Guaranteeing Fair Service to Persistent Dependent Tasks

Amotz Bar-Noy* Alain Mayer' Baruch Schieber* Madhu Sudan*

August 17, 2001

Abstract

We introduce a new scheduling problem that is motivated by applications in the area
of access and flow-control in high-speed and wireless networks. An instance of the problem
consists of a set of persistent tasks that have to be scheduled repeatedly. Each task has a
demand to be scheduled “as often as possible”. There is no ezxplicit limit on the number
of tasks that can be scheduled concurrently. However, such limits are imposed implicitly
because some tasks may be in conflict and cannot be scheduled simultaneously. These
conflicts are presented in the form of a conflict graph. We define parameters which quantify
the fairness and regularity of a given schedule. We then proceed to show lower bounds on
these parameters, and present fair and efficient scheduling algorithms for the case where
the conflict graph is an interval graph. Some of the results presented here extend to the
case of perfect graphs and circular-arc graphs as well.

*IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598.
Email: {amotz,sbar,madhu}@watson.ibm.com.

"Dept. of Computer Science, Columbia University, New York, NY 10027. Email: mayer@cs.columbia.edu.
Part of this work was done while the author was at the IBM T. J. Watson Research Center. Partially sup-
ported by an IBM Graduate Fellowship, NSF grant CCR-93-16209, and CISE Institutional Infrastructure Grant
CDA-90-24735

1 Introduction

In this paper we consider a new form of a scheduling problem that is characterized by two
features:

Persistence: A task does not simply terminate once it is scheduled. Instead, each task must
be scheduled infinitely many times. The goal is to schedule every task as frequently as
possible.

Dependency: Some tasks conflict with each other and hence cannot be scheduled concur-
rently. These conflicts are represented by a conflict graph. This graph imposes constraints
on the sets of tasks that may be scheduled concurrently. Note that these constraints are
not based simply on the cardinality of the sets, but rather on the identity of the tasks
within the sets.

We consider both the problems of allocation, i.e., how often should a task be scheduled and
reqularity, i.e., how evenly spaced are lengths of the intervals between successive scheduling
of a specific task. We present a more formal description of this problem next and discuss our
primary motivation immediately afterwards. While all our definitions are presented for general
conflict graphs, our applications, bounds, and algorithms are for special subclasses — perfect
graphs, interval graphs and circular arc-graphs.

Problem statement: An instance of the scheduling problem consists of a conflict graph G
with n vertices. The vertices of G are the tasks to be scheduled and the edges of G define pairs
of tasks that cannot be scheduled concurrently. The output of the scheduling algorithm is an
infinite sequence of subsets of the vertices, Iy, I, ..., where I, lists the tasks that are scheduled
at time ¢. Note that I; must be an independent set of G for all ¢.

In the form above, it is hard to analyze the running time of the scheduling algorithm. We
consider instead a finite version of the above problem and use it to analyze the running time.

Input: A conflict graph G and a time t.
Output: An independent set I; denoting the set of tasks scheduled at time unit t.

The objective of the scheduling algorithm is to achieve a fair allocation and a regular
schedule. We next give some motivation and describe the context of our work. As we will see,
none of the existing measures can appropriately capture the “goodness” of a schedule in our
framework. Hence we proceed to introduce measures which allow a better presentation of our
results.

1.1 Motivation

Session scheduling in high-speed local-area networks. The main motivation for this
work arises from the session scheduling problem on a network called MetaRing. MetaRing

([CO93]) is a recent high-speed local-area ring-network that allows “spatial bandwidth reuse”,
i.e., in contrast to other ring networks which may only allow one source destination pair to
communicate on the the ring at a time, the MetaRing can allow several such pairs to commu-
nicate with each other, provided the pairs do not use the same link for the communication.
This concurrent access and transmission of user sessions is implemented using only minimal
intermediate buffering of packets. A typical use of the MetaRing network involves several
users trying to establish “sessions”. A session is a simply a source destination pair, where
the source wishes to send data over to the destination. The data is generated over time and
needs to be shipped over at regular intervals, if not immediately. In the general setting, the
set of sessions can change dynamically. We restrict our attention to the static case. This
restriction is justified by the fact that sessions typically last for a long while. As a result of
the minimal intermediate buffering, a session can send its data over only if it has exclusive use
of all the links in its route. Consequently, sessions whose routes share a link are in conflict.
These conflicts must be regulated by breaking the data sent in a session into units of quotas
that are transmitted according to some schedule. This schedule has to be efficient and fair.
Efficient means that the total number of quotas transmitted (throughput) is maximized. Fair
means that the throughput of each session is maximized, and that the time between successive
activation of a session is minimized, so that large buffers at the source nodes can be avoided.
It has been recognized ([CCO93]) that the access and flow-control in such a network should
depend on locality in the conflict graph. However, no firm theoretical basis for an algorithmic
framework has been proposed up to now. To express this problem as our scheduling problem
we create a circular-arc graph the vertices of which are the sessions, and in which vertices
are adjacent if the corresponding paths associated with the sessions intersect. Since an in-
dependent set in this graph is a collection of mutually non-conflicting sessions, they can all
communicate simultaneously. Thus a schedule is a sequence of independent sets in this graph.
Our goal will be to produce such a schedule which is efficient and fair, in a sense to be made
precise later.

Time sharing in wireless networks. A second naturally occurring scenario where our
model can be applied is in the scheduling of base-station transmissions in a cellular network.
We now describe this setting in detail. Most indoor designs of wireless networks are based on
a cellular architecture with a very small cell size (see, e.g., [G0090].) The cellular architecture
comprises two levels — a stationary level and a mobile level. The stationary level consists of
fixed base stations that are interconnected through a backbone network. The mobile level
consists of mobile units that communicate with the base stations via wireless links. The
geographic area within which mobile units can communicate with a particular base station is
referred to as a cell. Neighboring cells overlap with each other, thus ensuring continuity of
communications. The mobile units communicate among themselves, as well as with the fixed
information networks, through the base stations and the backbone network. The continuity of
communications is a crucial issue in such networks. A mobile user who crosses boundaries of
cells should be able to continue its communication via the new base-station. To ensure this,
base-stations periodically need to transmit their identity using the wireless communication.
In some implementations the wireless links use infra-red waves. Therefore, two base-station

the cells of which overlap are in conflict and cannot transmit their identity simultaneously.
These conflicts have to be regulated by a time-sharing scheme. This time sharing has to be
efficient and fair. Efficient means that the scheme should accommodate the maximal number
of base stations. Fair means that the time between two consecutive transmissions of the same
base-station should be less then the time it takes a user to cross its corresponding cell. Once
again this problem can be posed as our graph scheduling problem where the vertices of the
graph are the base-stations and an edge indicates that the base stations belong to overlapping
cells. Independent sets again represent lack of conflict and a schedule will thus be a sequence
of independent sets.

1.2 Relationship to past work

Previous research on scheduling problems in our framework considered either persistence of
the tasks or dependency among the tasks but not both.

An early work by Liu and Layland [LL73] considers persistent scheduling of tasks in a single
processor environment. In their problem, tasks have deadlines specifying a time limit by when
the ¢th scheduling of a given task must have occurred. They give an algorithm which achieves
full processor utilization for this task. More recently, the problem of scheduling persistent tasks
has been studied in the work of Baruah et al. [BCPV96]. Their setting is closer to ours and we
describe their problem in detail: They considered the problem of scheduling a set of n tasks
with given (arbitrary) frequencies on m machines. (The case m = 1 is equivalent to an instance
of our problem in which the conflict graph is a clique.) To measure regularity of a schedule for
their problem they introduced the notion of P-fairness. A schedule for this problem is P-fair
(proportionate-fair) if at each time ¢ for each task i the absolute value of the difference in the
number of times ¢ has been scheduled and f;¢ is strictly less than 1, where f; is the frequency
of task i. They provided an algorithm for computing a P-fair solution to their problem. Their
problem fails to capture our situation due to two reasons. First, we would like to constrain the
sets of tasks that can be scheduled concurrently according to the topology of the conflict graph
and not according to their cardinality. Moreover, in their problem every feasible frequency
requirement can be scheduled in a P-fair manner. For our scheduling problem, we show that
such a P-fair schedule cannot always be achieved. To deal with feasible frequencies that cannot
be scheduled in a P-fair manner, we define weaker versions of regularity.

The dependency property captures most of the work done based on the well-known “Din-
ing Philosophers” paradigm (see for example [Dijk71], [Lyn80], [CM84], [AS90], [CS92], and
[BP92]). In this setting, Lynch [Lyn80] was the first to explicitly consider the response time
for each task. The goal of successive works was to make the response time of a node to depend
only on its local neighborhood in the conflict graph (see, e.g., [BP92]). While response time in
terms of a node’s degree is adequate for “one-shot” tasks, it does not capture our requirement
that a task should be scheduled in a regular and fair fashion over a period of time.

1.3 Notations and definitions

A schedule S is an infinite sequence of independent sets I3, I5, ..., I;,... Let S(i,t) denote the
indicator variable that represents the schedule; it is 1 if task ¢ is scheduled at time ¢ and 0
otherwise. Let fi(t)(S) =>"t_, S(i,7)/t, we refer to fi(t)(S) as the prefiz frequency of task 7 at
time ¢ in schedule S. Let £;(S) = liminf,_,oo{f " (S)}. We refer to f;(S) as the frequency of task
¢ in schedule S. We say that a schedule S is periodic with period T, if I; = I7yj = Iopqj = -+
for all 1 < j < T. In periodic schedules we will refer to fi(T)(S) as the frequency of task i. (In
both fi(t)(S) and f;(S) we drop the index S whenever the identity of the schedule S is clear
from the context.)

Definition 1 A wvector of frequencies f = (f1,..., fn) is feasible if there exists a schedule S
such that the frequency of the i-th task in schedule S is at least f;.

Definition 2 A schedule S realizes a vector of frequencies f if the frequency of the i-th task in
schedule S is at least f;. A schedule S c-approximates a vector of frequencies f if the frequency
of the i-th task in schedule S is at least f;/c.

A measure of fairness. Fairness is determined via a partial order < that we define on the
set of frequency vectors.

Definition 3 Given two frequency vectors f = (f1,...,fn) and § = (g1,...,90), [< § (f is
less fair than g) if there exists an index i and a threshold f such that f; < f < g;, and for all
J such that g; < f, f; < gj.

Less formally, if f < g, then § “performs” better for some task i and all tasks with frequency
smaller than the -th task, i.e., those tasks that are least scheduled. It could be the case that
f “performs” better for the other tasks, however our concern in fair allocation is with the less
frequently scheduled tasks.

In Appendix A we prove that the relation < is indeed a partial order.
Definition 4 A vector of frequencies f s max-min fair if no feasible vector § satisfies f <g.

Less formally, in a max-min fair frequency vector, one cannot increase the frequency of some
task at the expense of less frequently scheduled tasks. This means that our goal is to let each
task ¢ have more of the resource as long as we have to take the resource away only from tasks
which are better off, i.e., those that have more of the resource than task z.

Measures of regularity. We provide two measures by which one can evaluate a schedule
for its regularity. We call these measures the response time and the drift.

Given a schedule S, the response time for task ¢, denoted r;, is the largest interval of time
for which task 7 waits between successive schedulings. More precisely,

r; = max{tg — t1|0 S tl < t2 S.t. Vt1<t<t25(’i,t) = 0}

For any time ¢, the number of expected occurrences of task 7 can be expressed as f;t. But
note that if r; is larger than 1/f;, it is possible that, for some period of time, a schedule allows
a task to “drift away” from its expected number of occurrences. In order to capture this, we
introduce a second measure for the regularity of a schedule. We denote by d; the drift of a
task 7. It indicates how much a schedule allows task ¢ to drift away from its expected number
of scheduled units: .

d; = m?x{|fz~ -t — Z S(i,7)|}.
r=1

Note that if a schedule S achieves drift d; < 1 for all 4, then it is P-fair as defined in [BCPV96].

A schedule achieves its strongest form of regularity if each task ¢ is scheduled every 1/f;
time-units (except for its first appearance). We say that a schedule is rigid if for each task
1 there exists a starting point s; such that the task is scheduled on exactly the time units
si +7(1/fi), for j > 0.

Graph subclasses. A graph is perfect if for all its induced subgraphs the size of the maximum
clique is equal to the chromatic number (cf. [Gol80]). A graph is an interval graph (circular-arc
graph) if its vertices correspond to intervals on a line (circle), and two vertices are adjacent if
the corresponding intervals intersect (cf. [TucT71]).

1.4 Results

In Section 2 we motivate our definition of max-min fairness and show several of its properties.
First, we provide an equivalent (alternate) definition of feasibility which shows that deciding
feasibility of a frequency vector is computable. Next, we prove that every graph has a unique
max-min fair frequency vector. Then, we show that the task of even weakly-approximating
the max-min fair frequencies on general graphs is NP-hard. As we mentioned above, many
practical applications of this problem arise from simpler networks, such as buses and rings
(i.e., interval conflict graphs and circular-arc conflict graphs). For the case of perfect-graphs
(and hence for interval graphs), we describe an efficient algorithm for computing max-min fair
frequencies. We prove that the period 1" of a schedule realizing such frequencies on a perfect
graph satisfies 7' = 2°(") and that there exist interval graphs such that 7' = 29",

The rest of our results deal with the problem of finding the most “regular” schedule that
realizes any feasible frequency vector. In Section 3 we show the existence of interval graphs
for which there is no P-fair schedule that realizes their max-min fair frequencies. In Section 4
we describe an algorithm for computing a schedule that realizes any given feasible frequencies
on interval graphs. The schedule computed by the algorithm achieves response-time of [4/ f;]
and drift of O(y/logTn¢). A slight modification of this algorithm yields a schedule that 2-
approximates the given frequencies. The advantage of this schedule is that it achieves a bound
of one on the drift and hence a bound of [2/f;] on the response time. In Section 5 we present
an algorithm for computing a schedule that 12-approximates any given feasible frequencies
on interval graphs and has the advantage of being rigid. All algorithms run in polynomial

time. In Section 6 we show how to transform any algorithm for computing a schedule that c¢-
approximates any given feasible frequencies on interval graphs into an algorithm for computing
a schedule that 2c-approximates any given feasible frequencies on circular-arc graphs. The
response-time and drift of the resulting schedule are doubled as well.

Finally, in Section 7 we summarize our results, list a number of open problems and sketch
what additional properties are required to obtain solutions for actual networks.

2 Max-min Fair Allocation

Our definition for max-min fair allocation is based on the definition used by Jaffe [Jaf81]
and Bertsekas and Gallager [BG87], but differs in one key ingredient — namely our notion of
feasibility. We study some elementary properties of our definition in this section. In particular,
we show that our definition guarantees a unique max-min fair frequency vector for every conflict
graph. We also show the hardness of computing the frequency vector for general graphs.
However, for the special case of perfect graphs our notion turns out to be the same as that of
[BG8T7].

The definition of [Jaf81] and [BG87] is considered as the traditional way of measuring
throughput fairness in communication networks and is also based on the partial order < as
used in our definition. The primary difference between our definition and theirs is in the
definition of feasibility. Bertsekas and Gallager [BG87] use a definition, which we call clique
feasibility, that is defined as follows:

A vector of frequencies (fi,...,fn) is clique feasible for a conflict graph G, if
> icc fi <1 for all cliques C' in the graph G.

The notion of max-min fairness of Bertsekas and Gallager [BG87] is now exactly our notion,
with feasibility replaced by clique feasibility.

The definition of [BG87] is useful for capturing the notion of fractional allocation of a
resource such as bandwidth in a communication networks. However, in our application we
need to capture a notion of integral allocation of resources and hence their definition does not
suffice for our purposes. By definition, every frequency vector that is feasible in our sense is
clique feasible. However, the converse is not true. Consider the case where the conflict graph
is the five-cycle. For this graph the vector (1/2,1/2,1/2,1/2,1/2) is clique feasible, but no
schedule can realize this frequency vector.

2.1 An alternate definition of feasibility

Given a conflict graph G, let Z denote the family of all independent sets in G. For I € Z, let
X(I) denote the characteristic vector of I.

Theorem 5 A vector of frequencies f 15 feasible if and only sz 15 a convex combination of
the x(I)’s; that is, there exist weights {ar}rer, such that Y ;crar =1 and Y crarx(I) = f.

Proof: Claim 6 proves the easier direction. Claim 7 proves the other direction only for the
case when f can be expressed as a rational convex combination of the independent sets. The
proof for the case when f is not a rational convex combination is given in Appendix B. O

Claim 6 If a frequency vector f is feasible then there exists a sequence of weights {ar}rer
such that Y, ar =1 and Y, arx(I) = f.

Proof: To obtain a contradiction assume otherwise. By continuity there exists an ¢ > 0,
such that the vector (1—¢)f cannot be expressed as a convex combination of the x(I)’s. Based
on the definition of feasibility, there exists a schedule S which achieves a frequency of at least
f . In particular, there exists a time 1" = T, such that fi(T) > fi—eforalll <i<n. Let ay
be the frequency of the independent set I in the first 1" time units in the schedule S. Then
Srar=1and Y arx(I) > (1 —€)f, contradicting the choice of e. O

Claim 7 If a frequency vector f can be expressed as a rational convex combination of the
independent sets, then f is feasible.

Proof: Suppose that there exist rational weights {«r}sez, such that) ;.77 = 1 and
Yrerarx(l) = f. Express oy as pr/qr where pr and g; are integral and let T = LCM{q;}.
Observe that Ny = oyT is integral. For each I we Ny times schedule the independent set [
over a period of T intervals (in any arbitrary units of time). It is clear that there are enough
slots for each independent set to be scheduled N; times. O

The main impact of Theorem 5 is that it shows that the space of all feasible frequencies
is well behaved (i.e., it is a closed, connected, compact space). In addition, it shows that
determining whether a frequency vector is feasible is a computable task (a fact that may not
have been easy to see from the earlier definition). We now use this definition to observe the
following interesting connection:

Proposition 8 Given a conflict graph G, the notions of feasibility and clique feasibility are
equivalent if and only if G is perfect.

Proof: The proof follows directly from well-known polyhedral properties of perfect graphs.
(See [GLS87], [Knu94].) In the notation of Knuth [Knu94] the space of all feasible vectors is
the polytope STAB(G) and the space of all clique-feasible vectors is the polytope QSTAB(G).
The result follows from the theorem on page 38 in [Knu94] which says that a graph G is perfect
if and only if STAB(G) = QSTAB(G). O

2.2 Uniqueness and computability of max-min fair frequencies

In this subsection we prove that the max-min fair frequency vector is unique. We also show
that finding this vector (or even approximating it) is computationally hard.

Theorem 9 For any conflict graph there exists a unique maz-min fair frequency vector.

Proof: For a vector f let sort f denote the vector obtained by permuting the vector f so that
its coordinates appear in nondecreasing order. Let the relation <., on the feasible frequency

vectors be the lexicographic ordering on sort f More precisely, f <lex g if either sort f = sortg
or there exists an index 7 > 1 such that sort fl < sortg; and sort f] = sortg; for all 1 < j <.
(Note that <}, is not a partial order since it is not anti-symmetric.) It is easy to verify that
if f <jex 9> and sortf # sortg then f < g. Let the vector f be a max-min fair vector. (Such a
vector exists in the space of feasible vectors, since this space is compact.) The vector f is also
larger according to the ordering <., than any vector g such that sort f # sortg. We now show
that there is no vector ¢ such that sortf = sortg. This implies that it is the unique max-min
fair frequency vector.

To obtain a contradiction, suppose that there exists a vector ¢ such that sort f = sortg.
First observe that the vector h = (f + §)/2 is feasible. This is true because f and § can be
expressed as a convex combination of the independent sets and h is a convex combination of
f and §g. Thus h is a convex combination of the independent sets. Now assume without loss
of generality that the indices of the vectors are arranged in increasing order of f; + g;. Let j
be the smallest index such that f; # g;. Say, f; is the smaller of the two. Then ((f—l—f])/Z)j is
greater than f; and for all vertices ¢ with smaller frequencies, f; = ((f+§)/2)i. This implies
that f <lex (f +§)/2. A contradiction. O

We now turn to the issue of the computability of the max-min fair frequencies. While we
do not know the exact complexity of computing max-min fair frequencies (in particular, we do
not know if deciding whether a frequency vector is feasible is in NP U coNP), it does seem to be
very hard in general. Here, we consider the sub-problem of computing the smallest frequency
assigned to any vertex by a max-min allocation and show the following:

Theorem 10 There exists an € > 0, such that given a conflict graph on n vertices, approxi-
mating the smallest frequency assigned to any vertex in a max-min fair allocation to within a
factor of n¢ is NP-hard.

Proof: We relate the computation of max-min fair frequencies in a general graph to the com-
putation of the fractional chromatic number of a graph. We then use the recent hardness result
for approximating the (fractional) chromatic number, due to Lund and Yannakakis [LY93] to
show that computing max-min fair frequencies in general graphs is very hard.

The fractional chromatic number problem (cf. [LY93]) is defined as follows:

To each independent set I in the graph, assign a weight wy, so as to minimize
the quantity) ; wy, subject to the constraint that for every vertex v in the graph,
the quantity > ;5, wr is at least 1. The quantity) ;wr is called the fractional
chromatic number of the graph.

Observe that if the wy’s are forced to be integral, then the fractional chromatic number is the
chromatic number of the graph.

The following claim shows a relationship between the fractional chromatic number and the
assignment of feasible max-min fair frequencies.

Claim 11 Let (f1, f2, ..., fn) be a feasible assignment of frequencies to the vertices in a graph
G. Then 1/(min; f;) is an upper bound on the fractional chromatic number of the graph.

Conversely, if k is the fractional chromatic number of a graph, then o schedule that sets the
frequency of every vertex to be 1/k is feasible.

The proof of the above claim is straightforward given the definitions of fractional chromatic
number and feasibility. We now show how to use the claim to prove the theorem.

The above claim, combined with the hardness of computing the fractional chromatic number
[LY93], suffices to show the NP-hardness of deciding whether a given assignment of frequencies
is feasible for a given graph. To show that the claim also implies the hardness of approximating
the smallest frequency in the max-min fair frequency vector we inspect the Lund-Yannakakis
construction a bit more closely. Their construction yields a graph in which every vertex
participates in a clique of size k such that deciding if the (fractional) chromatic number is & or
kn¢ is NP-hard. In the former case, the max-min fair frequency assignment to every vertex is
at least 1/k. In the latter case at least some vertex will have frequency smaller that 1/(kn¢).
Thus this implies that approximating the smallest frequency in the max-min fair frequencies
to within a factor of n¢ is NP-hard. O

2.3 Max-Min fair frequencies on perfect graphs

We now consider perfect graphs. We show how to compute in polynomial time max-min fair
frequencies for this class of graphs and give bounds on the period of a schedule realizing such
frequencies. As our main focus of the subsequent sections will be interval graphs, we will give
our algorithms and bounds first in terms of this subclass and then show how to generalize the
results to perfect graphs.

We start by describing an algorithm for computing max-min fair frequencies on interval
graphs. As we know that clique-feasibility equals feasibility (by Proposition 8), we can use an
adaptation of [BG8T]:

Algorithm 1. Let C be the collection of maximal cliques in the interval graph. (Notice that
C has at most n elements and can be computed in polynomial time.) For each clique C € C
the algorithm maintains a residual capacity which is initially 1. To each vertex the algorithm
associates a label assigned/unassigned. All vertices are initially unassigned. Dividing the
residual capacity of a clique by the number of unassigned vertices in this clique yields the
relative residual capacity. Iteratively, we consider the clique with the smallest current relative
residual capacity and assign to each of the clique’s unassigned vertices this capacity as its
frequency. For each such vertex in the clique we mark it assigned and subtract its frequency
from the residual capacity of every clique that contains it. We repeat the process till every
vertex has been assigned some frequency.

It is not hard to see that Algorithm 1 correctly computes max-min fair frequencies in
polynomial-time. We now use its behavior to prove a tight bound on the period of a schedule
for an interval graph. The following theorem establishes this bound:

Theorem 12 Let f; = p;/q; be the frequencies in a maz-min fair schedule for an interval graph

Figure 1: An interval graph with n = 23 intervals for which 7' = LCM}_,{¢;} > 2" -1,

G, where p; and ¢; are relatively prime. Then, the period for the schedule T = LCM}_{q;}
satisfies, T = 290 Furthermore, there exist interval graphs for which T = 29",

We prove this theorem with the help of the following two lemmas:
Lemma 13 LCM" ,{¢} < 2"/2.

Proof: Let n; denotes the number of intervals that are assigned frequency I‘;—; in iteration
g. That is, % is the minimum relative residual capacity at iteration j. From the way the
relative residual capacities are updated, it follows that ¢; divides H§:1 n; for all 1 <7 < n.
The lemma follows since assuming there were ¢ iterations, ¢; divides H§:1 nj, and H§:1 nj
attains its maximum when £ =n/2 and n; =2 for all 1 <i < 4. O
Lemma 14 There ezists an interval graph for which LCMj—{q;} > 251,

Proof: We show an interval graph in which max} ;{¢;} > 2nT+271, the lemma follows since
trivially LCM};{¢;} > max} ;{¢;}. For simplicity we assume that 5 divides n+ 2. The reader

may find it easier to follow the construction for n = 23 depicted in Figure 1. Let © = w
and y = RTH — 1. In the construction z intervals start at 0 (the top 15 intervals in Figure 1),

and two intervals start at ¢ for all 1 < ¢ < y (the bottom 8 intervals in Figure 1). Note
that indeed 2y + z = n. Out of the first = intervals, three intervals terminate at ¢ for each
1 <i<y+ 1. Note that indeed 3(y + 1) = z. For 1 <14 < y, out of the two intervals starting
at ¢, one interval terminates at ¢ + 1 and one continues until y + 1.

Now, since at 0 the size of the clique is = and at 7 the size of the cliqueis z—3i+ (1 —1)+2 =
z — 21+ 1, it follows that the algorithm for the frequency assignment handles the cliques from
left to right and there are y + 1 different values for frequencies denoted by wy,...,w,. We get

1
wy = —,
A
w . 3’100_1
L N
3wy + wy 9
Wy = ———— = —,

2 4x

10

3 2i—1

In general, by induction we prove that w; = - == for 1 <i <.
3wg+w; 3 3 22—-1 3 1 20—-1 3 2+l _1
Wi+1 = — 7 = _—1:——+ ,1:—.7'1
2 2¢ @ 2vt Tz 2 2+ T 2+

Since the denominator of w, is greater or equal to 2¥ and neither 3 nor 2¥ — 1 has a common
divisor with 2Y, it follows that max} ,{¢;} > 25 1, O

Algorithm 1 works for all graphs where clique feasibility determines feasibility; i.e., perfect
graphs. However, the algorithm does not remain computationally efficient since it involves
scanning all the cliques in the graph. Still, Theorem 12 can be directly extended to the class
of perfect graphs. We now use this fact to describe a polynomial-time algorithm for assigning
max-min fair frequencies to perfect graphs.

Algorithm 2. This algorithm maintains the labelling procedure assigned/unassigned of Al-
gorithm 1. At each phase, the algorithm starts with a set of assigned frequencies and tries to
find the largest f such that all unassigned vertices can be assigned the frequency f. To compute
f in polynomial time, the algorithm uses the fact that deciding if a given set of frequencies is
feasible is reducible to the task of computing the size of the largest weighted clique in a graph
with weights on vertices. The latter task is well known to be computable in polynomial-time
for perfect graphs. Using this decision procedure the algorithm performs a binary search to
find the largest achievable f. (The binary search does not have to be too refined due to the
upper bound on the denominators of the frequencies given in Theorem 12.) Having found the
largest f, the algorithm finds a set of vertices which are saturated under f as follows: Let € be
some small number, with the property that the difference between any two distinct assigned
frequencies is more than e. By Theorem 12, ¢ = 2" ig sufficient. Now the algorithm raises,
one at a time, the frequency of each unassigned vertex to f + €, while maintaining the other
unassigned frequencies at f. If the so obtained set of frequencies is not feasible, then it marks
the vertex as assigned and its frequency is assigned to be f. The algorithm now repeats the
phase until all vertices have been assigned some frequency.

3 Non-existence of P-fair allocations

We show that a P-fair scheduling under max-min fair frequencies need not exist for every
interval graph.

Theorem 15 There exist interval graphs G for which there is no P-fair schedule that realizes
their max-min frequency assignment.

Proof: In order to prove the theorem we produce a counter example as follows. We choose
a parameter k and for every permutation 7 of the elements {1,...,k}, we define an interval
graph G;. We show a necessary condition that m must satisfy if G, has a P-fair schedule.
Lastly, we show that there exists a permutation 7w of 12 elements which does not satisfy this
condition.

11

A1) B(1) C(3)

A B(2) C(1)

AR) B(3) C(2

A4) B(4) C(4)

Figure 2: The graph G, for 7 = (3,1,2,4)

Given a permutation 7 on k elements, G consists of 3k intervals. For 1 < 1 < k, define
the intervals A(i) = (i — 1,1], B(i) = (4,k + (i) + 1] and C(i) = (k+i+ 1,k + i+ 2]. Observe
that the max-min frequency assignment to G is the following: All the tasks B(1),..., B(k)
have frequency 1/k; task A(i) has frequency (k — i+ 1)/k for 1 < i < k; and task C(i) has
frequency i/k for 1 <i < k. (See Figure 2.)

We now observe the properties of a P-fair schedule for the tasks in G. (i) The time period
is k. (ii) The schedule is entirely specified by the schedule for the tasks B(i). (iii) This schedule
is a permutation o of k elements, where o (i) is the time unit for which B(%) is scheduled. To
see what kind of permutations o constitute P-fair schedules of G; we define the notion of when
a permutation is fair for another permutation.

Definition 16 A permutation oy is fair for a permutation oo if for all 1 < 1i,j < k, o1 and
oo satisfy the conditions cond;; defined as follows:

%—1<|{€:01(€)§jandag(é)gi}|<%+1.

Claim 17 If a permutation o is a P-fair schedule for G, then o is fair for the identity per-
mutation and permutation .

Proof: For fixed 7, we claim that the conditions cond;; for 01 = 0 and o2 being the identity
permutation, are exactly the conditions for a P-fair allocation of A(i + 1). Similarly, the
conditions cond;; for o1 = o and o9 = 7 are the conditions for a P-fair allocation of C(k —i).
Thus, a permutation o represents a P-fair schedule for G if and only if ¢ is fair for both =
and the identity permutation.

We now show why the conditions cond;; for o1 = o and o2 being the identity permutation,
are exactly the conditions for a P-fair allocation of A(7 4+ 1). The claim about the conditions
cond;; for o1 = o and 09 = 7 is analogous. Recall that the frequency of task A(i+1) is (k—i)/k
and that A(i + 1) can be scheduled only when tasks B(f), for 1 < ¢ < 4, are not scheduled.
Consider the schedule up to time j < k. In order for the schedule to be P-fair, the number of

occurrences of tasks B(¢), for 1 < £ < £, up to this time must be between j — @ —1= Ekl -1
and j — @ +1= Ekl + 1. Note that the number of times these tasks are scheduled is the
cardinality of the set {£: 01(¢) < j and ¢ < ¢}, which translates to cond;; for oy = o and oy

being the identity permutation. O

Let m = (1,3,4,7,8,9,11,5,12,10,2,6) be a permutation on 12 elements. The following
arguments show that no permutation o is fair to both the identity permutation and the per-

12

mutation 7.

10.

. We define a block as any contiguous set of elements in the range 1 to 12. We say that o

places an element ¢ in the block [4,].

. Without loss of generality assume that o places the element 1 in the block [1, 6].

. Consider the elements in the following six pairs {1, 2}, {3,4}, {5,6}, {7,8}, {9,10}, and

{11,12}. If the permutation o is fair for the identity permutation, then it must place
exactly one element of each pair in the block [1,6]. To see this, note that if o places both
elements 1 and 2 in the block [1,6], then [{£: 0(¢) < 6 and ¢ < 2}| = 2; violating condy .
Thus only element 1 is in block [1,6]. Inductively, it can be shown that if o places both
elements 27 — 1 and 2, for 1 < ¢ < 6, in the block [1, 6], then condy; ¢ is violated.

. A similar argument applied to 7 implies that ¢ must place exactly one element of each

of the six pairs {1,3}, {4,7}, {8,9}, {11,5}, {12,10}, and {2,6} in the block [1,6] if o is

fair for .

. Arguments 2, 3, and 4 imply that the first half of o consists of the elements {1,4, 8,10, 11,6}

and the second half consists of the elements {3,7,9,12,5,2}.

. Again, since ¢ is fair for the identity permutation, ¢ must place exactly one of the

elements of each of the triplets {1,2,3}, {4,5,6}, and {7,8,9} in each of the blocks [1,4],
[5,8], and [9, 12] in order not to violate conditions: conds 4, condsg, and conds 12.

. Similarly, since ¢ is fair for 7, ¢ must place exactly one of the elements of the triplet

{m(7),7(8),m(9)} = {11,5,12} in each of the blocks [1,4], [5, 8], and [9, 12].

. Since 1 appears in the block [1,6] and both 2 and 3 appear in the block [7,12], it follows

from Argument 6 that exactly one of the elements 2 and 3 is placed in the block [7, 8] by
o.

. A similar argument applied to the triplet {7,8,9} implies that exactly one of 7 and 9 is

placed in the block [7,8] by o.

Lastly, we examine the triplet {7 (7), 7(8),7(9)} = {11,5,12}. It follows from Argument 7
that one of 5 and 12 must appear in the block [7, 8].

Since o cannot place three elements in a block of size two, we obtain the contradiction.

The proof of Theorem 15 follows. O

4 Realizing frequencies exactly

In this section we first show how to construct a schedule which realizes any feasible set of

frequencies (and hence in particular max-min frequencies) exactly on an interval graph. We

prove its correctness and give a bound of [4/f;] on the response time for each interval ¢. We

13

then proceed to introduce a potential function which can be used to yield a bound of O(n%“'f)
on the drift for every interval. An easy consequence of our algorithm is for the special case in
which the frequencies are of the form 1/2°, the drift can be bounded by 1 and thus the waiting
time can be bounded by [2/f;]. This yields a 2-approximation algorithm with high regularity.

Input to the Algorithm: A unit of time ¢ and a conflict graph G which is an interval
graph. The graph G is represented by a set I = {Iy,...,I,} of intervals on the unit interval
[0, 1] of the z-coordinate, where I; = [i.s,i.e] for 1 <4 < n. Every interval I; has a frequency
fi = pi/q; with the following constraint: >Z, 5, f; < 1 for all 0 < = < 1. For simplicity, we
assume from now on that these constraints on the frequencies are met with equality and that
t <T =LCM{q}.

Output of the Algorithm: An independent set I; defining the set of tasks scheduled for
time ¢ such that the scheduled S, given by {I,}1 ; realizes frequencies f;.

The algorithm is recursive. Let s; denote the number of times a task ¢ has to appear in
T time units, i.e., s; = T'p;/g;- The algorithm has logT levels of recursion. In the first level
we decide on the occurrences of the tasks in each half of the period. That is, for each task we
decide how many of its occurrences appear in the first half of the period and how many in the
second half. This yields a problem of a recursive nature in the two halves. In order to find
the schedule at time ¢, it suffices to solve the problem recursively in the half which contains £.
(Note that in case 7" is odd one of the halves is longer than the other.) Clearly, if a task has
an even number of occurrences in 1" it would appear the same number of times in each half in
order to minimize the drift. The problem is with tasks that have an odd number of occurrences
si. Clearly, each half should have at least |s;| of the occurrences. The additional occurrence
has to be assigned to one of the halves in a way that both resulting sub-problems would still
be feasible. This is the main difficulty of the assignment and is solved in the procedure Sweep.

Procedure Sweep: In this procedure we compute the assignment of the additional occur-
rence for all tasks that have an odd number of occurrences. The input to this procedure is a
set of intervals Iy, ..., I, (those having odd s;’s) with the restriction that each clique in the
resulting interval sub-graph is of even size. (Later, we show how to overcome this restriction.)
The output is a partition of these intervals into two sets such that each clique is equally divided
among the sets. This is done by a sweep along the z-coordinate of the intervals. During the
sweep every interval will be assigned a variable which at the end is set to 0 or 1 (i.e., first half
of the period or second half of the period). Suppose that we sweep point . We say that an
interval I; is active while we sweep point z if z € I;. The assignment rules are as follows:

14

For each interval I; that starts at z:

If the current number of active intervals is even:
A new variable is assigned to I; (I; is unpaired).
Otherwise; the current number of active intervals is odd:

I; is paired to the currently unpaired interval I;, and it is assigned the
negation of I;’s variable.
Comment: No matter what value is later assigned to this variable, I; and
I; will end up in opposite halves.

For each interval I; that ends at z:

If the current number of active intervals is even:
Nothing is done.
Otherwise; the current number of active intervals is odd:
If I; is paired with I;:
I; is now paired with the currently unpaired interval Ij. Also, I;’s
variable is matched with the negation of I;’s variable.
Comment: This will ensure that I; and Ij are put in opposite halves,
or equivalently, I; and I are put in the same halves.
If I; is unpaired:
Assign arbitrarily 0 or 1 to I;’s variable.

It will be proven later that these rules ensure that whenever the number of active intervals
is even, then exactly half of the intervals will be assigned 0 and half will be assigned 1. We note
that since the conflict graph is an interval graph we are assured that when we apply the above
rules pairing up arbitrary intervals will not result in a circular dependency of the variables

(e.g., z =y =1I).
Recall that we assumed that the size of each clique is even. To overcome this restriction we

need the following simple lemma. For z € [0, 1], denote by C, the set of all the input intervals
(with odd and even s;’s) that contain x; C, will be referred to as a clique.

Lemma 18 The period T is even if and only if [{i : I; € C A s; is odd}| is even for every
clique C.

Proof: Note that ZliGC fi=1l= ZliGC si=T= ZIiEC, s; is odd 5% + ZIiEC, s; is even 51 —
T'. Since the second summand is always even, T is even if and only if the first summand is also
even. a

This lemma implies that if 7" is even then the size of each clique in the input to procedure
Sweep is indeed even. If T' is odd, then a dummy interval I,,;; which extends over all other
intervals and which has exactly one occurrence is added to the set I before calling Sweep.
Again, by Lemma 18, we are sure that in this modified set I the size of each clique is even.
This would increase the period by one. The additional time unit will be allotted only to the
dummy interval and thus can be ignored. We note that to produce the schedule at time ¢ we

15

just have to follow the recursive calls that include ¢ in their period.

Applying this algorithm to the max-min frequencies yields a polynomial in n algorithm.
This is true because there are no more than log 7" such calls and because 7' = 2°(") for max-min
fair frequencies.

Lemma 19 The algorithm produces a correct schedule for every feasible set of frequencies.

Proof: We need to prove that feasibility is maintained with every recursive step. We show
that the following invariant is maintained by Sweep:

For every x for which the number of active intervals in C} is even, exactly half of
the intervals will be assigned 0 and half will be assigned 1.

This invariant is easily maintained when a new interval starts: If the current number of intervals
is odd, then the new interval is paired up with the currently unpaired interval, and thus will
be scheduled in the opposite half of its partner. The invariant holds also when an interval ends
since by our rules whenever an interval ends any two unpaired interval are immediately paired

up.
Now, if T" is odd, then a dummy interval is added and hence sweep produces a feasible

solution for 7'+ 1. In this case the algorithm assigns the “smaller” half of 7" to the half to
which Sweep assigned the dummy interval and feasibility is maintained. O

Lemma 20 If the set of frequencies is of the form 1/2¢ then the resulting schedule is P-fair.
(i.e., the drift can be bounded by 1) and the response time is bounded by [2/f;].

Proof: Since our algorithm always divides even s; into equal halves, the following invariant
is maintained: In recursion level j, if s; > 1 then s; is even. Also note that 7' = 2*, where
min; f; = 1/2¥ and thus each s; is of the form 2¥~*. Now, following the algorithm, it can be
easily shown that there is at least one occurrence of task i in each time interval of size 2F=¥i.
This implies that Lﬁj <Yt 8(@,r) < [ﬁ] and thus P-fairness follows. Since the drift

is bounded by one the response time is bounded by [2/f;]. O
Lemma 21 The response time for every interval I; is bounded by [4/fi].

Proof: Lemma 20 implies the case in which the frequencies are powers of two. Moreover, in
case the frequencies are not powers of two, we can virtually partition each task into two tasks
with frequencies a; and b; respectively, so that f; = a; + b;, a; is a power of two, and b; < a;.
Then, the schedule of the task with frequency a; has drift 1. This implies that its response
time is at most [2/a;| < [4/fi]. O

Remark: It can be shown that the bound of the above lemma is tight for our algorithm.
We summarize the results in this section in the following theorem:

Theorem 22 Given an arbitrary interval graph as a conflict graph, the algorithm ezactly
realizes any feasible frequency vector and guarantees that the response time is at most [4/ f;].

16

4.1 Bounding the drift

Since the algorithm has O(logT') levels of recursion and each level may increase the drift by
one, it follows that the maximum drift is bounded by O(logT"). In this section we prove that
we can decrease the maximum drift to be O(y/logTn¢), for any fixed €, where n is the number
of tasks. By Lemma 13 this implies that in the worst case the drift for max-min fair frequencies
is bounded by O(n2 7).

Our method to get a better drift is based on the following observation: At each recursive
step of the algorithm two sets of tasks are produced such that each set has to be placed in a
different half of the time-interval currently considered. However, we are free to choose which
set goes to which half. We use this degree of freedom to decrease the bound on the drift. To
make the presentation clearer we assume that 7" is a power of two and that the time units are
0,...,7 — 1. The arguments can be modified to hold in the general case.

Consider a sub-interval of size T/2/ starting after time ¢, = i - T/2/ — 1 and ending at
ty = (@ +1)-T/2 — 1, for 0 < i <2/ — 1. In the first j recursion levels we already fixed
the number of occurrences of each task up to t,. Given this number, the drift d, at time
ty is fixed. Similarly, the drift d, at time ¢, is also fixed. At the next recursion level we
split the occurrences assigned to the interval [t; + 1,¢,], and thus fixing the drift d,, at time
tm = (t¢ + tr)/2. Optimally, we would like the drifts after the next recursion level at each
time unit ¢ € [ty + 1,¢,] to be the weighted average of the drifts d; and d,. In other words,
let @ = (t — tg)/(t, — t¢), then, we would like the drift at time ¢ to be ad, + (1 — a)dy. In
particular, we would like the drift at ¢,, to be (d¢ + d,)/2. This drift can be achieved for t,,
only if the occurrences in the interval [ty + 1,¢,] can be split equally. However, in case we have
an odd number of occurrences to split, the drift at ¢,, is (d¢ + d,)/2 £ 1/2, depending on our
decision in which half interval to put the extra occurrence. Note that the weighted average of
the drifts of all other points changes accordingly. That is, if the new d,, is (d¢ + d;)/2 + =z,
for x € {£1/2}, then the weighted average in t € [t; + 1, (t, + ¢)/2] is ad, + (1 — a)d; + 2ax,
where o = (t — tg)/(t, — tg) < 1/2, and the weighted average in ¢t € [(t, + t¢)/2 + 1,t,] is
ady + (1 — a)dy + 2(1 — @)z, where a = (t — tg)/(t, — tg) > 1/2.

Counsider now the two sets of tasks S; and Sy that we have to assign to the two sub-intervals
(of the same size) at level k of the recursion. For each of the possible two assignments, we
compute a “potential” based on the resulting drifts at time ¢,,. For a given possibility let
DIty i, k] denote the resulting drift of task ¢ at ¢, after k£ recursion levels. Define the potential
of t,, after k levels as POT (t;, k) = > 1 D(tm,i,)?, for some fixed even constant ¢. We
choose the possibility with the lowest potential. We now prove that using this policy the drift
of any task after logT" steps is bounded by O(y/log T - n%)

Consider a time ¢ and a task 4. The drift of task ¢ at ¢ is the outcome of at most logT
recursion levels. Define the drift of task ¢ at ¢ after k levels, denoted D(t,i, k), as the weighted
average drift at ¢ given the fixed drifts after k levels. It is easy to see that the initial drift is
zero, and the final weighted average drift is the actual drift at ¢. Also, in each level the drift
may either stay the same (in case we have to split an even number of occurrences of task), or
is changed by +z where 0 < z < 1/2. Note that z is positive if and only if the change in the

17

drift at the current median point closest to ¢ is +1/2. We extend the definition of potentials
to all time points ¢ in the obvious way; that is, POT(t,k) = 1 | D(t,i,k)?. We show that
the potential after log T levels is bounded by O(Td’/ 2.n). This implies the desired bound on
the drift of each task at ¢ since the potential is the sum of the drifts to the power of ¢.

Lemma 23 For all 0 <t<T —1, and oll 1 <k <logT,

n
POT(t,k) < POT(t,k — 1) +c-Y_ D(t,i,k —1)*~>
=1

for some constant c.

Proof: The increment of the potential at time ¢ at the k-th level is bounded by the maximum
over all disjoint sets S1,S2 C {1,...,n}, such that |S;| = |S2| of

ming, s, { Y [D(t,ik—1)+2]”+ Y [D(t,i k- 1) — z]?,

1€S5) 1ES>

> [D(t,ik—1)+2]”+ > [D(t,i,k — 1) —x]¢}

1€8S2 1€S51

- > [D(t,ik—1)]°

1€S1US>

for some 0 < z < 1/2. Since the minimum is always bounded by the average, the change is
bounded by

1 . . .
5 { > [D(tik—1)+z)® + [D(t,i,k — 1) — 2]® = 2[D(t,i, k — 1)]¢} .
1€S1US>
Finally, the maximum over all disjoint sets S1,S2 C {1,...,n}, such that |S;| = |S2| is achieved
for Sy USy = {1,...,n}, and it is O(X" 1 [D(t,i,k — 1) + z]?72). O

Lemma 24 For oll 0 <t<T —1, and oll 0 <k <logT,

S D0, k)]* 2 < (c-logT)% Lo
=1

where ¢ is the constant of Lemma 23.

Proof: To obtain a contradiction assume that there exists 0 <t <T —1 and 0 < k < logT
for which the bound does not hold. Consider the minimum such k. By Lemma 23 and the
minimality of k, we get that By Lemma 23, we get that POT(t,k) < POT(t,k — 1)+ c -
S* D(t,i,k — 1)72. Reapplying Lemma 23 and since the function D(t,4,k) is increasing in
k we get POT(t,k) < kc- 3" | D(t,i,k — 1)*72. Finally by the minimality of k, POT(t, k) <
kc- (c- logT)%*1 n=ct. (logT)%*1 -n - k. By our definition POT(t,k) = >, D(t,4,k)?.
By Holder inequality
¢

ZH:D(t k)Y >n (Z?:l D(t,z’,k)d>—2> 723 |

i=1 n

18

However, by our assumption

9 -
n)02\ 72 . $-1,\ 72
n (=1 D(t727k) > >n (—(c lOgT)2 n) = (C]_OgT)% “n.

n

Combining the two inequalities we get
(logT)% < (logT)%*1 -k
But this inequality implies that & > logT’; a contradiction. O
Theorem 25 The mazimum drift is bounded by O(y/logT - n¢), for any fized €.

Proof: By Lemmas 23 and 24, the potential POT(t,logT), for all 1 < ¢ < T, is bounded
by logT - O((log T)%_1 -n) = O((log T)% -n). This implies the bound on each drift, since the
potential is the sum of the drifts to the power of ¢. The constant € is chosen to be é O

5 Realizing frequencies rigidly

In this section we show how to construct a schedule that 12-approximates any feasible frequency
vector in a rigid fashion on an interval graph. We reduce our Rigid Schedule problem to the
Dynamic Storage Allocation problem. The Dynamic Storage Allocation problem is defined
as follows. We are given objects to be stored in a computer memory. Each object has two
parameters: (i) its size; that is, the number of cells needed to store it, and (ii) the time interval
in which it should be stored. Each object must be stored in adjacent cells. The problem is to
find the minimal size memory that can accommodate at any given time all of the objects that
are needed to be stored at that time. The Dynamic Storage Allocation problem is a special
case of the multi-coloring problem on interval graphs defined below.

A multi-coloring of a weighted graph G with the weight function w : V' — N, is a function
F :V — 2V such that (i) for all v € V the size of F(v) is w(v), and (ii) if (v,u) € E then
F(v) N F(u) = 0. The multi-coloring problem is to find a multi-coloring with minimal number
of colors. This problem is known to be an NP-Hard problem [GJ79].

Two interesting special cases of the Multi-Coloring problem are when the colors of a vertex
must be either contiguous or “spread well” among all colors. We call the first case the Cont-
MC problem and the second case the Spread-MC problem. More formally, in a solution to
Cont-MC if F(u) = {1 < -+ < zy}, then ;47 = x; + 1 for all 1 < i < k. Whereas in a
solution to Spread-MC that uses T colors, if F'(u) = {z1 < --- < z}} then (i) k£ divides T', and
(ii) zj41 =i+ T/k, forall 1 <i < k,and o, + T/k — T = z;.

It is not hard to verify that for interval graphs the Cont-MC problem is equivalent to the
Dynamic Storage Allocation problem described above. Simply associate each object with a
vertex in the graph and give it a weight equal to the number of cells it requires. Put an
edge between two vertices if their time intervals intersect. The colors assigned to a vertex are
interpreted as the cells in which the object is stored.

19

On the other hand, the Spread-MC problem corresponds to the Rigid Schedule problem
as follows. First, we replace the frequency f(v) by a weight w(v). Let k(v) = [—logy f(v)],
and let k = max,ey {k(v)}, then w(v) = 28-*®) Clearly, f(v)/2 < w(v)/2¥ < f(v). Now,
assume that the output for the Spread-MC problem uses 1" colors and let the colors of v be
{z1 < -+ < =z} where o — ;1 = A. We interpret this as follows: v is scheduled in times
1 + A for all ¢ > 0. It is not difficult to verify that the resulting schedule is rigid and it
2-approximates the given frequencies.

Although the Dynamic Storage Allocation problem is a special case of the multi-coloring
problem it is still known to be an NP-Hard problem [GJ79]. Using similar arguments it can
be shown that the Rigid Scheduling problem is also NP-Hard. Therefore, we are looking for
an approximation algorithm. In what follows we present an approximation algorithm that
produces a rigid scheduling that 12-approximates the given frequencies. For this we consider
instances of the Cont-MC and Spread-MC problems in which the input weights are powers of
two.

Definition 26 A solution for an instance of Cont-MC is both aligned and contiguous if for
alveV, Flv)={j -w),...,([J +1) -w(v) —1} for some j > 0.

In [Kie91], Kierstead presents an algorithm for Cont-MC that has an approximation factor
3. A careful inspection of this algorithm shows that it produces solutions that are both aligned
and contiguous for all instances in which the weights are power of two.

We show how to translate a solution for such an instance of the Cont-MC problem that is
both aligned and contiguous into a solution for an instance of the Spread-MC problem with
the same input weights.

For 0 < z < 2%, let 7(x) be the k-bit number the binary representation of which is the
inverse of the binary representation of x.

Proposition 27 For 1 < i < k and 0 < j < 28 = A, {n(j2%),...,n(j2° +2' — 1)} =
{n(529),7(52") + A, ..., 7(j2°) + (2" = 1)A}.

This proposition says that an output of Cont-MC that uses ¢ colors can be transformed
into an output of Spread-MC that uses at most 2¢ colors.

Consider an instance of the Spread-MC problem in which all the input weights are powers
of two. Apply the solution of Kierstead [Kie91] to solve the Cont-MC instance with the same
input. This solution is both aligned and contiguous, and uses at most 37" colors where T" is the
number of colors needed by an optimal coloring. Let T' > 37" be the smallest power of 2 that
is greater than T”. It follows that 7' < 67". Applying the transformation of Proposition 27 on
the output of the solution to Cont-MC yields a solution to Spread-MC with at most 1" colors.
This in turn, yields an approximation factor of at most 12 for the Rigid Scheduling problem,
since w(v)/T > f(v)/2.

Theorem 28 The above algorithm computes a rigid schedule that 12-approzimates any feasible
frequency vector on an interval graph.

20

6 Circular-Arc graphs

In this section we show how to transform any algorithm A for computing a schedule that
c-approximates any given feasible frequency vector on interval graphs into an algorithm A’
for computing a schedule that 2c-approximates any given feasible frequencies on circular-arc
graphs.

Let f be a feasible frequency vector on a circular-arc graph G.
Step 1: Find the maximum clique C' in G.

Let G' = G — C. Note that G’ is an interval graph. Let ¢; and ¢y be the frequency vectors
resulting from restricting f to the vertices of G’ and C, respectively. Note that ¢, and ¢» are
feasible on G’ and C|, respectively.

Step 2: Using A, find schedules S and Sy that c-approximate ¢, and ¢ on G’ and C, respec-
tively.

Step 3: Interleave S; and Ss.

Clearly, the resulting schedule 2¢c-approximates f on the circular-arc graph G. Note also
that all the three steps can be computed in polynomial time.

7 Conclusions and future research

In this paper we have introduced a new scheduling problem. It is characterized by the per-
sistence and interdependency of the tasks involved. We have developed new measures that
quantify the fairness and regularity of a schedule. We have shown that every conflict graph
has a unique max-min fair frequency assignment and that, in general, this assignment is hard
even to approximate. However, for perfect graphs, it turns out that max-min fair frequen-
cies are easy to compute and we have given an algorithm for this purpose. The scheduling
algorithms described in this paper exhibit a trade-off between the accuracy with which given
frequencies are realized and their regularity. Furthermore, we have shown that a drift of one
(i.e., P-fairness) is not achievable even for simple interval conflict graphs. This can be viewed
as an indication that the problem in this paper is inherently more complex than the one
considered in [BCPV96].

Many open problems remain. The exact complexity of computing a max-min fair frequency
assignment in general graphs is not known and there is no characterization of when such an
assignment is easy to compute. All the scheduling algorithms in the paper use the inherent
linearity of interval or circular-arc graphs. It would be interesting to find scheduling algorithms
for the wider class of perfect graphs. The algorithm for interval graphs that realizes frequencies
exactly exhibits a considerable gap in its drift. It is not clear from which direction this gap
can be closed.

Our algorithms assume a central scheduler that makes all the decisions. Both from theo-
retical and practical point of view it is important to design scheduling algorithms working in

21

more realistic environments such as high-speed local-area networks and wireless networks (as
mentioned in Section 1.1). The distinguishing requirements in such an environment include a
distributed implementation via a local signaling scheme, a conflict graph which may change
with time, and restrictions on space per node and size of a signal. The performance measures
and general setting, however, remain the same. A first step towards such algorithms has been
recently carried out by Mayer, Ofek, and Yung in [MOYY6].

22

Acknowledgment

We would like to thank Don Coppersmith and Moti Yung for many useful discussions.

References

[AS90] B. AWERBUCH AND M. SAKkS, A Dining Philosophers Algorithm with Polynomial
Response Time. Proc. 31st IEEE Symp. on Foundations of Computer Science (1990), 65—
75.

[BCPVY6] S. BARUAH, N. COHEN, C. PLAXTON, AND D. VARVEL, Proportionate Progress:
A Notion of Fairness in Resource Allocation. Algorithmica, 15(6):600-625 (1996).

[BG87] D. BERTSEKAS AND R. GALLAGER, Data Networks. Prentice Hall (1987).

[BP92] J. BAR-ILAN AND D. PELEG, Distributed Resource Allocation Algorithms. Proc. 6th
International Workshop on Distributed Algorithms (1992), 277-291.

[CCO93] J. CrEN, I. CipON, AND Y. OFEK, A Local Fairness Algorithm for Giga-
bit LANs/MANs with Spatial Reuse. IEEE J. on Selected Areas in Communication,
11(8):1183-1192 (1993).

[CM84] K. CHANDY AND J. MISRA, The Drinking Philosophers Problem. ACM Trans. on
Programming Languages and Systems, 6:632-646 (1984).

[CO93] I. CIDON AND Y. OFEK, MetaRing — A Full-Duplex Ring with Fairness and Spatial
Reuse. IEEE Trans. on Communications, 41(1):110-120 (1993).

[CS92] M. CHOY AND A. SINGH, Efficient Fault Tolerant Algorithms for Resource Allocation
in Distributed System. Proc. 24th ACM Symp. on Theory of Computing (1992), 593-602.

[Dijk71] E. W. DUKSTRA, Hierarchical Ordering of Sequential Processes. Acta Informatica,
1:115-138 (1971).

[GJ79] M. GAREY AND D. JoHNSON, Computers and Intractability, a Guide to the Theory
of NP-Completeness, W. H. Freeman, San Francisco, 1979.

[Gol80] M. GoLuMBIC, Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

[GLS87] M. GROTSCHEL, L. LOVASZ AND A.SCHRIJVER, Geometric Algorithms and Combi-
natorial Optimization. Springer- Verlag, Berlin, 1987.

[Goo90] D. J. GOODMAN, Cellular Packet Communications. IEEE Trans. on Communications,
38:1272-1280 (1990).

[Jaf81] J. JAFFE, Bottleneck Flow Control. IEEE Trans. on Communications, 29(7):954-962
(1981).

23

[Kie91] H. A. KIERSTEAD, A Polynomial Time Approximation Algorithm for Dynamic Stor-
age Allocation. Discrete Mathematics, 88:231-237 (1991).

[Knu94] D. E. KNuTH, The Sandwich Theorem, The Electronic Journal of Combinatorics,
1:1-48 (1994).

[LL73] C. L. Lu AND J. W. LAYLAND, Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment. Journal of the ACM, 20(1):46-61 (1973).

[LY93] C. LuND AND M. YANNAKAKIS, On the Hardness of Approximating Minimization
Problems. Proc. 25th ACM Symp. on Theory of Computing (1993), 286-293.

[Lyn80] N. LyNcH, Fast Allocation of Nearby Resources in a Distributed System. Proc. 12th
ACM Symp. on Theory of Computing (1980), 70-81.

[MOY96] A. MAYER, Y. OFEK, AND M. YUNG, Local Scheduling with Partial State Infor-
mation for Approximate Max-min Fair Rates. Proc. IEEE INFOCOM’96 (1996).

[Tuc71] A. TUCKER, Matrix characterizations of circular-arc graphs. Pacific Journal of Math-
ematics, 39:535-545, (1971).

24

A The partial order <

In this appendix we prove that the relation < is a partial order. We first observe that the
definition can be restated as f < ¢ if there exists an index ¢ and a threshold f such that
fi < f < g¢i (the index property), and for all 1 < j < n, g; > min{f, f;} (the threshold
property). The following two claims establish that < is a partial order.

Claim 29 The relation < is anti-symmetric.

Proof: To obtain a contradiction assume that there exist two vectors f and ¢ such that
f < gand g < f. This implies that there exist two indices 7 and ¢ and two thresholds f and g
such that:

1. fi< f<giandforalll <j<n,g; >min{f, f;}.

2. g0 <g< fryand forall1 < j <n, f; > min{g,g;}.

Since g > min{f, f¢}, fo > g¢, and g > gy, it follows that ¢ > f. Similarly, since f; >
min{g,g;}, gi > fi, and f > f;, it follows that f > g. We get the contradiction. O

Claim 30 The relation < is transitive.

Proof: Suppose that f < gand g < h. We show that f < h. Since f < gand g < h there
exist two indices ¢ and ¢ and two thresholds f and g such that:

1. fi<f<giandforalll <j<mn,g; >min{f, f;}.

2. g0 <g<hg and forall1 <j<mn,h; >min{g,g;}.
We choose h = min{f, g} as the threshold for f < h. Now, for all 1 < j < n,

hj > min{g, g;} > min{g, min{ f, f;}} > min{min{f, g}, f;} > min{h, f;} .

We still have to prove that there exists an index with the desired property. Assume first
that h = f < g, then we choose 7 as the index and we need to show that f; < h < h;. Since
h = f it follows that f; < h. Since h; > min{g;,g}, h < g, and g; > f = h, it follows that
h; > h. Now assume that h = g < f, then we choose ¢ as the index. Here we need to show
that fr < h < hy. Since g < hy it follows that h < hy. Since gy > min{f, f¢}, ¢ > g¢, and
h =g < f, it follows that h > f. O

25

B The complete proof of Theorem 7

We complete the proof of Theorem 5 for the case when f is not a rational convex combination.

Claim 31 If a frequency vector f can be expressed as a conver combination of the independent
sets, then f is feasible.

Proof: Suppose that there exist weights {c }7ez, such that > ;7o = 1and Y- jerarx(l) =
f- We show how to obtain a schedule S that realizes the frequency vector f. For every k < oo,

(k)

a schedule Ay, of finite length, denoted T'(Ay), that realizes the frequency vector g(k).

we pick g;"’ to be a rational number between f; — 2% and f;, and apply Claim 7 to construct

We go on to construct schedules Si, 59, ...,S, with the following properties.

Property 1: Schedule Sy has finite length 7°(Sy).

Property 2: For each task 1 < i < n, schedule Sy, achieves a frequency of at least f; —2~(:—1)
for task 1.

Property 3: Schedule S;_; is a prefix of schedule Sk.

Property 4: In the infinite schedule S;SiS--- (i.e., the schedule given by concatenating
the schedule Sy infinitely many times), for any task 1 < ¢ < n and time ¢ > T'(Sg),
fi(t)(SkSkSk) > fi — 27(=2) (Recall that fi(t)(S) is the prefix frequency of task i at
time ¢ in schedule S.)

Property 5: For any task 1 <4 <n and time ¢ > T'(Sx_1), fi(t)(Sk) > fi— 2~ (k=3)

We construct the Si’s inductively. The base case S; exists trivially (every non-empty
schedule satisfies the required properties). Assume the schedules Sy,...,S; 1 exist. Schedule
Sk is given by the concatenation of n; schedulings of Si_; followed by no schedulings of Ay.
We now show that under an appropriate choice of n; and ns, the schedule Sy satisfies the

above properties. Let D; be the maximum among the drift of task ¢ in the schedule Sx_; and
the drift of task ¢ in the schedule A;. Let D = max;{D;}. Let

- 2kD o o — 2n1T(Sk_1)
”“LT(S,C_IJ d 2‘[T(Ay) w

Property 1: The period of S is
T(Sk) = n1T(Sk—1) + noT(Ag)

which is finite since n; and ng are finite.

26

Property 2: The frequency of task ¢ in Si is at least
mT(Sp-1)(fi =2 D) +naT(AR)(fi —27%) _
T (Sg-1) + noT'(Ay)
ey T (Se=1)27 7Y — T (Ag)27F
1T (Sk—1) + noT(Ag)
We wish to show that the above quantity is at least f; — 2=*~1)_ This simplifies to
27L1T(Sk_1)
T(Sk)

a condition which is satisfied by our choice of n; and no.

fi—2

ny =2

Property 3: Since n; > 1, it follows that S;_ is a prefix of Sk.

Property 4: Since Si_; is a prefix of Si it follows that in the infinite schedule S;SiSk - - -,
for any task 1 <4 <n and time ¢ > T'(Sk),

FO(SeSkSk-) = (fi=27ENT(SE) + (fi =272t = 1(S)] - Dy
(fz — 27(1672))25 + 27(k71)T(Sk) — D;.
We wish to show that this is at least ¢(f; — 2~(*~2)). This condition simplifies to
Qklei < T(Sk) = an(Skfl) + TLQT(Sk).

Once again, the choice of n; and ny satisfies this condition.

Property 5: For any task 1 < i < n and time T(S;_1) < t < niT(Sk_1), Property 4 of
schedule Sy | guarantees that fi(t>(Sk) > fi —2=%=3)_ Now, consider ¢ > n;T(Sk_1). The
number of times a task ¢ is scheduled in Sy by time ¢ is at least

(f =27 E DN T(Sp_1) + (f = 279)(t = T (Sk1)) — D; =
(f =27 ® =3 4 272 T(Sp_1) +7- 27 (t — n1T(Sk_1)) — D;.
We wish to show that this quantity is at least t(f —2~(*=3)). This inequality is implied by the
condition 4n,T(Sy_1) > 2¥D;, which is satisfied by the choice of n.

We use the sequences Si,...,Sk,... to define an infinite sequence S (which is essentially
the limiting element of the sequence {S;}). To determine which independent set to schedule at
time ¢ in .S, we let k be the smallest index such that T'(S;) > ¢. We schedule the independent
set scheduled by Sy at time ¢.

To see that S realizes the desired frequency vector f , we prove that for every € > 0, there
exists T' < oo, such that for all £ > T and for all tasks 1 < i < n, fi(t)(S) > fi—e

Given € > 0, let k£ be the minimum integer such that 2=(*=2) < ¢ and let T = T(S;) + 1.
Given t > T, let k' be the largest index such that ¢ > T'(Sys). Clearly, &' > k. Observe that
for any j < oo, S; is a prefix of S. Thus, the prefix of schedule S up to time ¢ is a prefix of
Sr1. By Property 5 of Sty i) (Sp1) > fi =27 %2 > fi —276=D > i e, O

27

