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Abstract. Given a function f mapping n-variate inputs from a finite field F into F , we consider
the task of reconstructing a list of all n-variate degree d polynomials that agree with f on a tiny
but non-negligible fraction, δ, of the input space. We give a randomized algorithm for solving this
task. The algorithm accesses f as a black box and runs in time polynomial in n

δ
and exponential

in d, provided δ is Ω(
√
d/|F |). For the special case when d = 1, we solve this problem for all

ε
def
= δ − 1

|F | > 0. In this case the running time of our algorithm is bounded by a polynomial in 1
ε

and n. Our algorithm generalizes a previously known algorithm, due to Goldreich and Levin, that
solves this task for the case when F = GF(2) (and d = 1).

In the process we provide new bounds on the number of degree d polynomials that may agree

with any given function on δ ≥
√
d/|F | fraction of the inputs. This result is derived by generalizing

a well-known bound from coding theory on the number of codewords from an error-correcting code
that can be “close” to an arbitrary word; our generalization works for codes over arbitrary alphabets,
while the previous result held only for binary alphabets.
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1. Introduction. We consider the following archetypal reconstruction problem:

Given: An oracle (black box) for an arbitrary function f : Fn → F , a class of
functions C, and a parameter δ.
Output: A list of all functions g ∈ C that agree with f on at least δ fraction of the
inputs.

The reconstruction problem can be interpreted in several ways within the frame-
work of computational learning theory. First, it falls within the framework of learning
with persistent noise. Here one assumes that the function f is derived from some
function in the class C by “adding” noise to it. Typical works in this direction either
tolerate only small amounts of noise [2, 42, 21, 39] (i.e., that the function is modified
only at a small fraction of all possible inputs) or assume that the noise is random
[1, 26, 20, 25, 33, 13, 36] (i.e., that the decision of whether or not to modify the
function at any given input is made by a random process). In contrast, we take the
setting to an extreme, by considering a very large amount of (possibly adversarially
chosen) noise. In particular, we consider situations in which the noise disturbs the
outputs for almost all inputs.

∗ A preliminary version of this paper appeared in 36th Annual Symposium on Foundations of
Computer Science, pages 294–303, Milwaukee, Wisconsin, 23-25 October 1995. IEEE.
†Weizmann Institute of Science, Department of Computer Science, Rehovot, Israel. email:

oded@wisdom.weizmann.ac.il. Supported by grant No. 92-00226 from the United States – Israel
Binational Science Foundation (BSF), Jerusalem, Israel.
‡NEC Research Institute, 4 Independence Way, Princeton, NJ, 08540. email:

ronitt@research.nj.nec.com. This work was done when this author was at Cornell University.
Research supported in part by ONR Young Investigator Award N00014-93-1-0590 and grant No. 92-
00226 from the United States - Israel Binational Science Foundation (BSF), Jerusalem, Israel.
§ MIT Laboratory for Computer Science, Cambridge, MA 02139. Part of this work was done

when this author was at the IBM Thomas J. Watson Research Center. Research supported in part
by a Sloan Foundation Fellowship and NSF Career Award CCR-9875511. Email: madhu@mit.edu.

1



2 O. GOLDREICH, R. RUBINFELD, and M. SUDAN

A second interpretation of the reconstruction problem is within the framework
of “agnostic learning” introduced by Kearns et al. [23] (see also [29, 30, 24]). In
the setting of agnostic learning, the learner is to make no assumptions regarding the
natural phenomenon underlying the input/output relationship of the function, and the
goal of the learner is to come up with a simple explanation that best fits the examples.
Therefore the best explanation may account for only part of the phenomenon. In some
situations, when the phenomenon appears very irregular, providing an explanation
that fits only part of it is better than nothing. Kearns et al. did not consider the
use of queries (but rather examples drawn from an arbitrary distribution), since they
were skeptical that queries could be of any help. We show that queries do seem to
help (see below).

Yet another interpretation of the reconstruction problem, which generalizes the
“agnostic learning” approach, is the following. Suppose that the natural phenomena
can be explained by several simple explanations that together cover most of the input-
output behavior but not all of it. Namely, suppose that the function f agrees almost
everywhere with one of a small number of functions gi ∈ C. In particular, assume
that each gi agrees with f on at least a δ fraction of the inputs but that for some
(say 2δ) fraction of the inputs f does not agree with any of the gi’s. This setting
was investigated by Ar et al. [3]. The reconstruction problem described above may be
viewed as a (simpler) abstraction of the problem considered in [3]. As in the case of
learning with noise, there is no explicit requirement in the setting of [3] that the noise
level be small, but all their results require that the fraction of inputs left unexplained
by the gi’s be smaller than the fraction of inputs on which each gi agrees with f . Our
relaxation (and results) do not impose such a restriction on the noise and thus make
the setting more appealing and closer in spirit to “agnostic learning”.

1.1. Our Results. In this paper, we consider the special case of the reconstruc-
tion problem when the hypothesis class is the set of n-variate polynomials of bounded
total degree d. (The total degree of a monomial

∏
i x

di
i is

∑
i di; that is, the sum of

the degrees of the variables in the monomial. The total degree of a polynomial is the
maximum total degree of monomials with non-zero coefficient in the polynomial. For
example, the total degree of the polynomial x2

1x
3
2 + 5x4

2 is 5.) The most interesting
aspect of our results is that they relate to very small values of the parameter δ (the
fraction of inputs on which the hypothesis has to fit the function f). Our main results
are:
• An algorithm that given d, F and δ = Ω(

√
d/|F |), and provided oracle access

to an arbitrary function f : Fn → F , runs in time (n/δ)O(d) and outputs a list
including all degree d polynomials that agree with f on at least a δ fraction of
the inputs.

• An algorithm that given F and ε > 0, and provided oracle access to an arbitrary
function f : Fn → F , runs in time poly(n/ε) and outputs a list including all
linear functions (degree d = 1 polynomials) that agree with f on at least a
δ

def= 1
|F | + ε fraction of the inputs.

• A new bound on the number of degree d polynomials that may agree with a
given function f : Fn → F on a δ ≥

√
d/|F | fraction of the inputs. This bound

is derived from a more general result about the number of codewords from an
error-correcting code that may be close to a given word.

A special case of interest is when the function f is obtained by picking an arbitrary
degree d polynomial p, and letting f agree with p on an arbitrary δ = Ω(

√
d
|F | ) fraction
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of the inputs and be set at random otherwise.1 In this case, with high probability,
only one polynomial (i.e., p) agrees with f on a δ fraction of the inputs (see Section 5).
Thus, in this case, the above algorithm will output only the polynomial p.

Additional Remarks:
1. Any algorithm for the explicit reconstruction problem as stated above would

need to output all the coefficients of such a polynomial, requiring time at least(
n+d
d

)
. Moreover the number of such polynomials could grow as a function of

1
δ . Thus it seems reasonable that the running time of such a reconstruction
procedure should grow as a polynomial function of 1

δ and
(
n
d

)
.

We stress that the above comment does not apply to “implicit reconstruction”
algorithms as discussed in Section 1.4.

2. For d < |F |, the condition δ > d
|F | seems a natural barrier for our investiga-

tion, since there are exponentially many (in n) degree d polynomials that are
at distance ≈ d

|F | from some functions (see Proposition 4.8).
3. Queries seem essential to our learning algorithm. We provide two indications

to our belief, both referring to the special case of F = GF(2) and d = 1. First,
if queries are not allowed, then a solution to the reconstruction problem yields
a solution to the longstanding open problem of “decoding random (binary)
linear codes”. (Note that each random example given to the reconstruction
algorithm corresponds to a random linear equation on the information vari-
ables. We admit that the longstanding open problem is typically stated for
a linear number of equations, but nothing is known even in case the number
of equations is polynomial in the information length.)
Another well-studied problem that reduces to the problem of noisy reconstruc-
tion is the problem of “learning parity with noise” [20], which is commonly
believed to be hard when one is only allowed uniformly and independently
chosen examples [20, 7, 22]. Learning parity with noise is considered hard
even for random noise, whereas here the noise is adversarial.

4. In Section 6, we give evidence that the reconstruction problem may be hard,
for δ very close to d/|F |, even in the case where n = 2. A variant is shown
to be hard even for n = 1.

1.2. A Coding Theory Perspective. We first introduce the formal definition
of an error-correcting code (see, e.g. [31]). For positive integers N,K,D and q, an
[N,K,D]q error-correcting code is a collection of qK sequences of N -elements each from
{1, . . . , q}, called codewords, in which no two sequences have a “Hamming distance”
of less than D (i.e., every pair of codewords disagree on at least D locations).

Polynomial functions lead to some of the simplest known constructions of error-
correcting codes: A function from Fn to F may be viewed as an element of F |F |

n

—
by writing down explicitly the function’s value on all |F |n inputs. Then the “distance
property” of polynomials yields that the set of sequences corresponding to bounded-
degree polynomial functions form an error-correcting code with non-trivial parameters
(for details, see Proposition 4.3). Specifically, the set of n-variate polynomial of total
degree d over F = GF(q) yields a [N,K,D]q error-correcting code with N = |F |n,
K =

(
n+d
d

)
and D = (|F | − d) · |F |n−1. These constructions have been studied in the

coding theory literature. The case n = 1 leads to “Reed-Solomon codes”, while the
case of general n is studied under the name “Reed-Muller codes”.

1This is different from “random noise” as the set of corrupted inputs is selected adversarially –
only the values at these inputs are random.
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Our reconstruction algorithm may be viewed as an algorithm that takes an ar-
bitrary word from F |F |

n

and finds a list of all codewords from the Reed-Muller code
that agree with the given word in δ fraction of the coordinates (i.e., 1 − δ fraction
of the coordinates have been corrupted by errors). This task is referred to in the
literature as the “list-decoding” problem [11]. For codes achieved by setting d such
that d/|F | → 0, our list decoding algorithm recovers from errors when the rate of
errors approaches 1. We are not aware of any other case where an approach other
(and better) than brute-force can be used to perform list decoding with the error-rate
approaching 1. Furthermore, our decoding algorithm works without examining the
entire codeword.

1.3. Related Previous Work. For sake of scholarly interest, we discuss several
related areas in which related work has been done. In this subsection, it would be
more convenient to refer to the error-rate 1− δ rather than to the rate of agreement
δ.
Polynomial interpolation: When the noise rate is 0, our problem is simply that
of polynomial interpolation. In this case the problem is well analyzed and the reader
is referred to [48], for instance, for a history of the polynomial interpolation problem.
Self-Correction: In the case when the noise rate is positive but small, one ap-
proach used to solving the reconstruction problem is to use self-correctors, introduced
independently in [8] and [28]. Self-correctors convert programs that are known to be
correct on a fraction δ of inputs into programs that are correct on each input. Self-
correctors for values of δ that are larger than 3/4 have been constructed for several
algebraic functions [5, 8, 9, 28, 34], and in one case this was done for δ > 1/2 [15].2 We
stress that self-correctors correct a given program using only the information that the
program is supposed to be computing a function from a given class (e.g., a low-degree
polynomial). Thus, when the error is larger than 1

2 and the class contains more than
a single function, such self-correction is no longer possible since there could be more
than one function in the class that agrees with the given program on an δ < 1/2
fraction of the inputs.
Cryptography and Learning Theory: In order to prove the security of a certain
“hardcore predicate” relative to any “one-way function”, Goldreich and Levin solved a
special case of the (explicit) reconstruction problem [17]. Specifically, they considered
the linear case (i.e., d = 1) for the Boolean field (i.e., F = GF(2)) and any agreement
rate that is bigger than the error-rate (i.e., δ > 1

2 ). Their ideas were subsequently
used by Kushilevitz and Mansour [25] to devise an algorithm for learning Boolean
decision trees.

1.4. Subsequent work. At the time this work was first published [18] no algo-
rithm other than brute force was known for reconstructing a list of degree d polyno-
mials agreeing with an arbitrary function on a vanishing fraction of inputs, for any
d ≥ 2. Our algorithm solves this problem with exponential dependence on d, but with
polynomial dependence on n, the number of variables. Subsequently some new recon-
struction algorithms for polynomials have been developed. In particular, Sudan [40],
and Guruswami and Sudan [19] have provided new algorithms for reconstructing uni-
variate polynomials from large amounts of noise. Their running time depends only

2Specifically, self-correctors correcting 1
Θ(d)

fraction of error for f that are degree d polynomial

functions over a finite field F , |F | ≥ d + 2, were found by [5, 28]. For d/|F | → 0, the fraction of
errors that a self-corrector could correct was improved to almost 1/4 by [14] and then to almost 1/2
by [15] (using a solution for the univariate case given by [45]).
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polynomially in d and works for δ = Ω(
√
d/|F |). Notice that the agreement required

in this case is larger than the level at which our NP-hardness result (of Section 6)
holds. The results of [40] also provide some reconstruction algorithms for multivariate
polynomials, but not for as low an error as given here. In addition, the running time
grows exponentially with n. Wasserman [44] gives an algorithm for reconstructing
polynomials from noisy data that works without making queries. The running time
of the algorithm of [44] also grows exponentially in n and polynomially in d.

As noted earlier (see Remark 1 in Section 1.1), the running time of any explicit
reconstruction algorithm has to have an exponential dependence on either d or n.
However this need not be true for implicit reconstruction algorithms: By the latter
term we mean algorithms that produce as output a sequence of oracle machines, such
that for every multivariate polynomial that has agreement δ with the function f , one
of these oracle machines, given access to f , computes that polynomial. Recently,
Arora and Sudan [4] gave an algorithm for this implicit reconstruction problem. The
running time of their algorithm is bounded by a polynomial in n and d, and it works
correctly provided that δ ≥ (dO(1))/|F |Ω(1); that is, their algorithm needs a much
higher agreement, but works in time polynomial in all parameters. The reader may
verify that such an implicit reconstruction algorithm yields an algorithm for the ex-
plicit reconstruction problem with running time that is polynomial in

(
n+d
d

)
. (E.g., by

applying noise-free polynomial-interpolation to each of the oracle machines provided
above, and testing the resulting polynomial for agreement with f .) Finally, Sudan,
Trevisan, and Vadhan [41], have recently improved the result of [4], further reduc-
ing the requirement on δ to δ > 2

√
d/|F |. The algorithm of [41] thus subsumes the

algorithm of this paper for all choices of parameters, except d = 1.

1.5. Rest of this paper. The rest of the paper is organized as follows. In Sec-
tion 2 we motivate our algorithm, starting with the special case of the reconstruction
of linear polynomials. The general case algorithm is described formally in Section 3,
along with an analysis of its correctness and running time assuming an upper bound
on the number of polynomials that agree with a given function at δ fraction of the
inputs. In Section 4 we provide two such upper bounds. These bounds do not use any
special (i.e., algebraic) property of polynomials, but rather apply in general to collec-
tions of functions that have large distance between them. In Section 5 we consider
a random model for the noise applied to a function. Specifically, the output either
agrees with a fixed polynomial or is random. In such a case we provide a stronger
upper bound (specifically, 1) on the number of polynomials that may agree with the
black box. In Section 6 we give evidence that the reconstruction problem may be
hard for small values of the agreement parameter δ, even in the case when n = 1.
We conclude with an application of the linear-polynomial reconstruction algorithm
to complexity theory: Specifically, we use it in order to prove the security of new,
generic, hard-core functions (see Section 7).

Notations: In what follows, we use GF(q) to denote the finite field on q elements.
We assume arithmetic in this field (addition, subtraction, multiplication, division and
comparison with zero) may be performed at unit cost. For a finite set A, we use the
notation a ∈R A to denote that a is a random variable chosen uniformly at random
from A. For a positive integer n, we use [n] to denote the set {1, . . . , n}.

2. Motivation to the algorithm. We start by presenting the algorithm for
the linear case, and next present some of the ideas underlying the generalization to
higher degrees. We stress that whereas Section 2.1 provides a full analysis of the
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linear case, Section 2.2 merely introduces the additional ideas that will be employed
in dealing with the general case. The presentation in Section 2.1 is aimed to facilitate
the generalization from the linear case to the general case.

2.1. Reconstructing linear polynomials. We are given oracle access to a
function f : GF(q)n → GF(q) and need to find a polynomial (or actually all polyno-
mials) of degree d that agrees with f on at least a δ = d

q + ε fraction of the inputs,
where ε > 0. Our starting point is the linear case (i.e., d = 1); namely, we are looking
for a polynomial of the form p(x1, ..., xn) =

∑n
i=1 pixi. In this case our algorithm

is a generalization of an algorithm due to Goldreich and Levin [17]3. (The original
algorithm is regained by setting q = 2.)

We start with a definition: The i-prefix of a linear polynomial p(x1, ..., xn) is the
polynomial that results by summing up all of the monomials in which only the first i
variables appear. That is, the i-prefix of the polynomial

∑n
j=1 pjxj is

∑i
j=1 pjxj . The

algorithm proceeds in n rounds, so that in the ith round we find a list of candidates
for the i-prefixes of p.

In the ith round, the list of i-prefixes is generated by extending the list of (i− 1)-
prefixes. A simple (and inefficient) way to perform this extension is to first extend
each (i − 1)-prefix in all q possible ways, and then to “screen” the resulting list of
i-prefixes. A good screening is the essence of the algorithm. It should guarantee that
the i-prefix of a correct solution p does pass and that not too many other prefixes
pass (as otherwise the algorithm consumes too much time).

The screening is done by subjecting each candidate prefix, (c1, ..., ci), to the fol-
lowing test. Pick m = poly(n/ε) sequences uniformly from GF(q)n−i. For each such
sequence s̄ = (si+1, ..., sn) and for every σ ∈ GF(q), estimate the quantity

Ps̄(σ) def= Pr1,...,ri∈GF(q)

f(r̄, s̄) =
i∑

j=1

cjrj + σ

(2.1)

where r̄ = (r1, . . . , ri). The value σ can be thought of as a guess for
∑n
j=i+1 pjsj .

For every fixed suffix s̄, all these probabilities can be approximated simultaneously
by using a sample of poly(n/ε) sequences (r1, ..., ri), regardless of q. If one of these
probabilities is significantly larger than 1/q then the test accepts due to this suffix,
and if no suffix makes the test accept then it rejects. The actual algorithm is presented
in Figure 2.1.

Observe that a candidate (c1, ..., ci) passes the test of Figure 2.1 if for at least
one sequence of s̄ = (si+1, ..., sn) there exists a σ so that the estimate for Ps̄(σ)
is greater than 1

q + ε
3 . Clearly, for a correct candidate (i.e., (c1, ..., ci) that is a

prefix of a polynomial p = (p1, ..., pn) having at least 1
q + ε agreement with f) and

σ =
∑n
j=i+1 pjsj , it holds that Es̄[Ps̄(σ)] ≥ 1

q + ε. Using Markov’s inequality, it
follows that for a correct candidate, an ε/2 fraction of the suffixes are such that for
each such suffix s̄ and some σ, it holds that Ps̄(σ) ≥ 1

q + ε
2 ; thus the correct candidate

passes the test with overwhelming probability. On the other hand, for any suffix s̄, if
a prefix (c1, . . . , ci) is to pass the test (with non-negligible probability) due to suffix s̄,
then it must be the case that the polynomial

∑i
j=1 cjxj has at least agreement-rate of

1
q + ε

4 with the function f ′(x1, . . . , xi)
def= f(x1, . . . , xi, si+1, . . . , sn). It is possible to

3We refer to the original algorithm as in [17], not to a simpler algorithm that appears in later
versions (cf., [27, 16]).
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Test-prefix(f, ε, n, (c1, . . . , ci))
Repeat poly(n/ε) times:
Pick s̄ = si+1, . . . , sn ∈R GF(q).
Let t

def= poly(n/ε).
for k = 1 to t do
Pick r̄ = r1, . . . , ri ∈R GF(q)
σ(k) ← f(r̄, s̄)−

∑i
j=1 cjrj.

endfor
If ∃ σ s.t. σ(k) = σ for at least 1

q + ε
3 fraction of the k’s

then output accept and halt.
endRepeat.
If all iterations were completed without accepting, then reject.

Fig. 2.1. Implementing the screening process

bound the number of (i-variate) polynomials that have so much agreement with any
function f ′. (Sections 4 contains some such bounds.) Thus, in each iteration, only a
small number of prefixes pass the test, thereby limiting the total number of prefixes
that may pass the test in any one of the poly(n/ε) iterations.

The above yields a poly(nq/ε)-time algorithm. In order to get rid of the q factor in
running-time, we need to modify the process by which candidates are formed. Instead
of extending each (i−1)-prefix, (c1, ..., ci−1), in all q possible ways, we do the following:
We pick uniformly s

def= (si+1, ..., sn) ∈ GF(q)n−i, r def= (r1, ..., ri−1) ∈ GF(q)i−1 and
r′, r′′ ∈ GF(q), and solve the following system of equations

r′x+ y = f(r1, ..., ri−1, r
′, si+1, ..., sn)−

i−1∑
j=1

cjrj(2.2)

r′′x+ y = f(r1, ..., ri−1, r
′′, si+1, ..., sn)−

i−1∑
j=1

cjrj(2.3)

using the solution for x as the value of the ith coefficient (i.e., set ci = x). This
extension process is repeated poly(n/ε) many times, obtaining at most poly(n/ε)
candidate i-prefixes, per each candidate (i− 1)-prefix. We then subject each i-prefix
in the list to the screening test (presented in Figure 2.1), and keep only the candidates
that pass the test.

We need to show that if the (i − 1)-prefix of a correct solution is in the list
of candidates (at the beginning of round i) then the i-prefix of this solution will
be found in the extension process. Let p = (p1, ..., pn) be a correct solution (to the
reconstruction problem for f). Then Pr,r,s[p(r, r, s) = f(r, r, s)] ≥ 1

q+ε > ε. It follows
that for at least an ε/2 fraction of the sequences (r, s), the polynomial p satisfies
p(r, r, s) = f(r, r, s) for at least an ε/2 fraction of the possible r’s. Let σ represent
the value of the sum

∑n
j=i+1 pjsj , and note that p(r, r, s) =

∑i−1
j=1 pjrj + pir + σ.

Then, with probability Ω(ε3) over the choices of r1, . . . , ri−1, si+1, . . . , sn and r′, r′′,
the following two equations hold:

r′pi + σ = f(r1, ..., ri−1, r
′, si+1, ..., sn)−

i−1∑
j=1

pjrj
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r′′pi + σ = f(r1, ..., ri−1, r
′′, si+1, ..., sn)−

i−1∑
j=1

pjrj

and r′ 6= r′′. (I.e., with probability at least ε
2 , the pair (r̄, s̄) is good, and conditioned

on this event r′ is good with probability at least ε
2 , and similarly for r′′ losing a term of

1
q <

ε
4 to account for r′′ 6= r′. We may assume that 1/q < ε/4, since otherwise q < 4/ε

and we can afford to perform the simpler procedure above.) Thus, with probability
Ω(ε3), solving the system (2.2)-(2.3) with (c1, ..., ci−1) = (p1, ..., pi−1) yields x = pi.
Since we repeat the process poly(n/ε) times for each (i− 1)-prefix, it follows that the
correct prefix always appears in our candidate list.

Recall that correct prefixes pass the screening process with overwhelmingly high
probability. Using Theorem 4.5 (of Section 4) to bound the number of prefixes passing
the screening process, we have:

Theorem 2.1. Given oracle access to a function f and parameters ε, k, our
algorithm runs in poly(k·nε )-time and outputs, with probability at least 1− 2−k, a list
satisfying the following properties:

1. The list contains all linear polynomials that agree with f on at least a δ = 1
q+ε

fraction of the inputs.
2. The list does not contain any polynomial that agrees with f on less than a

1
q + ε

4 fraction of the inputs.

2.2. Generalizing to higher degree. We remind the reader that in this sub-
section we merely introduce the additional ideas used in extending the algorithm from
the linear case to the general case. The algorithm itself is presented and analyzed in
Section 3.

Dealing with polynomials of degree d > 1 is more involved than dealing with
linear polynomials, still we employ a similar strategy. Our plan is again to “iso-
late” the terms/monomials in the first i variables and find candidates for their co-
efficients. In particular, if p(x1, . . . , xn) is a degree d polynomial on n variables
then p(x1, . . . , xi, 0, . . . , 0) is a degree ≤ d polynomial on i variables that has the
same coefficients as p on all monomials involving only variables in {1, . . . , i}. Thus,
p(x1, . . . , xi, 0, . . . , 0) is the i-prefix of p.

We show how to extend a list of candidates for the (i− 1)-prefixes of polynomials
agreeing with f into a list of candidates for the i-prefixes. Suppose we get the (i−1)-
prefix p that we want to extend. We select d + 1 distinct elements r(1), ..., r(d+1) ∈
GF(q), and consider the functions

f (j)(x1, ..., xi−1) def= f(x1, ..., xi−1, r
(j), 0, ..., 0)− p(x1, ..., xi−1).(2.4)

Suppose that f equals some degree d polynomial and that p is indeed the (i−1)-prefix
of this polynomial. Then f (j) is a polynomial of degree d − 1 (since all the degree d
monomials in the first i variables have been canceled by p). Furthermore, given an
explicit representation of f (1), ..., f (d+1), we can find (by interpolation) the extension
of p to a i-prefix. The last assertion deserves some elaboration.

Consider the i-prefix of f , denoted p′ = p′(x1, ..., xi−1, xi). In each f (j), the
monomials of p′ that agree on the exponents of x1, ..., xi−1 are collapsed together
(since xi is instantiated and so monomials containing different powers of xi are added
together). However, using the d+1 collapsed values, we can retrieve the coefficients of
the different monomials (in p′). That is, for each sequence of exponents (e1, ..., ei−1)
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such that
∑i−1
j=1 ej ≤ d, we retrieve the coefficients of all the (

∏i−1
j=1 x

ej ) · xki in p′, by
interpolation that refers to the coefficients of

∏i−1
j=1 x

ej in the f (`)’s.4

To complete the high level description of the procedure we need to show how to
obtain the polynomials representing the f (j)’s. Since in reality we only have access to
a (possibly highly noisy) oracle for the f (j)’s, we use the main procedure for finding
a list of candidates for these polynomials. We point out that the recursive call is to a
problem of degree d− 1, which is lower than the degree we are currently handling.

The above description ignores a real difficulty that may occur: Suppose that the
agreement rate of f with some p∗ is at least δ, and so we need to recover p∗. For our
strategy to work, the agreement rate of the f (j)’s with p∗(. . . , 0n−i) must be close to
δ. However, it may be the case that p∗ does not agree with f at all on the inputs
in GF(q)i0n−i, although p∗ does agrees with f on a δ fraction of inputs in GF(q)n.
Then solving the subproblem (i.e., trying to retrieve polynomials close to the f (j)’s)
gives us no information about p∗. Thus, we must make sure that the agreement
rate on the subproblems on which we recurse is close to the original agreement rate.
This can be achieved by applying a random linear transformation to the coordinate
system as follows: Pick a random nonsingular matrix R and define new variables
y1, . . . , yn as (y1, . . . , yn) = ȳ ≡ Rx̄ (each yi is a random linear combination of the
xi’s and vice versa). This transformation can be used to define a new instance of the
reconstruction problem in terms of the yi’s, and for the new instance the agreement
rate on the subproblems on which we recurse is indeed close to the original agreement
rate. Observe that

1. the total degree of the problem is preserved;
2. the points are mapped pairwise independently, and so the fraction of agree-

ment points in all subspaces of the new problem is close to the agreement
rate in the original space; and

3. one can easily transform the coordinate system back to the xi’s, and so it is
possible to construct a new black box consistent with f that takes ȳ as an
input.

(It may be noted that the transformation does not preserve other properties of the
polynomial; e.g., its sparsity.)

Comment: The above solution to the above difficulty is different than the one in
the original version of this paper [18]. The solution there was to pick many different
suffixes (instead of 0n−i), and to argue that at least in one of them the agreement rate
is preserved. However, picking many different suffixes creates additional problems,
which needed to be dealt with carefully. This resulted in a more complicated algorithm
in the original version.

3. Algorithm for degree d > 1 polynomials. Recall that we are given oracle
access to a function f : GF(q)n → GF(q), and need to find all polynomials of degree
d that agrees with f on at least a δ fraction of the inputs.

The main algorithm Find-all-poly will use several subroutines: Compute-coefficients,
Test-valid, Constants, Brute-force, and Extend. The main algorithm is recursive, in n
(the number of variables) and d (the degree), with the base case d = 0 being handled
by the subroutine Constants and the other bases cases corresponding to n ≤ 4 being
handled by the subroutine Brute-force. Most of the work is done in Find-all-poly and

4Let ck be the coefficient of (
∏i−1

j=1
xej ) · xki in p′, and v` be the coefficient of

∏i−1

j=1
xej in f (`).

Then, v` =
∑d

k=0
(r(`))kck, and the ck’s can be found given the v`’s.
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Extend, which are mutually recursive.
The algorithms have a number of parameters in their input. We describe the

commonly occurring parameters first:
• q is the size of the field we will be working with; i.e., F = GF(q). (Unlike

other parameters, the field never changes in the recursive calls.)
• f will be a function from GF(q)n to GF(q) given as an oracle to the current

procedure, and n will denote the number of variables of f .
• d will denote the degree of the polynomial we are hoping to reconstruct, and
δ will denote the agreement parameter. Typically, the algorithm will have to
reconstruct all degree d polynomials having agreement at least δ with f .

Many of the algorithms are probabilistic and make two-sided error.
• ψ will be the error parameter controlling the probability with which a valid

solution may be omitted from the output.
• φ will be the error parameter controlling the error with which an invalid

solution is included in the output list.
Picking a random element of GF(q) is assumed to take unit time, as are field operations
and calls to the oracle f .

The symbol x will typically stand for a vector in GF(q)n, while the notation xi
will refer to the ith coordinate of x. When picking a sequence of vectors, we will
use superscripts to denote the vectors in the sequence. Thus, x(j)

i will denote the
ith coordinate of the jth element of the sequence of vectors x(1), x(2), . . .. For two
polynomials p1 and p2, we write p1 ≡ p2 if p1 and p2 are identical. (In this paper,
we restrict ourselves to polynomials of degree less than the field size; thus identity of
polynomials as functions is equivalent to identity of polynomials as a formal sum of
monomials.) We now generalize the notion of the prefix of a polynomial in two ways.
We extend it to arbitrary functions, and then extend it to arbitrary suffixes (and not
just 0i).

Definition 3.1. For 1 ≤ i ≤ n and a1, . . . , an−i ∈ F , the (a1, . . . , an−i)-prefix
of a function f : Fn → F , denoted f |a1,...,an−i , is the i-variate function f |a1,...,an−i :
F i → F , given by f |a1,...,an−i(x1, ..., xi) = f(x1, . . . , xi, a1, . . . , an−i). The i-prefix of
f is the function f |0n−i .
When specialized to a polynomial p, the i-prefix of p yields a polynomial on the
variables x1, . . . , xi whose coefficients are exactly the coefficients of p on monomials
involving only x1, . . . , xi.

Fixing a field GF(q), we will use the notation Nn,d,δ to denote the maximum
(over all possible f) of the number of polynomials of degree d in n variables that
have agreement δ with f . In this section we will first determine our running time
as a function of Nn,d,δ, and only next use bounds on Nn,d,δ (proven in Section 4) to
derive the absolute running times. We include the intermediate bounds since it is
possible that the bounds of Section 4 may be improved, and this would improve our
running time as well. By definition, Nn,d,δ is monotone non-decreasing in d and n,
and monotone non-increasing in δ. These facts will be used in the analysis.

3.1. The subroutines. We first axiomatize the behavior of each of the sub-
routines. Next we present an implementation of the subroutine, and analyze it with
respect to the axiomatization.
(P1) Constants(f, δ, n, q, ψ), with probability at least 1 − ψ, returns every degree 0

(i.e., constant) polynomial p such that f and p agree on δ fraction of the
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points.5

Constants works as follows: Set k = O( 1
δ2 log 1

ψ ) and pick x(1), . . . , x(k) indepen-
dently and uniformly at random from GF(q)n. Output the list of all constants a (or
equivalently the polynomial pa = a) such that |{i ∈ [k]|f(x(i)) = a}| ≥ 3

4δk.
An easy application of Chernoff bounds indicates that the setting k = O( 1

δ2 log 1
ψ )

suffices to ensure that the error probability is at most ψ. Thus the running time of
Constants is bounded by the time to pick x(1), . . . , x(k) ∈ GF(q)n which is O(kn) =
O( 1

δ2n log 1
ψ ).

Proposition 3.2. Constants(f, δ, n, q, ψ) satisfies (P1). Its running time is
O( 1

δ2n log 1
ψ ).

Another simple procedure is the testing of agreement between a given polynomial
and a black box.
(P2) Test-valid(f, p, δ, n, d, q, ψ, φ) returns true, with probability at least 1−ψ, if p is

an n-variate degree d polynomial with agreement at least δ with f . It returns
false with probability at least 1− φ if the agreement between f and p is less
than δ

2 . (It may return anything if the agreement is between δ
2 and δ.)

Test-valid works as follows: Set k = O( 1
δ2 log 1

min{ψ,φ} ) and pick x(1), . . . , x(k)

independently and uniformly at random from GF(q)n. If f(x(i)) = p(x(i)) for at least
3
4δ fraction of the values of i ∈ [k] then output true else false.

Again an application of Chernoff bounds yields the correctness of Test-valid. The
running time of Test-valid is bounded by the time to pick the k points from GF(q)n

and the time to evaluate p on them, which is O( 1
δ2 (log 1

min{ψ,φ} )
(
n+d
d

)
).

Proposition 3.3. Test-valid(f, p, δ, n, d, q, ψ, φ) satisfies (P2). Its running time
is bounded by O( 1

δ2 (log 1
min{ψ,φ} )

(
n+d
d

)
).

Next we describe the properties of a “brute-force” algorithm for reconstructing
polynomials.
(P3) Brute-force(f, δ, n, d, q, ψ, φ) returns a list that includes, with probability 1−ψ,

every degree d polynomial p such that f and p agree on δ fraction of the
points. With probability at least 1− φ it does not output any polynomial p
whose agreement with f is less than δ

2 .
Notice that the goal of Brute-force is what one would expect to be the goal of

Find-all-poly. Its weakness will be its running time, which is doubly exponential in n
and exponential in d. However, we only invoke it for n ≤ 4. In this case its running
time is of the order of δ−d

4
. The description of Brute-force is given in Figure 3.1.

Lemma 3.4. Brute-force(f, δ, n, d, q, ψ, φ) satisfies (P3). Its running time is at
most O(kl

3

δ2 (log k
φ )) where l =

(
n+d
d

)
and k = O

(
(δ − d

q )−l
(

log 1
ψ

))
.

Proof. The running time of Brute-force is immediate from its description (using
the fact that a naive interpolation algorithm for a (multivariate) polynomial with
l coefficients runs in time O(l3) and the fact that each call to Test-valid takes at
most O( l

δ2 log k
φ ) time). If a polynomial p that is the output of the multivariate

interpolation step has agreement less than δ
2 with f , then by the correctness of Test-

valid it follows that p is passed with probability at most φ/k. Summing up over the

5Notice that we do not make any claims about the probability with which constants that do not
have significant agreement with f may be reported. In fact we do not need such a condition for our
analysis. If required, such a condition may be explicitly enforced by “testing” every constant that is
returned for sufficient agreement. Note also that the list is allowed to be empty if no polynomial has
sufficiently large agreement.
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Brute-force(f, δ, n, d, q, ψ, φ)
Set l =

(
n+d
d

)
k = O

(
(δ − d

q )−l
(

log 1
ψ

))
L ← λ.

Repeat k times
Pick x(1), . . . , x(l) ∈R GF(q)n.
Multivariate interpolation step:
Find p : GF(q)n → GF(q) of degree d s.t. ∀i ∈ [l], p(x(i)) = f(x(i)).

If Test-valid(f, p, δ, n, d, q, 1
2 , φ/k) then L ← L ∪ {p}.

endRepeat
return(L)

Fig. 3.1. Brute-force

k iterations, we have that the probability that any polynomial with agreement less
than δ

2 is included in the output list is at most φ.
To prove that with probability at least 1−ψ, Test-valid outputs every polynomial

p with δ agreement f , let us fix p and argue that in any one of the k iterations, p is
likely to be added to the output list with probability ζ = 1

2(δ− dq )l
. The lemma follows

from the fact that the number of iterations is a sufficiently large multiple of 1
ζ .

To prove that with probability at least ζ the polynomial p is added to L (in a
single iteration), we show that with probability at least 2ζ the polynomial interpolated
in the iteration equals p. The lemma follows from the fact that Test-valid will return
true with probability at least 1

2 .
To show that p is the polynomial returned in the interpolation step, we look at

the task of finding p as the task of solving a linear system. Let ~p denote the l dimen-
sional vector corresponding to the coefficients of p. Let M be the l × l dimensional
matrix whose rows correspond to the points x(1), . . . , x(l) and whose columns corre-
spond to the monomials in p. Specifically, the entry Mi,j , where j corresponds to
the monomial xd11 . . . xdnn , is given by (x(i)

1 )d1 . . . (x(i)
n )dn . Finally let ~f be the vector

(f(x(1)), . . . , f(x(l))). To show that p is the polynomial returned in this step, we show
that with high probability, M is of full rank and p(x(i)) = f(x(i)) for every i.

The last assertion is proven by induction on i. Let M (i) denote the i × l matrix
with the first i rows of M . Fix x(1), . . . , x(i−1) such that p(x(j)) = f(x(j)) for every
j ∈ [i − 1]. We argue that with probability at least δ − d

q over the choice of x(i), it
holds that p(x(i)) = f(x(i)) AND the rank of M (i) is greater than that of M (i−1).
It is easy to see that f(x(i)) = p(x(i)) with probability at least δ. To complete the
proof it suffices to establish that the probability, over a random choice of x(i), that
M (i) has the same rank as M (i−1) is at most d

q . Consider two polynomials p1 and p2

such that p1(x(j)) = p2(x(j)) for every j ∈ [i − 1]. Then for the rank of M (i) to be
the same as the rank of M (i−1) it must be that p1(x(i)) = p2(x(i)) (else the solutions
to the ith system are not the same as the solutions to the i − 1th system). But for
distinct polynomials p1 and p2 the event p1(x(i)) = p2(x(i)) happens with probability
at most d

q for randomly chosen x(i). This concludes the proof of the lemma.
As an extension of univariate interpolations, we have:

(P4) Compute-coefficients(p(1), . . . , p(d+1), r(1), . . . , r(d+1), n, d, q, ψ) takes as input d+
1 polynomials p(j) in n−1 variables of degree d−1 and d+1 values r(j) ∈ GF(q)
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and returns a degree d polynomial p : GF(q)n → GF(q) such that p|r(j) ≡ p(j)

for every j ∈ [d + 1], if such a polynomial p exists (otherwise it may return
anything).

Compute-coefficients works as a simple interpolation algorithm: Specifically it
finds d + 1 univariate polynomials h1, . . . , hd+1 such that hi(r(j)) equals 1 if i =
j and 0 otherwise and then returns the polynomial p(x1, . . . , xn) =

∑d+1
j=1 hj(xn) ·

p(j)(x1, . . . , xn−1). Note that indeed

p(x1, ..., xn−1, r
(j)) =

d+1∑
k=1

hk(xn) · p(k)(x1, . . . , xn−1)

= p(j)(x1, . . . , xn−1)

Note that the polynomials hi(x) =
∏
j∈{1,...,d+1},j 6=i

(
x−r(j)
r(i)−r(j)

)
depend only on the

r(j)’s. (Thus, it suffices to compute them once, rather than computing them from
scratch for each monomial of p as suggested in Section 2.2.)

Proposition 3.5. Compute-coefficients(p(1), . . . , p(d+1), r(1), . . . , r(d+1), n, d, q, ψ)
satisfies (P4). Its running time is O(d2

(
n+d
d

)
).

3.2. The main routines. As mentioned earlier, the main subroutines are Find-
all-poly and Extend, whose inputs and properties are described next. They take,
among other inputs, a special parameter α which will be fixed later. For the sake
of simplicity, we do not require Find-all-poly and Extend at this point to output only
polynomials with good agreement. We will consider this issue later, when analyzing
the running times of Find-all-poly and Extend.
(P5) Find-all-poly(f, δ, n, d, q, ψ, φ, α) returns a list of polynomials containing every

polynomial of degree d on n variables that agrees with f on at least a δ
fraction of the inputs. Specifically, the output list contains every degree d
polynomial p with agreement δ with f , with probability at least 1− ψ.

The algorithm is described formally in Figure 3.2. Informally, the algorithm uses
the (“trivial”) subroutines for the base cases n ≤ 4 or d = 0, and in the remaining
(interesting) cases it iterates a randomized process several times. Each iteration is
initiated by a random linear transformation of the coordinates. Then in this new
coordinate system, Find-all-poly finds (using the “trivial” subroutine Brute-force) a
list of all 4-variate polynomials having significant agreement with the 4-prefix of the
oracle.6 It then extends each polynomial in the list one variable at a time till it finds
the n-prefix of the polynomial (which is the polynomial itself). Thus the crucial piece
of the work is relegated to the subroutine Extend, which is supposed to extend a given
(i − 1)-prefix of a polynomial with significant agreement with f to its i-prefix. The
goals of Extend are described next.

To simplify our notation, here onwards we assume that the elements of the field
are named 0, . . . , q − 1. In particular, we often use p|j , for some integer 0 ≤ j ≤ d, to
represent the (j)-prefix of a function p.

6In principle we could apply Brute-force for any constant number of variables (and not just 4).
However, since the running time is doubly-exponential in the number of variables, we try to use
Brute-force only for a small number of variables. The need for using Brute-force when the number
of variables is very small comes about due to the fact that in such a case (e.g., two variables) the
randomization of the coordinate system does not operate well. Furthermore, applying Brute-force for
univariate polynomials seems unavoidable. For simplicity of exposition, we choose to apply Brute-
force also for 2, 3 and 4-variate polynomials. This allows better settings of some parameters and
simplifies the calculations at the end of the proof of Lemma 3.6.
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(P6) Extend(f, p, δ, n, d, q, ψ, φ, α) takes as input a degree d polynomial p in n −
1 variables and with probability at least 1 − ψ returns a list of degree d
polynomials in n variables that includes every polynomial p∗ that satisfies
the following conditions:

1. p∗ has agreement at least δ with f .
2. p∗|j has agreement at least α · δ with f |j for every j ∈ {0, . . . , d}.
3. p∗|0 ≡ p.

Figure 3.3 describes the algorithm formally. Extend returns all n-variable exten-
sions p∗, of a given (n−1)-variable polynomial p, provided p∗ agrees with f in a strong
sense: p∗ has significant agreement with f and each p∗|j has significant agreement
with f |j (for every j ∈ {0, . . . , d}). (The latter agreement requirement is slightly
lower than the former.) To recover p∗, Extend first invokes Find-all-poly to find the
polynomials p∗|j for d + 1 values of j. This is feasible only if a polynomial p∗|j has
good agreement with f |j , for every j ∈ {0, . . . , d}. Thus, it is crucial that when Extend
is called with f and p, all p∗’s with good agreement with f also satisfy the stronger
agreement property (above). We will show that the calling program (i.e., Find-all-poly
at the higher level of recursion) will, with high probability, satisfy this property, by
virtue of the random linear transformation of coordinates.

All the recursive calls (of Find-all-poly within Extend) always involve a smaller
degree parameter, thereby ensuring that the algorithms terminate (quickly). Having
found a list of possible values of p∗|j , Extend uses a simple interpolation (subroutine
Compute-coefficients) to find a candidate for p∗. It then uses Test-valid to prune out
the many invalid polynomials that are generated this way, returning only polynomials
that are close to f .

We now go on the formal analysis of the correctness of Find-all-poly and Extend.

3.3. Correctness of Find-all-poly and Extend. Lemma 3.6. If α ≤ 1 − 1
q ,

δ ≥ d+1
q , and q ≥ 3 then Find-all-poly satisfies (P5) and Extend satisfies (P6).

Proof. We prove the lemma by a double induction, first on d and for any fixed d,
we perform induction on n. We shall rely on the properties of Compute-coefficients,
Test-valid, Constants, and Brute-force, as established above.

Assume that Find-all-poly is correct for every d′ < d (for every n′ ≤ n for any
such d′.) We use this to establish the correctness of Extend(f, p, n′, d, q, ψ, α) for every
n′ ≤ n. Fix a polynomial p∗ satisfying the hypothesis in (P6). We will prove that
p∗ is in the output list with probability 1− ψ

Nn′,d,δ
. The correctness of Extend follows

from the fact that there are at most Nn′,d,δ such polynomials p∗ and the probability
that there exists one for which the condition is violated is at most ψ.

To see that p∗ is part of the output list, notice that, by the inductive hypothesis
on Find-all-poly, when invoked with agreement parameter α · δ, it follows that for
any fixed j ∈ {0, . . . , d}, the polynomial p∗|j − p is included in L(j) with probability
1− ψ

2(d+1)Nn′,d,δ
. This follows from the fact that p∗|j−p and f |j−p have agreement at

least α·δ, the fact that p∗|j−p = p∗|j−p∗|0 is a degree d−1 polynomial7, and thus, by
the inductive hypothesis on the correctness of Find-all-poly, such a polynomial should
be in the output list. By the union bound, we have that for every j ∈ {0, . . . , d}, the
polynomial p∗|j−p is included in L(j) with probability 1− ψ

2Nn′,d,α·δ
, and in such a case

p∗−p will be one of the polynomials returned by an invocation of Compute-coefficients.

7To see that p∗|j − p∗|0 is a polynomial of total degree at most d− 1, notice that p∗(x1, . . . , xn)
can be expressed uniquely as r(x1, . . . , xn−1) + xnq(x1, . . . , xn), where degree of q is at most d− 1.
Thus p∗|j − p∗|0 = j · q(x1, . . . , xn−1, j) is also of degree d− 1.
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Find-all-poly(f, δ, n, d, q, ψ, φ, α);
If d = 0 return(Constants(f, δ, n, q, ψ));
If n ≤ 4 return(Brute-force(f, δ, n, d, q, ψ, φ));

L ← {};
Repeat O(log Nn,d,δ

ψ ) times:

Pick a random nonsingular n× n matrix R over GF(q)
Pick a random vector b ∈ GF(q)n.
Let g denote the oracle given by g(y) = f(R−1(y − b)).
L4 ← Brute-force(g|0n−4 , δ, 4, d, q, 1

10n , φ).

for i = 5 to n do
Li ← {} /* List of (d, i)-prefixes */
for every polynomial p ∈ Li−1 do
Li = Li ∪ Extend(g|0n−i , p, δ, i, d, q, 1

10n , φ, α)
endfor

endfor

Untransform Ln: L′n ← {p′(x) def= p(Rx+ b)|p ∈ Ln}.
L ← L ∪ L′n.

endRepeat
return(L)

Fig. 3.2. Find-all-poly

Extend(f, δ, p, n, d, q, ψ, φ, α).

L′ ← {}.
L(0) ← {0̄} (where 0̄ is the constant 0 polynomial).
for j = 1 to d do

f (j) ← f |j − p.
L(j) ←Find-all-poly(f (j), α · δ, n, d− 1, q, ψ

2Nn,d,α·δ(d+1) , φ, α).
endfor

for every (d+ 1)-tuple (p(0), . . . , p(d)) with p(k) ∈ L(k) do
p′ ← Compute-coefficients(p(0), . . . , p(d), 0, . . . , d; n, d, q).
if Test-valid(f, p+ p′, δ, n, d, q, ψ/(2Nn,d,α·δ), φ) then
L′ ← L′ ∪ {p+ p′};

endfor
return(L′).

Fig. 3.3. Extend

In such a case p∗ will be tested by Test-valid and accepted with probability at least
1− ψ

2Nn′,d,α·δ
. Again summing up all the error probabilities, we have that p∗ is in the

output list with probability at least 1 − ψ
Nn′,d,α·δ

. This concludes the correctness of
Extend.
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We now move on to the correctness of Find-all-poly(f, δ, n, d, q, ψ, φ, α). Here we
will try to establish that for a fixed polynomial p with agreement δ with f , the
polynomial p is added to the list L with constant probability in each iteration of the
Repeat loop. Thus the probability that it is not added in any of the iterations is
at most ψ

Nn,d,δ
and thus the probability that there exists a polynomial that is not

added in any iteration is at most ψ. We may assume that n ≥ 5 and d ≥ 1 (or else
correctness is guaranteed by the trivial subroutines).

Fix a degree d polynomial p with agreement δ with the function f : GF(q)n →
GF(q). We first argue that (R, b) form a “good” linear transformation with con-
stant probability. Recall that from now onwards Find-all-poly works with the or-
acle g : GF(q)n → GF(q) given by g(y) = f(R−1(y − b)). Analogously define
p′(y) = p(R−1(y − b)), and notice p′ is also a polynomial of degree d. For any
i ∈ {5, . . . , n} and j ∈ {0, . . . , d}, we say that (R, b) is good for (i, j) if the agreement
between g|j,0n−i and p′|j,0n−i is at least αδ. Lemma 3.7 (below) shows that the proba-

bility that (R, b) is good for (i, j) with probability at least 1− 1
qi−1 ·

(
2 + 1

δ(1−α)2

)
. Now

call (R, b) good if it is good for every pair (i, j), where i ∈ {5, . . . , n} and j ∈ {0, . . . , d}.
Summing up the probabilities that (R, b) is not good for (i, j) we find that (R, b) is
not good with probability at most

d∑
j=0

n∑
i=5

(
2 +

1
δ(1− α)2

)
· q−i+1

= (d+ 1) ·
(

2 +
1

δ(1− α)2

)
·
n∑
i=5

q−i+1

< (d+ 1) ·
(

2 +
1

δ(1− α)2

)
· q
−3

q − 1

≤ 2
q2(q − 1)

+
1

q − 1
(Using α ≤ 1− 1

q , δ ≥ d+1
q , and d+ 1 ≤ q.)

≤ 11
18

(Using q ≥ 3.)

Conditioned upon (R, b) being good and relying on the property of Brute-force, it
follows that L4 contains the 4-prefix of p with probability at least 1− 1

10n . Inductively,
we have that the i-prefix of p is not contained in the list Li with probability at most
i

10n . (By the inductive hypothesis on Extend, with probability at most 1
10n the (i−1)-

prefix of p is in Li−1 and yet the i-prefix is not returned by Extend.) Thus, with
probability at most 1

10 , the polynomial p is not included in Ln (conditioned upon
(R, b) being good). Adding back the probability that (R, b) is not good, we conclude
that with probability at most 11

18 + 1
10 <

3
4 , the polynomial p is not in Ln in any single

iteration. This concludes the proof of the correctness of Find-all-poly.

3.4. Analysis of the random linear transformation. We now fill in the
missing lemma establishing the probability of the “goodness” of a random linear
transformation.

Lemma 3.7. Let f and g be functions mapping GF(q)n to GF(q) that have δ
agreement with each other, and let R be a random non-singular n × n matrix and b
be a random element of GF(q)n. Then, for every i ∈ {1, . . . , n} and j ∈ GF(q):

Pr
R,b

[
f ′|j,0n−i and g′|j,0n−i have less than αδ agreement

]
≤ 1
qi−1

·
(

2 +
1

δ(1− α)2

)
,
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where f ′(y) = f(R−1(y − b)) and g′(y) = g(R−1(y − b)).
Proof. Let G = {x ∈ GF(q)n|f(x) = g(x)}, be the set of “good” points. Observe

that δ = |G|/qn. Let SR,b = {x ∈ GF(q)n|Rx+ b has j0n−i as suffix}. Then we wish
to show that

Pr
R,b

[
|SR,b ∩G|
|SR,b|

< α · |G|
qn

]
≤ 1
qi−1

(
2 +

1
δ(1− α)2

)
.(3.1)

Observe that the set SR,b can be expressed as the pre-image of (j, 0n−i) in the map
π : GF(q)n → GF(q)m, where m = n− i+ 1, given by π(x) = R′x+ b′ where R′ is the
m×n matrix obtained by taking the bottom m rows of R and b′ is the vector obtained
by taking the last m elements of b. Note that R′ is a uniformly distributed m × n
matrix of full rank over GF(q) and b′ is just a uniformly distributed m-dimensional
vector over GF(q). We first analyze what happens when one drops the full-rank
condition on R′.

Claim 3.8. Let R′ be a random m × n matrix over GF(q) and b′ be a random
element of GF(q)m. For some fixed vector ~s ∈ GF(q)m let S = {x|R′x + b′ = ~s}.
Then, for any set G ⊆ GF(q)n,

Pr
R′,b′

[
|S ∩G|
|S|

< α · |G|
qn

]
≤ qm

(1− α)2|G|
+ q−(n−m).

Proof. We rewrite the probability in the claim as

Pr
R′,b′

[
|S ∩G| < α · |G| · |S|

qn

]
≤ Pr
R′,b′

[
|S ∩G| < α · |G| · q

n−m

qn
or |S| > qn−m

]
≤ Pr
R′,b′

[
|S ∩G| < α · |G|

qm

]
+ Pr

R′,b′

[
|S| > qn−m

]
The event in the second term occurs only if the matrix R′ is not full rank, and so the
second term is bounded by q−(n−m) (see Claim 3.9). We thus focus on the first term.

For x ∈ G ⊆ GF(q)n, let I(x) denote an indicator random variable that is 1 if
x ∈ S (i.e., R′x + b′ = ~s) and 0 otherwise. Then, the expected value of I(x), over
the choice of (R′, b′), is q−m. Furthermore, the random variables I(x1) and I(x2)
are independent, for any distinct x1 and x2. Now, |S ∩G| =

∑
x∈G I(x), and we are

interested in the probability that the sum
∑
x∈G I(x) is smaller than α · |G| · q−m

(whereas the expected value of the sum is |G| · q−m). A standard application of
Chebychev’s inequality yields the desired bound.8

To fill the gap caused by the “full rank clause” (in the above discussion), we use
the following claim.

Claim 3.9. The probability that a randomly chosen m× n matrix over GF(q) is
not of full rank is at most q−(n−m).

Proof. We can consider the matrix as being chosen one row at a time. The
probability that the jth row is dependent on the previous j − 1 rows is at most
qj−1/qn. Summing up over j going from 1 to m we get that the probability of getting
a matrix not of full rank is at most q−(n−m).

8Specifically, we obtain a probability bound of
|G|·q−m

((1−α)·(|G|·q−m))2
= qm

(1−α)2·|G| as required.



18 O. GOLDREICH, R. RUBINFELD, and M. SUDAN

Finally we establish (3.1). Let ER′,b′ denote the event that |S∩G||S| < α · |G|qn (recall
that S = SR′,b′) and let FR′,b′ denote the event that R′ is of full row rank. Then
considering the space of uniformly chosen matrices R′ and uniformly chosen vectors
b′ we are interested in the quantity:

Pr
R′,b′

[ER′,b′ |FR′,b′ ] ≤ Pr
R′,b′

[ER′,b′ ] + Pr
R′,b′

[¬(FR′,b′)]

≤ qm

(1− α)2|G|
+ 2 · q−(n−m).

The lemma follows by substituting m = n− i+ 1 and |G| = δ · 2n.

3.5. Analysis of the running time of Find-all-poly.

Lemma 3.10. For integers d0, n0, q and α, δ0 ∈ [0, 1] satisfying αd0δ0 ≥ 2d0/q,
let M = max0≤d≤d0{Nn0,d,(αd0−d)·(δ0/2)}. Then, with probability 1 − φ · (n2

0(d0 +
1)2M logM)d0+1 · log(1/ψ0), the running time of Find-all-poly(f, δ0, n0, d0, q, ψ0, φ, α)
is bounded by a polynomial in Md0+1, (n0 + d0)d0 , ( 1

αd0δ0
)(d0+4)4 , log 1

ψ0
and log 1

φ .
Proof. We fix n0 and d0. Observe that in all recursive calls to Find-all-poly, δ and d

are related by the invariant δ = αd0−dδ0. Now, assuming the algorithms run correctly,
they should only return polynomials with agreement at least δ/2 (which motivates the
quantity M). Further, in all such calls, we have that αd0δ0 − d

q ≥ αd0δ0/2. Observe
further that the parameter φ never changes and the parameter ψ only affects the
number of iterations of the outermost call to Find-all-poly. In all other calls, this
parameter (i.e., ψ) is at least ψ1

def= 1
20n0(d0+1)M . Assume for simplicity that ψ0 ≤ ψ1.

Let T1, T2, T3, and T4 denote the maximum running time of any of the subroutine
calls to Constants, Test-valid, Brute-force, and Compute-coefficients, respectively. Let
T = max{T1, T2, T3, T4}. Then

T1 = O

(
n

α2d0δ2
0

· log
1
ψ0

)
T2 = O

(
1

α2d0δ2
0

·
(
n0 + d0

d0

)
· log

1
min{ψ0, φ}

)
T3 = O

(
kl3

(αd0δ0/2)2
· log

k

φ

)
where l = O((d0 + 4)4) and k = O

(
α−(d0+4)4 · (δ0/2)−(d0+4)4 · log 1

ψ 0

)
.

T4 = O

(
d2

0 ·
(
n0 + d0

d0

))
Note that all the above quantities are upper bounded by polynomials in (n0 + d0)d0 ,
( 2
αd0δ0

)(d0+4)4 , logM , log 1
φ , and thus so is T . In what follows we show that the

running time is bounded by some polynomial in (n0d0M)(d0+1) and T and this will
suffice to prove the lemma.

Let P (d) denote an upper bound on the probability that any of the recursive calls
made to Find-all-poly by Find-all-poly(f, αd0−dδ0, n, d, q, ψ, φ, α) returns a list of length
greater than M , maximized over f , 1 ≤ n ≤ n0, ψ ≥ ψ0. Let F (d) denote an upper
bound on the running time on Find-all-poly(f, αd0−dδ0, n, d, q, ψ, φ, α), conditioned
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upon the event that no recursive call returns a list of length greater than M . Similarly
let E(d) denote an upper bound on the running time of Extend, under the same
condition.

We first derive recurrences for P . Notice that the subroutine Constants never
returns a list of length greater than 2

αd0δ0
(every constant output must have a fraction

of αd0δ0
2 representation in the sampled points). Thus P (0) = 0. To bound P (d)

in other cases, we observe that every iteration of the Repeat loop in Find-all-poly
contributes an error probability of at most φ from the call to Brute-force, and at
most n0 − 4 times the probability that Extend returns an invalid polynomial (i.e., a
polynomial with agreement less than δd/2 with its input function f). The probability
that Extend returns such an invalid polynomial is bounded by the sum of (d+1)·P (d−
1) [from the recursive calls to Find-all-poly] and Md+1 ·φ [from the calls to Test-valid].
(Notice that to get the final bound we use the fact that we estimate this probability
only when previous calls do not produce too long a list.) Finally the number of
iterations of the Repeat loop in Find-all-poly is at most log(M/ψ), by the definition
of M . Recall that in the outer most call of Find-all-poly, we have ψ = ψ0 whereas in
all other calls ψ ≥ ψ1, where log(1/ψ1) = log(20n0(d0 + 1)M) < n0(d0 + 1) logM , for
sufficiently large n0. Thus summing up all the error probabilities , we have

P (d) < log(M/ψ) · n0 ·
(
(d+ 1) · P (d− 1) +Md+1 · φ

)
where for d = d0 we use ψ = ψ0 and otherwise ψ = ψ1. It follows that

P (d0) < log(M/ψ0) · n0 ·
(
(d0 + 1) · P (d0 − 1) +Md+1 · φ

)
< log(M/ψ0) · n0 · (d0 + 1) ·

(
(n0 · (d0 + 1))2 logM

)d0 ·Md+1 · φ

<
(
n2

0 · (d0 + 1)2 ·M logM
)d0+1 · φ · log(1/ψ0)

A similar analysis for F and E yields the following recurrences:

F (0) ≤ T
F (d) ≤ n2

0(d0 + 1)(logM) · E(d)
E(d) ≤ (d+ 1)F (d− 1) +Md+1T

Solving the recurrence yields F (d) ≤ (n2
0(d0 + 1)2M logM)d+1T . This concludes the

proof of the lemma.
Lemma 3.11. For integers d0, n0 and α, δ0 ∈ [0, 1], let

M = max
0≤d≤d0

{Nn0,d,(αd0−d)·(δ0/2)}.

If α ≥ 1− 1
d0+1 and δ0 ≥ 2e

√
d0
q then M ≤ O( 1

δ20
).

Proof. We use Part (2) of Theorem 4.4, which claims that Nn,d,δ ≤ 1
δ2−(d/q) ,

provided δ2 ≥ d/q. Let δd = αd0−dδ0. Then δd/2 ≥ (1− 1
d0+1 )d0+1 · (δ0/2) ≥ δ0/2e ≥√

d/q, by the condition in the lemma. Thus M is at most 1
δ2
d
−(d/q)

≤ 2
δ2
d

= O( 1
δ20

).
Theorem 3.12. Given oracle access to a function f and suppose δ, k, d and

q are parameters satisfying δ ≥ max{d+1
q , 2e

√
d/q} and q ≥ 3. Let α = 1 − 1

d+1 ,
ψ = 2−k and φ = 2−k · (n(d + 1) 1

δ20
)−2(d+1). Then, given oracle access to a func-

tion f : GF(q)n → GF(q), the algorithm Find-all-poly(f, δ, n, d, q, ψ, φ, α) runs in
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poly((k ·nd/δ)O(d4))-time and outputs, with probability at least 1−2−k, a list contain-
ing all degree d polynomials that agree with f on at least an δ fraction of the inputs.
Furthermore, the list does not contain any polynomials that agree with f on less than
an δ

2 fraction of the inputs.
Remarks:

1. Thus, combining Theorems 2.1 and 3.12, we get reconstruction algorithms
for all d < q, provided δ is large enough. Specifically, for the case q = 2 and
d = 1, we invoke Theorem 2.1.

2. The constant 2e in the lower bound on δ can be replaced by (1 + ε)ed/q, for
any ε > 0, by re-calibrating the subroutine Test-valid and by setting α = 1− 1

q .
Proof. The main part of the correctness claim follows from Lemma 3.6, and the

running-time bound follows from Lemmas 3.10 and 3.11. (In particular, note that the
condition αd0δ0 ≥ 2d/q from Lemma 3.10 is met, since αd0 = 1

e and δ0 ≥ 2
√
d/q ≥

2d/q.) The furthermore part follows from the proof of Lemma 3.10.

4. Counting: Worst Case. In this section we give a worst-case bound on the
number of polynomials that agree with a given function f on δ fraction of the points.
In the case of linear polynomials our bound works for any δ > 1

q , while in the general
case our bound works only for δ that is large enough. The bounds are derived using
a very elementary property of polynomial functions, namely that two of them do not
agree on too many points. In fact we first state and prove bounds for any generic
“error correcting code” and then specialize the bound to the case of polynomials.

4.1. General error-correcting bounds. We first recall the standard definition
of error-correcting codes. To do so we refer to strings over an alphabet [q]. For a string
R ∈ [q]N (R for received word) and i ∈ [N ], we let R(i) denote the ith coordinate
of R. The Hamming distance between strings R1 and R2, denoted ∆(R1, R2), is the
number of coordinates i where R1(i) 6= R2(i).

Definition 4.1 (Error correcting code). For integers N,K,D and q an [N,K,D]q
code is a family of qK strings from [q]N such that for any two distinct strings in the
family, the Hamming distance between them is at least D. That is, if C ⊆ [q]N

is an [N,K,D]q code then |C| = qK and for every C1 6= C1 ∈ C it holds that
∆(C1, C2) ≥ D.

In the following theorem we take an arbitrary word R ∈ [q]N and consider the
number of codeword that may have a Hamming distance of at most (1− δ) ·N from
R (i.e., codewords that agree with R on at least δ ·N coordinates). We give an upper
bound provided δ is sufficiently large (as a function of D/N).

Theorem 4.2. Let N,D and q satisfy D
N < 1 and define γ def= 1 − D

N > 0. Let
δ > 0 and R ∈ [q]N . Suppose that C1, . . . , Cm ∈ [q]N are distinct codewords from an
[N,K,D]q code that satisfy ∆(R,Cj) ≤ (1− δ) ·N , for all j ∈ {1, . . . ,m}. Then the
following bounds hold:

1. If δ >
√

2 + γ
4 ·
√
γ − γ

2 then m < 2
δ+ γ

2
.

It follows that if δ >
√

2γ then m < 2/δ.

2. If γ ≥ 1
q and δ > 1

q +
√

(γ − 1
q ) · (1− 1

q ) then m ≤ (1−γ)·(1− 1
q )

(δ−(1/q))2−(1− 1
q )(γ− 1

q )
.

It follows that if (γ ≥ 1
q and) δ > min{√γ, 1

q +
√
γ − 1

q} then m ≤ 1−γ
δ2−γ <

1
δ2−γ . In particular, for γ = 1

q , the bounds hold for every δ > 1
q .

For small γ, the latter (simpler) expressions given in each of the two parts of the
theorem provide good approximations to the former (tighter) expressions. The fact
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that the former expressions imply the latter ones is obvious for Part (1), and is proved
below for Part (2).

Additional Remarks:
1. The bounds in the two parts of the theorem apply in different situations and

yield different bounds on m. The first bound applies for somewhat larger
values of δ and yields a stronger bound that is O( 1

δ ). The second bound
applies also for smaller values of δ and yields a bound that grows as Θ( 1

δ2 ).
2. Note that Part (2) only considers codes with distance D ≤ (1 − 1/q) · N

(i.e., γ ≥ 1/q). Still, the bound m ≤ (1−γ)·(1− 1
q )

(δ−(1/q))2−(1− 1
q )(γ− 1

q )
, holds also in

case γ < 1/q, provided δ ≥ 1/q. (See Footnote 9 at the end of the proof
of Part (2).) We mention that it is well known that codes with distance
D ≥ (1 − 1/q) · N have at most qN codewords, which immediately implies
m ≤ qN ≤ N/γ (for any γ ≥ 1/q regardless of δ).

Proof. [(of Part 1)] The bound in Part (1) is proven by a simple inclusion-exclusion
argument. For any m′ ≤ m, we count the number of coordinates i ∈ [N ] that satisfy
the property that one of the first m′ codewords agree with R on coordinate i. Namely,
let χj(i) = 1 if Cj(i) = R(i) and χj(i) = 0 otherwise. Then, by inclusion-exclusion
we get

N ≥ |{i : ∃j χj(i) = 1}|

≥
m′∑
j=1

∑
i

χj(i)−−
∑

1≤j1<j2≤m′

∑
i

χj1(i)χj2(i)

≥ m′ · δN −
(
m′

2

)
· max

1≤j1<j2≤m′
|{i : Cj1(i) = Cj2(i)}|

where the last inequality is due to the fact that Cj agrees with R on at least δN
coordinates. Since two codewords R1 and R2 can agree on at most N−D coordinates,
we get:

∀m′ ≤ m, m′δN − m′(m′ − 1)
2

· (N −D) ≤ N.(4.1)

Consider the function g(y) def= γ
2 · y

2− (δ+ γ
2 ) · y+ 1. Then (4.1) says that g(m′) ≥ 0,

for every integer m′ ≤ m. Let α1 and α2 be the roots of g. To establish Part (1) we
show that

• The roots α1 and α2 are both real numbers.
• The roots are both non-negative.
• |α1 − α2| > 1.
• min(α1, α2) < 2

δ+ γ
2

.
Without loss of generality, suppose α1 ≤ α2. It follows that m ≤ α1, since otherwise
g(m′) < 0 for every m′ ∈ (α1, α2) and in particular for the integer m′ = bα1c+ 1, in
contradiction to the above (i.e., g(m′) ≥ 0 for every m′ ≤ m).

Let β = γ/2. Then g(y) = βy2 − (β + δ) · y + 1. The roots, α1 and α2 are real,
provided that ζ def= (β + δ)2 − 4β is positive which follows from a stronger requirement
(see below). Without loss of generality, suppose α1 ≤ α2. To guarantee α2 − α1 > 1,

we require 2 ·
√
ζ

2β > 1 which translates to ζ > β2 (and hence ζ > 0 as required above).
We need to show that

(β + δ)2 − 4β > β2
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which occurs if δ >
√
β2 + 4β − β. Plugging in the value of β we find that the last

inequality is exactly what is guaranteed in the hypothesis of Part (1) of the theorem
statement. Thus α1 and α2 are real and α2 − α1 > 1. Lastly, we bound the smaller
root α1. First we prove the upper bound.

α1 =
β + δ −

√
(β + δ)2 − 4β
2β

=
β + δ

2β
·

[
1−

(
1− 4β

(β + δ)2

)1/2
]

<
β + δ

2β
·
[
1−

(
1− 4β

(β + δ)2

)]
=

2
β + δ

where the inequality follows by ζ > 0. Again by plugging in the value of β we get the
desired bound. For the lower bound, consider the first equality in the above displayed
set of inequalities and note that since β > 0, we have

α1 =
β + δ −

√
(β + δ)2 − 4β
2β

> 0.

Proof. [(of Part 2)] We first introduce some notation. In what follows we will use
the arithmetic of integers modulo q to simplify some of our notation. This arithmetic
will be used on the letters of the alphabet, i.e., the set [q]. For j ∈ {1, . . . ,m} and
i ∈ [N ] let Γj(i) = 1 if Cj(i) 6= R(i) and 0 otherwise. (Notice that Γj(i) = 1− χj(i).)
For j ∈ {1, . . . ,m}, t ∈ {0, . . . , q − 1} and i ∈ [N ] let Γ(t)

j (i) = 1 if Cj(i) − R(i) ≡ t
(mod q) and 0 otherwise. Thus Γj(i) = 1 if and only if there exists t 6= 0 such that

Γ(t)
j (i) = 1. Let wj

def= |{i : Cj(i) 6= R(i)}| =
∑
i Γj(i) and let w =

∑m

j=1
wj

m . The fact
that the Cj ’s are close to R implies that wj ≤ (1− δ) ·N , for all j.

Our proof generalizes a proof due to S. Johnson (c.f., MacWilliams and Sloane
[31]) for the case q = 2. The central quantity used to bound m in the binary case can
be generalized in one of the two following ways:

S ≡
∑
j1,j2,i

Γj1(i)Γj2(i).

S′ ≡
∑
j1,j2,i

∑
t 6=0

Γ(t)
j1

(i)Γ(t)
j2

(i).

The first quantity sums, over all j1, j2, the number of coordinates for which Cj1
and Cj2 both differ from R. The second quantity sums, over all j1, j2, the number
of coordinate where Cj1 and Cj2 agree with each other, but disagree from R by t.
(Notice that the two quantities are the same for the case q = 2.) While neither one
of the two quantities are sufficient for our analysis, their sum provides good bounds.
Lower bound on S + S′: The following bound is shown using counting arguments
which consider the worst way to place a given number of differences between the Cj ’s
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and R. Let Ni = |{j|Cj(i) 6= R(i)}| =
∑
j Γj(i) and let N (t)

i = |{j|Cj(i) − R(i) ≡ t

(mod q)}| =
∑
j Γ(t)

j (i). Note that
∑
iNi =

∑
i

∑
t 6=0N

(t)
i = mw. We can lower

bound S as follows:

S =
∑
j1,j2,i

Γj1(i)Γj2(i) =
∑
i

N2
i ≥

(mw)2

N
.

where the last inequality above follows from the fact that subject to the condition∑
iNi = mw, the sum of Ni’s squared is minimized when all the Ni’s are equal.

Similarly, using
∑
i

∑
t6=0N

(t)
i = mw, we lower bound S′ as follows:

S′ =
∑
j1,j2,i

∑
t6=0

Γ(t)
j1

(i)Γ(t)
j2

(i) =
∑
i

∑
t6=0

(N (t)
i )2 ≥ (mw)2

(q − 1)N
.

By adding the two lower bounds above we obtain:

S + S′ ≥ (mw)2

N
+

(mw)2

(q − 1)N
=

q
q−1m

2w2

N
.(4.2)

Upper bound on S + S′: For the upper bound we perform a careful counting
argument using the fact that the Cj ’s are codewords from an error-correcting code.
For fixed j1, j2 ∈ {1, . . . ,m} and t1, t2 ∈ [q], let

M
(j1j2)
t1t2 ≡ |{i|Γ(t1)

j1
(i) = Γ(t2)

j2
(i) = 1}|.

For every j1, j2, we view the M (j1j2)
t1t2 ’s as elements of a q × q matrix M (j1j2). Now,

S and S′ can be expressed as sums of some of the elements of the matrices M (j1j2).
Summing over the (q − 1)× (q − 1) minors of all the matrices we get:

S =
∑
j1,j2

∑
t1 6=0

∑
t2 6=0

M
(j1j2)
t1t2

and summing the diagonal elements of M (j1j2) over all j1j2, we get

S′ =
∑
j1j2

∑
t6=0

M
(j1j2)
tt .

We start by upper bounding the internal sum above for fixed pair (j1, j2), j1 6= j2.
Since the Cj ’s are codewords from an [N,K,D]q code we have Rj1(i) = Rj2(i) for at
most N −D values of i, so∑

t6=0

M
(j1j2)
tt ≤ N −D −M (j1j2)

00 = γN −M (j1j2)
00 .

Note that the sum of the values of all elements of M (j1j2) equals N , and N−wj1 (resp.
N − wj2) is equal to the sum of the values of the 0th column (resp. row) of M (j1j2).
To bound the remaining term in the summation above we use inclusion-exclusion as
follows: ∑

t1 6=0

∑
t2 6=0

M
(j1j2)
t1t2

=
∑
t1

∑
t2

M
(j1j2)
t1t2 −−

∑
t1

M
(j1j2)
t10 −−

∑
t2

M
(j1j2)
0t2

+M
(j1j2)
00

= N − (N − wj1)− (N − wj2) +M
(j1j2)
00

= wj1 + wj2 −N +M
(j1j2)
00 .
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Combining the bounds above we have (for j1 6= j2)∑
t6=0

M
(j1j2)
tt +

∑
t1 6=0

∑
t2 6=0

M
(j1j2)
t1t2 ≤ (γN −M (j1j2)

00 ) + (wj1 + wj2 −N +M
(j1j2)
00 )

= wj1 + wj2 − (1− γ) ·N.

(The key point above is the cancellation of M (j1j2)
00 .) Observe that if j1 = j2 = j,

then the quantity
∑
t1 6=0

∑
t2 6=0M

(jj)
t1t2 =

∑
t6=0M

(jj)
tt = wj .

We now combine the bounds above as follows:

S + S′ =
∑
j

∑
t6=0

M
(jj)
tt +

∑
t1 6=0

∑
t2 6=0

M
(jj)
t1t2

+
∑
j1 6=j2

∑
t 6=0

M
(j1j2)
tt +

∑
t1 6=0

∑
t2 6=0

M
(j1j2)
t1t2


≤ 2

∑
j

wj +
∑
j1 6=j2

(wj1 + wj2 − (1− γ)N)

= 2m2w −m(m− 1)(1− γ)N.

Thus, we get:

S + S′ ≤ (2w − (1− γ) ·N) ·m2 + (1− γ) ·N ·m.(4.3)

Putting it together: Combining (4.2) and (4.3) and letting δ = 1− w/N , we get

m ≤ (1− γ) · 1
( wN )2 q

q−1 + 1− γ − 2 · wN

= (1− γ) · 1
(1− δ)2 q

q−1 + 1− γ − 2(1− δ)
.

provided (1− δ)2 q
q−1 + 1− γ−−2(1− δ) ≥ 0. Let g(x) def= q

q−1x
2−2x+ (1−γ). Note

that g(x) is monotone decreasing when x ≤ q−1
q . Note further that 1

q ≤ δ ≤ δ and
thus we get:

m ≤ (1− γ) · 1
g(1− δ)

,

provided g(1 − δ) > 0. We need to bound δ so that g(1 − δ) > 0. Observe first that

g(x) = q
q−1 ·

(
q−1
q − x

)2

−
(
γ − 1

q

)
. Thus g(x) > 0 if q−1

q − x >
√

q−1
q · (γ −

1
q ).

(Note that the expression in the square root is non-negative, since γ ≥ 1
q .)9 In other

words, g(1 − δ) > 0, provided δ > 1
q +

√(
1− 1

q

)
·
(
γ − 1

q

)
. In this case the bound

obtained on m is 1−γ
g(1−δ) = 1−γ

q
q−1 ·(δ− 1

q )2−(γ− 1
q )

. This is exactly as claimed in the main

part of Part (2).
We now move on to prove secondary bounds claimed in Part (2). Firstly, we show

that g(1− δ) > 0 for δ > 1
q +

√
γ − 1

q . This follows immediately from the above and

9For γ < 1
q

, the function g is positive everywhere. However to use the inequality g(1 − δ) ≤
g(1− δ), we need δ ≥ 1

q
. This gives the bound claimed in Additional Remark 2 after Theorem 4.2.
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the inequality:

1
q

+
√
γ − 1

q
>

1
q

+

√(
1− 1

q

)
·
(
γ − 1

q

)
.

Next, we verify that g(1−δ) > 0 for every δ >
√
γ. Let x = 1−δ. Then 1−x = δ >

√
γ.

In this case we have:

g(x) =
(

1 +
1

q − 1

)
x2 − 2x+ 1− γ

= (1− x)2 +
1

q − 1
x2 − γ

≥ (1− x)2 − γ
> 0

Thus g(1 − δ) > 0 provided δ > min{√γ, 1
q +

√
γ − 1

q}. We now derive the claimed

upper bounds on m. Setting x = 1 − δ, and using g(x) ≥ (1 − x)2 − γ, we get
g(1− δ) ≥ δ2 − γ. Thus m ≤ 1−γ

g(1−δ) ≤
1−γ
δ2−γ <

1
δ2−γ .

4.2. The special case of polynomials. Recall that a function f : GF(q)n →
GF(q) may be viewed as a string of length qn with letters from the set [q]. Viewed in
this way we get the following construction of a code using multivariate polynomials.
These codes are known as Reed-Muller codes in the coding theory literature.

Proposition 4.3. The collection of degree d polynomials in n variables over
GF(q) form an [N,K,D]q code, for N = qn, K =

(
n+d
d

)
and D = (q − d) · qn−1.

Proof. The parameters N and K follow by definition. The distance bound D
is equivalent to the well-known fact [10, 38, 46] that two degree d (multivariate)
polynomials over GF(q) may agree in at most d/q fraction of the inputs.

Combining Theorem 4.2 with Proposition 4.3 (and using γ = d
q in the theorem),

we get the following upper bound on the number of polynomials with δ agreement
with an arbitrary function.

Theorem 4.4. Let δ > 0 and f : GF(q)n → GF(q). Suppose that p1, . . . , pm :
GF(q)n → GF(q) are distinct degree d polynomials that satisfy

Pr
x∈GF(q)n

[f(x) = pi(x)] ≥ δ, ∀ i ∈ {1, . . . ,m}.

Then the following bounds hold:
1. If δ >

√
2 + d

4q ·
√

d
q −

d
2q then m < 2

δ+ d
2q

.

In particular, if δ >
√

2d/q then m < 2/δ.

2. If δ > 1+
√

(d−1)(q−1)

q then m ≤ (q−d)(q−1)
q2 · 1

(δ− 1
q )2− (q−1)(d−1)

q2

.

In particular, if δ > min{
√

d
q ,

1
q +

√
d−1
q } then m < 1

δ2−(d/q) .
We emphasize the special case of linear polynomials (i.e., d = 1):
Theorem 4.5. Let ε > 0 and f : GF(q)n → GF(q). Suppose that p1, . . . , pm :

GF(q)n → GF(q) are distinct linear functions that satisfy Prx∈GF(q)n [f(x) = pi(x)] ≥
1
q + ε, for all i ∈ {1, . . . ,m}. Then m ≤

(
1− 1

q

)2

· 1
ε2 ≤

4
ε2 .

Proof. Just substitute d = 1 and δ = 1
q + ε in the main part of Part (2) of

Theorem 4.4.
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4.3. On the tightness of the upper bounds. We show that several aspects of
the bounds presented above are tight. We start with the observation that Theorem 4.2
can not be extended to smaller δ without (possibly) relying on some special properties
of the code.

Proposition 4.6. Let δ0, γ0 satisfy the identity

δ0 =
1
q

+

√(
γ0 −

1
q

)
·
(

1− 1
q

)
.

(4.4)

Then for any ε > 0, and for sufficiently large N , there exists an [N,K,D]q code C,
with N−D

N ≤ γ0 + ε, a word R ∈ [q]N and M ≥ 2Ω(ε2N) codewords C1, . . . , CM ∈ C
such that ∆(R,Cj) ≤ (1− (δ0 − ε)) ·N , for every j ∈ [M ].
Remark: The proposition above should be compared against Part (2) of Theorem 4.2.
That part says that for δ0 and γ0 satisfying (4.4) and any [N,K,D]q code with
N−D
N = γ0, there exist at most O( 1

δ20
) codewords at distance at most (1− δ0) ·N from

any string of length N . In contrast, the proposition says that if δ0 is reduced slightly
(to δ0 − ε) and γ0 increased slightly (to γ0 + ε), then there could be exponentially
many codewords at this distance.

Proof. The bound is proven by a standard probabilistic argument. The code C
will consist only of the codewords C1, . . . , CM that will be close to the string R. The
codewords Cj ’s are chosen randomly and independently by the following process. Let
p ∈ [0, 1], to be determined shortly.

For every codeword Cj , each coordinate is chosen independently as follows: With
probability p it is set to be 1, and with probability 1− p it is chosen uniformly from
{2, . . . , q}. The string R is simply 1N .

Observe that for any fixed j, the expected number of coordinates where R and
Cj agree is pN . Thus with probability at most 2−Ω(ε2N), the agreement between R

and Cj is less than (p− ε)N . It is possible to set M = 2Ω(ε2N) so that the probability
that there exists such a word Cj is less than 1

2 .

Similarly the expected agreement between Ci and Cj is
(
p2 + (1−p)2

q−1

)
·N . Thus

the probability that the agreement between a fixed pair is εN larger than this number
is at most 2−Ω(ε2N). Again it is possible to set M = 2Ω(ε2N) such that the probability
that such a pair Ci and Cj exists is less than 1

2 .
Thus there is a positive probability that the construction yields an [N,Ω( ε

2N
log q ), D]q

code with N−D
N = p2 + (1−p)2

q−1 + ε, so that all codewords are within a distance of

(1 − (p − ε))N of the word R. Thus, the setting δ0 = p and γ0 = p2 + (1−p)2
q−1 would

yield the proposition, once it is verified that this setting satisfies (4.4). The latter fact
is easily verified by the following algebraic manipulations, starting with our setting of
δ0 and γ0.

γ0 = δ2
0 +

(1− δ0)2

q − 1

⇔ q

q − 1
· δ2

0 −
2

q − 1
· δ0 +

1
q − 1

− γ0 = 0

⇔δ2
0 −

2
q
· δ0 +

1
q
− q − 1

q
· γ0 = 0
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⇔
(
δ0 −

1
q

)2

=
(
γ0 −

1
q

)
·
(

1− 1
q

)
⇔δ0 =

1
q

+

√(
γ0 −

1
q

)
·
(

1− 1
q

)
This concludes the proof.

Next we move on to the tightness of the bounds regarding polynomials. We show
that Theorem 4.5 is tight for δ = O(1/q), whereas Part (1) of Theorem 4.4 is tight
for δ = Θ(1/

√
q) and d = 1. The results below show that for a given value of δ that

meets the conditions of the appropriate theorem, the value of m can not be made
much smaller.

Proposition 4.7. Given a prime p, and an integer k satisfying 1 < k ≤ p/3, let
δ = k/p. Then, there exists a function f : GF(p)→ GF(p) and at least m def= 1

18(k−1)δ2

linear functions f1, . . . , fm : GF(p) → GF(p) such that |{x|fi(x) = f(x)}| ≥ δp = k,
for all i ∈ {1, . . . ,m}. Furthermore, if δ >

√
1/p then m > 1

δ −1. For δ = 2
p = 1

p +ε,
we get m = 1

18δ2 (which establishes tightness of the bound m ≤ 4
ε2 = 16

δ2 given in

Theorem 4.5). For δ =
√

2
p + 1

p >
√

2
p , we get m > 1

δ − 1 (which establishes tightness

of the bound m ≤ 2
δ given for d = 1 in Part (1) of Theorem 4.4).

Proof. We start by constructing a relation R ⊂ GF(p) × GF(p) such that |R| ≤
p and there exist many linear functions g1, . . . , gm such that |R ∩ {(x, gi(x))|x ∈
GF(p)}| ≥ k for all i. Later we show how to transform R and the gi’s so that R
becomes a function that still agrees with each transformed gi on k inputs.

Let l = bp/kc and recall that δ = k/p. Notice l ≈ 1
δ and l ≥ 1

δ −1. The relation R
consists of the k · l ≤ p pairs in the square {(i, j)|0 ≤ i < k, 0 ≤ j < l}. Let G be the
set of all linear functions that agree with R in at least k places. We shall show that G
has size at least 1/(18δ2(k−1)). Given non-negative integers a, b s.t. a ·(k−1)+b < l,
consider the linear function ga,b(x) = ax+ b mod p. Then, ga,b(i) ∈ {0, . . . , l− 1}, for
ever such (a, b) and i ∈ {0, . . . , k−1}. Thus, ga,b(i) intersects R in k places. Lastly, we
observe that there are at least 1/(18δ2(k−1)) distinct pairs (a, b) s.t. a ·(k−1)+b < l:
Fixing any a < l, there are at least l − (k − 1)a− 1 possible values for b, and so that
the total number of pairs is at least

l−1
k−1∑
a=0

l − (k − 1)a− 1 =
(
l − 1
k − 1

+ 1
)
· (l − 1)− (k − 1) ·

l−1
k−1 ·

(
l−1
k−1 + 1

)
2

>
(l − 1)2

2(k − 1)

≥ (1− 2δ)2

2δ2(k − 1)
(Using l ≥ 1−δ

δ .)

≥ 1
18δ2(k − 1)

(Using δ ≤ 1
3 .)

Next, we convert the relation R into a function in two stages. First we stretch the
relation by a factor of l to get a new relation R′. That is, R′ def= {(l · i, j)|(i, j) ∈ R}.
We modify the functions ga,b ∈ G accordingly: That is, g′a,b(x) def= ga,b(l−1 · x) =
(a·l−1)x+b, where l−1 is the multiplicative inverse of l (mod p) and ga,b(x) = ax+b.
Thus, if ga,b(i) = j, then g′a,b(l·i) = j, and so if (i, ga,b(i)) ∈ R then (l·i, g′a,b(l·i)) ∈ R′.
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It follows that is ga,b agrees with R on at least k places then g′a,b agrees with R′ on at
least k places. Thus, letting G′ denote the set of linear functions that agree with R′ in
k places, we have g′a,b ∈ G′ if ga,b ∈ G. Moreover the map from G to G′ is one-to-one
(i.e., ga,b is mapped to g′a,b ≡ gl−1·a,b), implying |G′| ≥ |G|. (Actually, the argument
above extends to show that |G′| = |G|.)

We note that for all a < l (which in turn is smaller than p/2), it holds that
l−1 · a6≡ − 1 (mod p). (This is the case since otherwise a ≡ −l ≡ p− l (mod p), in
contradiction to a < p/2.)

Last we introduce a slope to R′, so that it becomes a function. Specifically,
R′′

def= {(i + j, j)|(i, j) ∈ R′} = {(l · i + j, j)|(i, j) ∈ R}. Notice that for any two
distinct (i1, j1), (i1, j2) ∈ R′′, we have i1 6= i2 (since i1 = l · i′1 + j1, i2 = l · i′2 + j2, and
j1, j2 ∈ {0, ..., l − 1}), and so R′′ can be extended to a function f : GF(p) → GF(p)
(i.e., if (i, j) ∈ R′′ then j = f(i)). Now for every function g′(x) = a′x + b′ ∈ G′,
consider the function g′′(x) = a′′x + b′′, where a′′ = a′/(1 + a′) and b′′ = b′/(1 + a′)
(and recalling that a′ 6≡ − 1 (mod p)). Observe that if g′(x) = y, then

g′′(x+ y) =
a′

1 + a′
· (x+ g′(x)) +

b′

1 + a′

=
a′

1 + a′
· (x+ a′x+ b′) +

1
1 + a′

· b′

= a′x+ b′ = y

Thus, if g′ agrees with R′ in at least k places then g′′ agrees with R′′ in at least k
places (since (x, g′(x)) ∈ R′ implies (x+ g′(x), g′′(x+ g′(x))) ∈ R′′ and x1 + g′(x1) =
(a′ + 1) · x1 + b′1 6= (a′ + 1) · x2 + b′1 = x2 + g′(x2) for all x1 6= x2), and hence g′′

agrees with f in at least k places. Again, the mapping of g′ to g′′ is one-to-one (since
the system a′′ = a′/(1 + a′) and b′′ = b′/(1 + a′) has at most one solution in (a′, b′)).
Thus, if we use G′′ to denote the set of linear functions that agree with f in k places,
then we have |G′′| ≥ |G′| ≥ |G| ≥ 1

18δ2(k−1) , as desired.

For the furthermore clause, observe that if δ >
√

1/p then our setting dictates
l−1 <

√
p < k and so l−1

k−1 < 1. Actually, in this case we may use {g0,b : b = 0, ..., l−1}
in role of G, G′ and G′′, and derive |G| ≥ l ≥ 1

δ − 1.
Finally we note that the bounds in Theorem 4.4 always require δ to be larger than

d/q. Such a threshold is also necessary, or else there can be exponentially many degree
d polynomials close to the given function. This is shown in the following proposition.

Proposition 4.8. Let q be a prime-power, d < q and δ = d
q −

d−1
q2 . Then, there

exist an n-variate function f over GF(q), and at least qn−1 degree d polynomials that
agree with f on at least a δ fraction of the inputs. Note that for d = 1 we have
δ = 1

q . Also, by a minor extension of the following proof, we may use in role of f any
n-variate degree d polynomial over GF(q).

Proof. We use the all-zero function in role of f . Consider the family of polynomi-
als having the form

∏d−1
i=1 (x1 − i) ·

∑n
i=2 cixi, where c2, ..., cn ∈ GF(q). Clearly, each

member of this family is a degree d polynomial and the family contains qn−1 different
polynomials. Now, each polynomial in the family is zero on inputs (a1, ..., an) satis-
fying either a1 ∈ {1, ..., (d− 1)} or

∑n
i=2 ciai = 0, where the ci’s are these specifying

the polynomial in the collection. Since at least a d−1
q + (1 − d−1

q ) · 1
q fraction of the

inputs satisfy this condition, the proposition follows.

5. Counting: A Random Case. In this section we present a bound on the
number of polynomials that can agree with a function f if f is chosen to look like
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a polynomial p on some domain D and random on other points. Specifically, for
|D| ≥ 2(d+ 1)·qn−1, we show that with high probability p itself is the only polynomial
that agrees with f on at least |D| (and even |D|/2) points.

Theorem 5.1. Let δ ≥ 2(d+1)
q . Suppose that D is an arbitrary subset of density δ

in GF(q)n, and p(x1, ..., xn) is a degree d polynomial. Consider a function f selected
as follows:
1. f agrees with p on D;
2. the value of f on each of the remaining points is uniformly and independently

chosen. That is, for every x ∈ D def= GF(q)n \D, the value of f(x) is selected
at random in GF(q).

Then, with probability at least 1 − exp{(nd log2 q) − δ2qn−2}, the polynomial p is the
only degree d polynomial that agrees with f on at least a δ/2 fraction of the inputs.
Thus, for functions constructed in this manner, the output of our reconstruction
algorithm will be a single polynomial; namely, p itself.

Proof. We use the fact that for two polynomials p1 6= p2 in GF(q)n, p1(x) = p2(x)
on at most d/q fraction of the points in GF(q)n [10, 38, 46]. Thus, except for p, no
other degree d polynomial can agree with f on more than d

q · q
n points in D. The

probability that any polynomial p′ agrees with f on more than a 1
q + ε fraction of the

points in D is at most exp{−ε2qn}. Furthermore, in order to agree with f on more
than an δ

2 fraction of all points, p′ must agree with f on at least
(
δ
2 −

d
q

)
· qn of the

points in D, and so we can use ε ≥ (δ/2)−(d/q)
1−δ − 1

q >
δ
2−

d+1
q + δ·((δ/2)−(d/q))

q ≥ δ
q . Thus,

the probability that there exists a degree d n-variate polynomial, other than p, that

agrees with f on at least an δ/2 fraction of all points is at most qn
d · exp{−

(
δ
q

)2

qn},
and the theorem follows.

6. Hardness Results. In this section we give evidence that the (explicit or
implicit) reconstruction problem may be hard for some choices of d and the agreement
parameter δ, even in the case when n = 1. We warn the reader that the problems
shown to be hard does differ in some very significant ways from the reconstruction
problems considered in previous sections. In particular, the problems will consider
functions and relations defined on some finite subset of a large field, either the field
of rational numbers or a sufficiently large field of prime order, where the prime is
specified in binary. The hardness results use the “large” field size crucially.

Furthermore, the agreement threshold for which the problem is shown hard is
very small. For example, the hardness results of Section 6.2, defines a function f :
H1 × H2 → F , where F is a large field and H1, H2 are small subsets of F . In such
a hardness result, one should compare the threshold δ of agreement that is required,
against d

max{|H1|,|H2|} , since the latter ratio that determines the “distance” between
two polynomials on this subset of the inputs. Our hardness results typically hold for
δ ≈ d+2

max{|H1|,|H2|} . We stress that the agreement is measured as a fraction of the
subset mentioned above, rather than as a fraction of the n-tuples over the field (in
case it is finite), which is much smaller.

6.1. NP-hardness for a variant of the univariate reconstruction prob-
lem. We define the following (variant of the) interpolation problem PolyAgree:

Input: Integers d, k,m, and a set of pairs P = {(x1, y1), . . . , (xm, ym)} such that
∀i ∈ [m], xi ∈ F , yi ∈ F , where F is either the field of rationals or a prime field given
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by its size in binary.10

Question: Does there exist a degree d polynomial p : Fn → F for which p(xi) = yi
for at least k different i’s?

We stress that the pairs in P are not required to have distinct x-components (i.e.,
xi = xj may hold for some i 6= j). Our result takes advantage of this fact.

Theorem 6.1. PolyAgree is NP-hard.
Remark: This result should be contrasted with the results of [40, 19]. They show that
PolyAgree is easy provided k ≥

√
dm, while our result shows it is hard without this

condition. In particular, the proof uses m = 2d+ 3 and k = d+ 2 (and so k <
√
dm).

Furthermore, our result is established using a set of pairs in which xi = xj holds for
some i 6= j, whereas this never happens when given oracle access to a function (as in
previous sections and in [40, 19]). In the next subsection, we show that in it is hard
even in the oracle setting when the number of variables is at least two.

Proof. We present the proof for the case of the field of rational numbers only. It is
easy to verify that the proof also holds if the field F has prime order that is sufficiently
large (see parenthetical comments at the end of the proof for further details.)

We reduce from subset sum: Given integers B, a1, . . . , a`, does there exist a subset
of the ai’s that sum to B (without loss of generality, ai 6= 0 for all i).

In our reduction we use the fact that degree d polynomials satisfy certain interpo-
lation identities. In particular, let αi = (−1)i+1

(
d+1
i

)
for 1 ≤ i ≤ d+ 1 and α0 = −1.

Then
∑d+1
i=0 αif(i) = 0 if and only if (0, f(0)), (1, f(1)), . . . , (d+ 1, f(d+ 1)) lies on a

degree d univariate polynomial.
We construct the following instance of PolyAgree. Set d = l− 1, m = 2d+ 3 and

k = d+2. Next, set xi ← i, xd+1+i ← i, yi ← ai/αi, and yd+1+i ← 0 for 1 ≤ i ≤ d+1.
Finally, set x2d+3 ← 0 and y2d+3 ← B.

No polynomial can pass through both (xi, yi) = (i, ai/αi) and (xd+1+i, yd+1+i) =
(i, 0) for any i, since ai 6= 0. We show that there is a polynomial of degree d that
passes through (0, B) and one of either (i, 0) or (i, ai/αi) for each 1 ≤ i ≤ d+ 1 if and
only if there is a subset of a1, . . . , ad+1 whose sum is B.

Assume that there is a polynomial p of degree d that passes through (0, B) and
one of (i, 0) and (i, ai/αi) for each 1 ≤ i ≤ d+ 1. Let S denote the set of indices for
which p(i) = ai/αi (and p(i) = 0 for i ∈ [d+ 1]\S). Then

0 =
d+1∑
i=0

αip(i) = α0 ·B +
∑
i∈S

αi ·
ai
αi

= −B +
∑
i∈S

ai(6.1)

Similarly, if there is set of indices S such that
∑
i∈S ai = B, then we define f so that

f(0) = B, f(i) = ai/αi for i ∈ S and f(i) = 0 for i ∈ [d + 1]\S. Observing that∑d+1
i=0 αif(i) = 0 it follows that there is a degree d polynomial that agrees with f on

i = 0, ..., d+ 1.
For the case where F is a finite field of order q, we assume that the integers B

and a1, . . . , ad+1 are all multiples of αi for every i. (This assumption can be realized
easily by multiplying all integers in the input by lcm(|α0|, . . . , |αd+1|).) Further we
pick q > |B| +

∑d+1
i=1 |ai|. The only change to the proof is that the equalities in

Equation (6.1) directly hold only modulo q. At this stage, we use the condition
q > |B|+

∑d+1
i=1 |ai| to conclude that B =

∑
i∈S ai.

10When F is the field of rational numbers, the input elements are assumed to be given as a ratio
of two N -bit integers. In such a case the input size is measured in terms of the total bit length of all
inputs.
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6.2. NP-hardness of the reconstruction problem for n ≥ 2. In the above
problem, we did not require that the xi’s be distinct. Thus this result does not directly
relate to the black box model used in this paper. The following result applies to our
black box model for n-variate functions, for any n ≥ 2.

We define a multivariate version of PolyAgree that requires that the xi’s be dis-
tinct. We actually define a parameterized family FunctionalPolyAgreen, for any n ≥ 1.
Input: Integer d, a field F , a finite subset H ⊆ Fn, a rational number δ, and a
function f : H → F , given as a table of values.
Question: Does there exist a degree d polynomial p : Fn → F for which p(x) = f(x)
for at least δ fraction of the x’s from H?

Theorem 6.2. For every n ≥ 2, FunctionalPolyAgreen is NP-hard.
Proof. We prove the theorem for n = 2. The other cases follow by simply making

an instance where only the values of first two variables vary in the set H and the
remaining variables are assigned some fixed value (say 0).

The proof of this theorem builds on the previous proof. As above we reduce
from subset sum. Given an instance B, a1, . . . , al of the subset sum problem, we set
d = l − 1 and k = 2(d + 1) and F to be the field of rationals. (We could also work
over any prime field GF(q), provided q ≥ |B| +

∑n
i=1 |ai|.) Let δ = d+3

2(d+2) . We
set H1 = {0, . . . , d + 1}, H2 = [2k]. and let H = H1 × H2. For i ∈ H1 we let
αi = (−1)i+1

(
d+1
i

)
as before. For i ∈ H1−{0}, let yi = ai/αi as before. The function

f is defined as follows:

f(i, j) =

 B if i = 0
yi if i ∈ H1 − {0} and j ∈ [k]
0 otherwise (i.e., if i ∈ H1 − {0} and j ∈ {k + 1, . . . , 2k}

This completes the specification of the instance of the FunctionalPolyAgree2 prob-
lem. We now argue that if the subset sum instance is satisfiable then there exists a
polynomial p with agreement δ (on inputs from H) with f . Let S ∈ [l] be a subset
such that

∑
i∈S ai = B. Then the function

p(i, j) def= p′(i) def=

 B if i = 0
yi if i ∈ S
0 if i ∈ H1 \ S

is a polynomial in i of degree d (since
∑d+1
i=0 αip

′(i) = −B +
∑
i∈S ai = 0). Further-

more, p and f agree in 2k+k(d+1) inputs from H. In particular p(0, j) = f(0, j) = B
for every j ∈ [2k], p(i, j) = f(i, j) = yi if i ∈ S and j ∈ [k] and p(i, j) = f(i, j) = 0 if
i 6∈ S and j ∈ {k+1, . . . , 2k}. Thus p and f agree on a fraction 2k+k(d+1)

2(d+2)k = d+3
2(d+2) = δ

of the inputs from H, as required.
We now argue that if instance of the FunctionalPolyAgree2 problem produced by

the reduction is satisfiable then the subset sum instance is satisfiable. Fix a polynomial
p that has agreement δ with f ; i.e., p(i, j) = f(i, j) for at least 2k + k(d + 1) inputs
from H. We argue first that in such a case p(i, j) = p′(i) for some polynomial p′(i)
and then the proof will be similar to that of Theorem 6.1. The following claim is
crucial in this proof.

Claim 6.3. For any i ∈ [d + 1], if |{j|p(i, j) = f(i, j)}| ≥ k, then there exists
ci ∈ {0, yi} s.t. p(i, j) = ci for every j ∈ [2k].
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Proof. Consider the function p(i)(j) def= p(i, j). p(i) is a degree d polynomial in j.
By hypothesis (and the definition of f(i, j)) we have, p(i)(j) ∈ {0, yi} for k values of
j ∈ [2k]. Hence p(i)(j) = 0 for k/2 values of j or p(i)(j) = yi for k/2 values of j. In
either case we have that p(i), a degree d polynomial, equals a constant polynomial for
k/2 = d+ 1 points implying that p(i) is a constant. That p(i)(j) = ci ∈ {0, yi} follows
from the hypothesis and definition of f .

From the claim above it follows immediately that for any i ∈ [d+ 1], |{j|f(i, j) =
p(i, j)}| ≤ k. Now using the fact that f and p agree on 2k + k(d + 1) inputs it
follows that for every i ∈ [d + 1], f(i, j) = p(i, j) for exactly k values of j; and
f(0, j) = p(0, j) = B for all values of j. Using the above claim again we conclude that
we can define a function p′(i) def= ci ∈ {0, yi} if i ∈ [d + 1] and p′(0) = B such that
p(i, j) = p′(i) for every (i, j) ∈ H. Furthermore p′(i) is a degree d polynomial, since p
is a degree d polynomial; and hence

∑d+1
i=0 αip

′(i) = 0. Letting S = {i ∈ [d+1]|yi 6= 0},
we get −B +

∑
i∈S αiyi = 0 which in turns implies B =

∑
i∈S ai. Thus the instance

of the subset sum problem is satisfiable. This concludes the proof.

7. An application to complexity theory. In this section we use the recon-
struction algorithm for linear-polynomials to prove the security of new, generic, hard-
core functions. This generalizes the result of Goldreich and Levin [17] that provided
hard-core predicates. We comment that an alternative construction of generic hard-
core functions was also presented in [17], where its security was reduced to the security
of a specific hard-core predicate via a “computational XOR lemma” due to [43]. For
further details, see [16].

Loosely speaking, a function h : {0, 1}∗ → {0, 1}∗ is called a hard-core of a
function f : {0, 1}∗ → {0, 1}∗ if h is polynomial-time, but given f(x) it is infeasible to
distinguish h(x) from a random |h(x)|-bit long string. Thus, not only is h(x) hard to
find given f(x), it is even hard to recognize pairs of the form (h(x), f(x)). Intuitively,
if h is a hard-core of f then it must be hard to invert f (i.e., given f(x) find x). We
formulate all these notions below, assuming for simplicity that f is length-preserving,
i.e., |f(x)| = |x| for all x ∈ {0, 1}∗.

Definition 7.1 (one-way function). A function f : {0, 1}∗ → {0, 1}∗ is called
one-way if the following two conditions hold:

1. The function f is computable in polynomial-time.
2. For every probabilistic polynomial-time algorithm A, every polynomial p and

all sufficiently large n

Px∈{0,1}n [A(f(x)) ∈ f−1(f(x))] <
1

p(n)

Definition 7.2 (hard-core function). A function h : {0, 1}∗ → {0, 1}∗ is called
a hard-core of a function f : {0, 1}∗ → {0, 1}∗ if the following two conditions hold:

1. The function h is computable in polynomial-time.
2. For every probabilistic polynomial-time algorithm D, every polynomial p and

all sufficiently large n∣∣Px∈{0,1}n [D(f(x), h(x)) = 1]−Px∈{0,1}n , r∈{0,1}|h(x)| [D(f(x), r) = 1]
∣∣ < 1

p(n)

Theorem 7.3. Let f ′ be a one-way function, and ` be a polynomial-time com-
putable integer function satisfying `(m) = O(logm). For x = (x1, ..., xm) ∈ GF(2`(m))m

and y = (y1, ..., ym) ∈ GF(2`(m))m, let f(x, y) def= (f ′(x), y) and h(x, y) def=
∑m
i=1 xiyi.
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Then h is a hard-core of f . This theorem generalizes the result of Goldreich and
Levin [17] from ` ≡ 1 to any logarithmically bounded `.

Proof. Assume for contradiction that there exists a probabilistic polynomial-time
algorithm D and a polynomial p so that for infinitely many m’s∣∣∣∣ Px,y∈GF(2`(m))m [D(f(x, y), h(x, y)) = 1]

− Px,y∈GF(2`(m))m , r∈GF(2`(m))[D(f(x, y), r) = 1]

∣∣∣∣ ≥ 1
p(m)

Let M denote the set of integers m for which the above inequality holds; and let
ε(m) denote the difference (inside the absolute value), and assume, without loss of
generality, that it is positive. Using the above D we first prove the following:

Claim: There exists a probabilistic polynomial-time algorithm A that satisfies

Px,y∈GF(2`(m))m [A(f(x, y)) = h(x, y)] ≥ 2−`(m) +
ε(m)

2`(m) − 1

for every m ∈M .

Proof: The claim may be established by analyzing the success probability of the
following algorithm A: On input z = f(x, y), uniformly select r ∈ GF(2`(m)), invoke
D(z, r), and return r if D(z, r) = 1 and a uniformly selected value in GF(2`(m)) \ {r}
otherwise. Details follow.

Px,y[A(f(x, y)) = h(x, y)] = Px,y,r[A(f(x, y)) = h(x, y) & r = h(x, y)]
+Px,y,r[A(x, y) = h(x, y) & r 6= h(x, y)]

= Px,y,r[D(f(x, y), r) = 1 & r = h(x, y)]
+Px,y,r,r′ [D(f(x, y), r) = 0 & r′ = h(x, y) 6= r]

where r′ denotes a uniformly selected value in GF(2`(m)) \{r}. Letting L = 2`(m), we
have:

Px,y,r[D(f(x, y), r) = 1 & r = h(x, y)] =
1
L
·Px,y,r[D(f(x, y), r) = 1 | r = h(x, y)]

=
1
L
·Px,y,r[D(f(x, y), h(x, y)) = 1]

On the other hand

Px,y,r,r′ [D(f(x, y), r) = 0 & r′ = h(x, y) 6= r]

=
1

L− 1
·Px,y,r[D(f(x, y), r) = 0 & r 6= h(x, y)]

=
1

L− 1
· (Px,y,r[D(f(x, y), r) = 0]−Px,y,r[D(f(x, y), r) = 0 & r = h(x, y)])

=
1

L− 1
·
(

1−Px,y,r[D(f(x, y), r) = 1]− 1
L

+
1
L
·Px,y[D(f(x, y), h(x, y)) = 1]

)
Combining the above, we get
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Px,y[A(f(x, y)) = h(x, y)]

=
1
L
·Px,y,r[D(f(x, y), h(x, y)) = 1]

+
1
L

+
1

L− 1
·
(

1
L
·Px,y[D(f(x, y), h(x, y)) = 1]−Px,y,r[D(f(x, y), r) = 1]

)
=

1
L

+
1

L− 1
· (Px,y[D(f(x, y), h(x, y)) = 1]−Px,y,r[D(f(x, y), r) = 1])

≥ 1
L

+
1

L− 1
· ε(m)

and the claim follows. QED

Let A be as in the above claim. Recalling that f(x, y) = (f ′(x), y), observe that A
gives rise to a function Fz′ : GF(2`(m))m → GF(2`(m)) defined by Fz′(y) def= A(z′, y),
and it holds that

Px,y∈GF(2`(m))m [Ff ′(x)(y) =
m∑
i=1

xiyi] ≥ 2−`(m) +
ε(m)

2`(m) − 1

Thus, for at least an ε(m)
2`(m)+1 fraction of the possible x = (x1, ..., xm)’s it holds that

Py∈GF(2`(m))m [Ff ′(x)(y) =
m∑
i=1

xiyi] ≥ 2−`(m) +
ε(m)

2`(m)+1

Applying Theorem 2.1 to such Ff ′(x), with δ = 2−`(m) + ε(m)
2`(m)+1 , we obtain a list

of all polynomials that agree with Ff ′(x) on at least a 2−`(m) + ε(m)
2`(m)+1 fraction of

the inputs. This list includes x, and hence we have inverted the function f ′ in time
poly(m/δ) = poly(|x|). This happens on a polynomial fraction of the possible x’s, and
thus we have reached a contradiction to the hypothesis that f ′ is a one-way function.
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