. Pai� Journal of Math-ematis, 39:535{545, (1971).

24

A The partial order �In this appendix we prove that the relation � is a partial order. We �rst observe that thede�nition an be restated as f̂ � ĝ if there exists an index i and a threshold f suh thatfi < f � gi (the index property), and for all 1 � j � n, gj � minff; fjg (the thresholdproperty). The following two laims establish that � is a partial order.Claim 29 The relation � is anti-symmetri.Proof: To obtain a ontradition assume that there exist two vetors f̂ and ĝ suh thatf̂ � ĝ and ĝ � f̂ . This implies that there exist two indies i and ` and two thresholds f and gsuh that:1. fi < f � gi, and for all 1 � j � n, gj � minff; fjg.2. g` < g � f`, and for all 1 � j � n, fj � minfg; gjg.Sine g` � minff; f`g, f` > g`, and g > g`, it follows that g > f . Similarly, sine fi �minfg; gig, gi > fi, and f > fi, it follows that f > g. We get the ontradition. 2Claim 30 The relation � is transitive.Proof: Suppose that f̂ � ĝ and ĝ � ĥ. We show that f̂ � ĥ. Sine f̂ � ĝ and ĝ � ĥ thereexist two indies i and ` and two thresholds f and g suh that:1. fi < f � gi, and for all 1 � j � n, gj � minff; fjg.2. g` < g � h`, and for all 1 � j � n, hj � minfg; gjg.We hoose h = minff; gg as the threshold for f̂ � ĥ. Now, for all 1 � j � n,hj � minfg; gjg � minfg;minff; fjgg � minfminff; gg; fjg � minfh; fjg :We still have to prove that there exists an index with the desired property. Assume �rstthat h = f � g, then we hoose i as the index and we need to show that fi < h � hi. Sineh = f it follows that fi < h. Sine hi � minfgi; gg, h � g, and gi � f = h, it follows thathi � h. Now assume that h = g < f , then we hoose ` as the index. Here we need to showthat f` < h � h`. Sine g � h` it follows that h � h`. Sine g` � minff; f`g, g > g`, andh = g < f , it follows that h > f`. 2
25

B The omplete proof of Theorem 7We omplete the proof of Theorem 5 for the ase when f̂ is not a rational onvex ombination.Claim 31 If a frequeny vetor f̂ an be expressed as a onvex ombination of the independentsets, then f̂ is feasible.Proof: Suppose that there exist weights f�IgI2I , suh thatPI2I �I = 1 andPI2I �I�(I) =f̂ . We show how to obtain a shedule S that realizes the frequeny vetor f̂ . For every k <1,we pik g(k)i to be a rational number between fi � 2�k and fi, and apply Claim 7 to onstruta shedule Ak of �nite length, denoted T (Ak), that realizes the frequeny vetor ^g(k).We go on to onstrut shedules S1; S2; : : : ; Sk with the following properties.Property 1: Shedule Sk has �nite length T (Sk).Property 2: For eah task 1 � i � n, shedule Sk ahieves a frequeny of at least fi�2�(k�1)for task i.Property 3: Shedule Sk�1 is a pre�x of shedule Sk.Property 4: In the in�nite shedule SkSkSk � � � (i.e., the shedule given by onatenatingthe shedule Sk in�nitely many times), for any task 1 � i � n and time t > T (Sk),f (t)i (SkSkSk � � �) � fi � 2�(k�2). (Reall that f (t)i (S) is the pre�x frequeny of task i attime t in shedule S.)Property 5: For any task 1 � i � n and time t > T (Sk�1), f (t)i (Sk) � fi � 2�(k�3).We onstrut the Sk's indutively. The base ase S1 exists trivially (every non-emptyshedule satis�es the required properties). Assume the shedules S1; : : : ; Sk�1 exist. SheduleSk is given by the onatenation of n1 shedulings of Sk�1 followed by n2 shedulings of Ak.We now show that under an appropriate hoie of n1 and n2, the shedule Sk satis�es theabove properties. Let Di be the maximum among the drift of task i in the shedule Sk�1 andthe drift of task i in the shedule Ak. Let D = maxifDig. Letn1 = & 2kD4T (Sk�1)' and n2 = �2n1T (Sk�1)T (Ak) � :Property 1: The period of Sk isT (Sk) = n1T (Sk�1) + n2T (Ak)whih is �nite sine n1 and n2 are �nite.
26

Property 2: The frequeny of task i in Sk is at leastn1T (Sk�1)(fi � 2�(k�2)) + n2T (Ak)(fi � 2�k)n1T (Sk�1) + n2T (Ak) =fi � 2�(k�1) � n1T (Sk�1)2�(k�1) � n2T (Ak)2�kn1T (Sk�1) + n2T (Ak) :We wish to show that the above quantity is at least fi � 2�(k�1). This simpli�es ton2 � 2n1T (Sk�1)T (Sk) ;a ondition whih is satis�ed by our hoie of n1 and n2.Property 3: Sine n1 � 1, it follows that Sk�1 is a pre�x of Sk.Property 4: Sine Sk�1 is a pre�x of Sk it follows that in the in�nite shedule SkSkSk � � �,for any task 1 � i � n and time t > T (Sk),f (t)i (SkSkSk � � �) = (fi � 2�(k�1))T (Sk) + (fi � 2�(k�2))[t� T (Sk)℄�Di= (fi � 2�(k�2))t+ 2�(k�1)T (Sk)�Di:We wish to show that this is at least t(fi � 2�(k�2)). This ondition simpli�es to2k�1Di � T (Sk) = n1T (Sk�1) + n2T (Sk):One again, the hoie of n1 and n2 satis�es this ondition.Property 5: For any task 1 � i � n and time T (Sk�1) < t � n1T (Sk�1), Property 4 ofshedule Sk�1 guarantees that f (t)i (Sk) � fi � 2�(k�3). Now, onsider t > n1T (Sk�1). Thenumber of times a task i is sheduled in Sk by time t is at least(f � 2�(k�2))n1T (Sk�1) + (f � 2�k)(t� n1T (Sk�1))�Di =(f � 2�(k�3))t+ 2�(k�2)n1T (Sk�1) + 7 � 2�k(t� n1T (Sk�1))�Di:We wish to show that this quantity is at least t(f � 2�(k�3)). This inequality is implied by theondition 4n1T (Sk�1) � 2kDi, whih is satis�ed by the hoie of n1.We use the sequenes S1; : : : ; Sk; : : : to de�ne an in�nite sequene S (whih is essentiallythe limiting element of the sequene fSig). To determine whih independent set to shedule attime t in S, we let k be the smallest index suh that T (Sk) � t. We shedule the independentset sheduled by Sk at time t.To see that S realizes the desired frequeny vetor f̂ , we prove that for every � > 0, thereexists T <1, suh that for all t � T and for all tasks 1 � i � n, f (t)i (S) � fi � �.Given � > 0, let k be the minimum integer suh that 2�(k�2) � � and let T = T (Sk) + 1.Given t � T , let k0 be the largest index suh that t > T (Sk0). Clearly, k0 � k. Observe thatfor any j < 1, Sj is a pre�x of S. Thus, the pre�x of shedule S up to time t is a pre�x ofSk0+1. By Property 5 of Sk0+1, f (t)i (Sk0+1) � fi � 2�(k0�2) � fi � 2�(k�2) � fi � �. 227

