
A statistical perspective on data miningJonathan Hosking, Edwin Pednault and Madhu SudanIBM T. J. Watson Research Center, Yorktown Heights, N.Y., U.S.A.AbstractData mining can be regarded as a collection of methods for drawing inferences from data. Theaims of data mining, and some of its methods, overlap with those of classical statistics. However,there are some philosophical and methodological di�erences. We examine these di�erences, andwe describe three approaches to machine learning that have developed largely independently:classical statistics, Vapnik's statistical learning theory, and computational learning theory. Com-paring these approaches, we conclude that statisticians and data miners can pro�t by studyingeach other's methods and using a judiciously chosen combination of them.Key words: classi�cation, frequentist inference, PAC learning, statistical learning theory.1 Introduction: a statistician looks at data miningThe recent upsurge of interest in the �eld variously known as data mining, knowledge discoveryor machine learning1 has taken many statisticians by surprise. Data mining attacks such problemsas obtaining e�cient summaries of large amounts of data, identifying interesting structures andrelationships within a data set, and using a set of previously observed data to construct predic-tors of future observations. Statisticians have well established techniques for attacking all of theseproblems. Exploratory data analysis, a �eld particularly associated with J. W. Tukey [18], is a col-lection of methods for summarizing and identifying patterns in data. Many statistical models existfor explaining relationships in a data set or for making predictions: cluster analysis, discriminantanalysis and nonparametric regression can be used in many data mining problems. It is thereforetempting for a statistician to regard data mining as no more than a branch of statistics.Nonetheless, the problems and methods of data mining have some distinct features of their own.Data sets can be very much larger than is usual in statistics, running to hundreds of gigabytes orterabytes. Data analyses are on a correspondingly larger scale, often requiring days of computertime to �t a single model. There are di�erences of emphasis in the approach to modeling: com-pared with statistics, data mining pays less attention to the large-sample asymptotic propertiesof its inferences and more to the general philosophy of \learning", including consideration of thecomplexity of models and of the computations that they require. Some modeling techniques, suchas rule-based methods, are di�cult to �t into the classical statistical framework, and others, suchas neural networks, have an extensive methodology and terminology that has developed largelyindependently of input from statisticians.1Unfortunately, \data mining" is a pejorative term to statisticians, who use it to describe the �tting of a statisticalmodel that is unjusti�ably elaborate for a given data set (e.g. [11]). \Machine learning" is probably better, though\learning" is a loaded term. 1



This paper is a brief introduction to some of the similarities and di�erences between statisticsand data mining. In Section 2 we observe some of the di�erences between the statistical and data-mining approaches to data analysis and modeling. In Sections 3{5 we describe in more detail someapproaches to machine learning that have arisen in three more-or-less disjoint academic communi-ties: classical statistics, the statistical learning theory of V. Vapnik, and computational learningtheory. Section 6 contains some comparisons and conclusions.2 Statistics and data mining2.1 Features of data miningBoth statistics and data mining are concerned with drawing inferences from data. The aim ofthe inference may be understanding the patterns of correlation and causal links among the datavalues (\explanation"), or making predictions of future data values (\generalization"). Classicalstatistics has developed an approach, described further in Section 3 below, that involves specifyinga model for the probability distribution of the data and making inferences in the form of probabilitystatements. Data-mining methods have in many cases been developed for problems that do not �teasily into the framework of classical statistics and have evolved in isolation from statistics. Evenwhen applied to familiar statistical problems such as classi�cation and regression, they retain somedistinct features. We now mention some features of the data-mining approaches and their typicalimplementations.Complex models. Some problems involve complex interactions between feature variables, withno simple relationships being apparent in the data. Character recognition is a good example; givena 16 � 16 array of pixels, it is di�cult to formulate a comprehensible statistical model that canidentify the character that corresponds to a given pattern of dots. Data-mining techniques suchas neural networks and rule-based classi�ers have the capacity to model complex relationships andshould have better prospects of success in complex problems.Large problems. By the standards of classical statistics, data mining often deals with very largedata sets (104 to 107 examples). This is in some cases a consequence of the use of complex models,for which large amounts of data are needed to derive secure inferences. In consequence, issuesof computational complexity and scalability of algorithms are often of great importance in datamining.Many discrete variables. Data sets that contain a mixture of continuous and discrete-valuedvariables are common in practice. Most multivariate analysis methods in statistics are designed forcontinuous variables. Many data mining methods are more tolerant of discrete-valued variables.Indeed, some rule-based approaches use only discrete variables and require continuous variables tobe discretized.Wide use of cross-validation. Data-mining methods often seek to minimize a loss functionexpressed in terms of prediction error: for example, in classi�cation problems the loss functionmight be the misclassi�cation rate on a set of examples not used in the model-�tting procedure.Prediction error is often estimated by cross-validation, a technique known to statistics but usedmuch more widely in data mining.Minimization of the prediction error estimated by cross-validation is a powerful technique thatcan be used in a nested fashion|the \wrapper method" [7]|to optimize several aspects of themodel. These include various parameters that might otherwise be chosen arbitrarily (e.g., the2



amount of pruning of a decision tree, or the number of neighbors to use in a nearest-neighborclassi�er) and the choice of which feature variables are relevant for classi�cation and which can beeliminated from the model.Few comparisons with simple statistical models. When data mining methods are usedon problems to which classical statistical methods are also applicable, direct comparison of theapproaches is possible but seems rarely to be performed. Some comparisons have found thatthe greater complexity of data mining methods is not always justi�able: Ripley [16] cites severalexamples. Statistical methods are particularly likely to be preferable when fairly simple models areadequate and the important variables can be identi�ed before modeling. This is a common situationin biomedical research, for example. In this context Vach et al. [19] compared neural networks andlogistic regression and concluded that the use of neural networks \does not necessarily imply anyprogress: they fail in translating their increased exibility into an improved estimation of theregression function due to insu�cient sample sizes, they do not give direct insight to the inuenceof single covariates, and they are lacking uniqueness and reproducibility".2.2 Classi�cation: an illustrative problemA common problem in statistics and data mining is to use observations on a set of \feature variables"to predict the value of a \class variable". This problem corresponds to statistical models forclassi�cation when the class variable takes a discrete set of values and for regression when thevalues of the class variable cover a continuous range. To illustrate the range of approaches availablein statistics and data mining we consider the classi�cation problem. Many di�erent methods areused for classi�cation. The classical statistical approach is discriminant analysis; starting fromthis one can list various data-mining methods in decreasing order of their resemblance to classicalstatistical modeling. More details of many of these methods can be found in [13]. We denotethe class variable by y and the feature variables by the vector x = [x1 : : : xf ]. It is sometimesconvenient to think of the feature variables as ordinates of a \feature space" with the aim of theanalysis being to partition the feature space into regions corresponding to the di�erent classes(values of y).Linear/quadratic/logistic discriminant analysis. Discriminant analysis is a classical statis-tical technique based on statistical models containing, usually, relatively few parameters. Themodeling procedure seeks linear or quadratic combinations of the feature variables that identifythe boundaries between classes. The most detailed theory applies to cases in which the featuresare continuous-valued and, within each class, approximately Normally distributed.Projection pursuit. For classi�cation problems, projection pursuit can be thought of as a general-ization of logistic discrimination that also involves linear combinations of features but also includesnonlinear transformations of these linear combinations, with the probability of a feature vector xbelonging to class k being modeled asMXm=1 �km m� fXj=1 �mjxj� : (1)The  m are prespeci�ed scatterplot smoothing functions, chosen in part for their speed of compu-tation. The nonlinearities and often large numbers of parameters in the model leads one to regardprojection pursuit as a \neostatistical" rather than a classical statistical technique.3



Radial basis functions. Radial basis functions form another kind of nonlinear neostatisticalmodel. The probability of a feature vector x belonging to class k is modeled asMXm=1 �m�(jjx� cmjj=�m) :Here jjx� cmjj is the distance from point x in feature space to the mth center cm, �m is a scalefactor, and � is a basis function, often chosen to be the Gaussian function �(r) = exp(�r2).Neural networks. A common form of neural network for the classi�cation problem, the multilayerfeedforward network, can be thought of as a model similar to (1). However, the  m transformationsare di�erent|generally the logistic function  m(t) = 1=f1 + exp(�t)g is used|and more thanone layer of logistic transformations may be applied. Neural networks are recognizably close toneostatistical models, but a unique methodology and terminology for neural networks has developedthat is unfamiliar to statisticians.Graphical models. Graphical models, also known as Bayesian networks, belief functions, or causaldiagrams, involve the speci�cation of a network of links between feature and class variables. Thelinks specify relations of statistical dependence between particular features; equally importantly,absence of a direct link between two features is an assertion of their conditional independencegiven the other features appearing in the network. Links in the network can be interpreted ascausal relations between features|though this is not always straightforward, as exempli�ed bythe discussion in [15]|which can yield particularly informative inferences. For realistic problems,graphical models involve large numbers of parameters and do not �t well into the framework ofclassical statistical inference.Nearest-neighbor methods. At its simplest, the k-nearest neighbor procedure assigns a class topoint x in feature space according to the majority vote of the k nearest data points to x. This is asmoothing procedure, and will be e�ective when class probabilities vary smoothly over the featurespace. Questions arise as to the choice of k and of an appropriate distance measure in feature space.These issues are not easily expressed in terms of classical statistical models. Model speci�cation istherefore determined by maximizing classi�cation accuracy on a set of training data rather thanby formally specifying and �tting a statistical model.Decision trees. A decision tree is a succession of partitions of feature space, each partition usuallybased on the value taken by a single feature, until the partitions are so �ne that each corresponds toa single value of the class variable. This formulation bears little resemblance to classical parametricstatistical models. Choice of the best tree representation is obtained by comparing di�erent treesin terms of their predictive accuracy, estimated by cross-validation, and their complexity, oftenmeasured by minimum description length.Rules. Rule-based methods seek to assign class labels to subregions of feature space according tological criteria such as if x1 = 3 and x2 � 15 and x2 < 30 then y = 1:Individual rules can be complex and hard to interpret subjectively. Rule-generation methods ofteninvolve parameters whose optimal values are unknown. The methods cannot be expressed in termsof classical statistical models, and the parameter values are optimized, as for decision trees, byconsideration of a rule set's predictive accuracy and complexity.4



The foregoing list illustrates a wide range of statistical and data-mining approaches to theclassi�cation problem. However, each approach requires at some stage the selection of appropriatefeatures x1; : : : ; xf . It can be argued that this similarity between the approaches outweighs all oftheir di�erences. Any given data set may contain irrelevant or poorly measured features which onlyadd noise to the analysis and should for e�ciency's sake be deleted; some dependences betweenclass and features may be most succinctly expressed in terms of a function of several featuresrather than by a single feature. No method can be expected to perform well if does not use themost informative features: \garbage in, garbage out".Explicit feature selection criteria have been developed for several of the methods describedabove. These range from criteria based on signi�cance tests for statistical models to measures basedon the impurity of the conditional probability distribution of the class variable given the features,used in decision-tree and rule-based classi�ers [10]. As noted above, the \wrapper" method is apowerful and widely applicable technique for feature selection.Construction of new features can be explicit or implicit. Some techniques such as principal-components regression explicitly form linear combinations of features that are then used as newfeature variables in the model. Conversely, the linear combinations Pj �mjxj of features thatappear in the representation (1) for projection-pursuit and neural-network classi�ers are implicitconstructed features. Construction of nonlinear combinations of features is generally a matter forsubjective judgement.3 Classical statistical modelingIn this section we give a brief summary of the classical \frequentist" approach to statistical modelingand scienti�c inference. A detailed account of the theory is given by Cox and Hinkley [2]. Thetechniques used in applied statistical analyses are described in more specialized texts such as [4] forclassi�cation problems and [27] for regression. We assume that inference focuses on a data vector zwith the available data zi; i = 1; : : : ; `, being ` instances of z. In many problems, such as regressionand classi�cation, the data vector z is decomposed into z = [x; y] and y is modeled as a functionof the x values.3.1 Model speci�cationA statistical model is the speci�cation of a frequency distribution p(z) for the elements of the datavector z. This enables \what happened" (the observed data vector) to be quantitatively comparedwith \what might have happened, but didn't" (other potentially observable data vectors).In regression and classi�cation problems the conditional distribution of y given x, p(yjx), is ofinterest; the frequency distribution of x may or may not be relevant. In most statistical regressionanalyses the model has the form y = f(x) + e (2)where e is an error term having mean zero and some probability distribution; i.e., it is assumed thatthe relationship between y and x is observed with error. The alternative speci�cation in which thefunctional relationship y = f(x) is exact and uncertainty arises only when predicting y at hithertounobserved values of x is much less common: one example is the interpolation of random spatialprocesses by kriging [8].In classical statistics, model speci�cation has a large subjective component. Candidates for thedistribution of z, or the form of the relationship between y and x, may be obtained from inspection5



of the data, from familiarity with relations established by previous analysis of similar data sets, orfrom a scienti�c theory that entails particular relations between elements of the data vector.3.2 EstimationModel speci�cation generally involves an unknown parameter vector �. This is typically estimatedby the maximum-likelihood procedure: the joint probability density function of the data, p(z; �),is maximized over �. Maximum-likelihood estimation can be regarded as minimization of the lossfunction � log p(z; �). When the data are assumed to be a set of independent and identicallydistributed vectors zi, i = 1; : : : ; `, this loss function isX̀i=1 � log p(zi; �) :When the data vector is decomposed as z = [x; y], the observed data are similarly decomposed aszi = [xi; yi], and the loss function (negative log-likelihood) isX̀i=1� log p(yijxi; �) :If the conditional distribution of yi given xi is Normal with mean a function of xi, f(xi; �), andvariance independent of i, this loss function is equivalent to the sum of squaresX̀i=1fyi � f(xi; �)g2 :The justi�cation for maximum-likelihood estimation is asymptotic: the estimators are consistentand e�cient as the sample size ` increases to in�nity. Except for certain models whose analysis isparticularly simple, classical statistics has little to say about �nite-sample properties of estimatorsand predictors.Assessment of the accuracy of estimated parameters is an important part of frequentist inference.Estimates of accuracy are typically expressed in terms of con�dence regions. In frequentist inferencethe parameter � is regarded as �xed but unknown, and does not have a probability distribution.Instead one considers hypothetical repetitions of the process of generation of data from the modelwith a �xed value �0 of the parameter vector �, followed by computation of �̂, the maximum-likelihood estimator of �. Over these repetitions a probability distribution for �̂ � � will be builtup. Likelihood theory provides an asymptotic large-sample approximation to this distribution.From it one can determine a region C(�̂), depending on �̂, of the space of possible values of �, thatcontains the true value �0 with probability  (no matter what this true value may be). C(�̂) isthen a con�dence region for � with con�dence level . The size of the region is a measure of theaccuracy with which the parameter can be estimated.Con�dence regions can also be obtained for subsets of the model parameters and for predictionsmade from the model. These too are asymptotic large-sample approximations. Con�dence state-ments for parameters and predictions are valid only on the assumption that the model is correct,i.e. that for some value of � the speci�ed frequency distribution p(z; �) for z accurately representsthe relative frequencies of all of the possible values of z. If the model is false, predictions may beinaccurate and estimated parameters may not be meaningful.6



3.3 Diagnostic checkingInadequacy of a statistical model may arise from three sources. Over�tting occurs when the modelis unjusti�ably elaborate, with the model structure in part representing merely random noise in thedata. Under�tting is the converse situation, in which the model is an oversimpli�cation of realitywith additional structure being needed to describe the patterns in the data. A model may alsobe inadequate through having the wrong structure: for example, a regression model may relate ylinearly to x when the correct physical relation is linear between log y and log x.Comparison of parameters with their estimated accuracy provides a check against over�tting.If the con�dence region for a parameter includes the value zero, then a simpler model in which theparameter is dropped will usually be deemed adequate.In the frequentist framework, under�tting by a statistical model is typically assessed by diag-nostic goodness-of-�t tests. A statistic T is computed whose distribution can be found, eitherexactly or as a large-sample asymptotic approximation, under the assumption that the model iscorrect. If the computed value of T is in the extreme tail of its distribution there is an indication ofmodel inadequacy: either the model is wrong or something very unusual has occurred. An extremevalue of T often (but not always) suggests a particular direction in which the model is inadequate,and a way of modifying the model to correct the inadequacy.Many diagnostic plots and statistics have been devised for particular statistical models. Thoughnot used in formal goodness-of-�t tests, they can be used as the basis of subjective judgementsof model adequacy, for identi�cation either of under�tting or of incorrect model structure. Forexample, the residuals from a regression model that is correctly speci�ed will be approximatelyindependently distributed; if a plot of residuals against the �tted values shows any noticeablestructure, this is an indication of model inadequacy and may suggest some way in which the modelshould be modi�ed.Diagnostic plots are also used to identify data values that are unusual in some respect. Unusualobservations may be outliers, values that are discordant with the pattern of the other data values,or inuential values, which are such that a small change in the data value will have a large e�ecton the estimated values of the model parameters. Such data points merit close inspection to checkwhether the outliers may have arisen from faulty data collection or transcription, and whether theinuential values have been measured with su�cient accuracy to justify conclusions drawn fromthe model and its particular estimated parameter values. In analyses in which there is the optionof collecting additional data at controlled points, for example when modeling the relation y = f(x)where x can be �xed and the corresponding value of y observed, the most informative x values atwhich to collect more data will be in the neighborhood of outlying and inuential data points.3.4 Model building as an iterative procedureThe sequence of speci�cation{estimation{checking lends itself to an iterative procedure in whichmodel inadequacy revealed by diagnostic checks suggests a modi�ed model speci�cation designedto correct the inadequacy; the modi�ed model is then itself estimated and checked, and the cycleis repeated until a satisfactory model is obtained. This procedure often has a large subjectivecomponent, arising from the model speci�cations and the choice of diagnostic checks. However,formal procedures to identify the best model can be devised if the class of candidate models canbe speci�ed a priori. This is the case, for example, when the candidates form a sequence of nestedmodels M1; : : : ;Mm, whose parameter vectors �(1); : : : ; �(m) are such that every element of �(j)is also included in �(j+1). Careful control over the procedure is necessary in order to ensure that7



inferences are valid, for example that con�dence regions for the parameters in the �nal model havethe correct coverage probability.Classical frequentist statistics has little to say about the choice between nonnested models,for example whether a regression model y = �(1)1 x1 + �(1)2 x2 is superior to an alternative modellog y = �(2)1 x1 + �(2)2 x3. Such decisions are generally left as a matter of subjective judgement basedon the quality of �t of the models, their ease of interpretation and their concordance with knownphysical mechanisms relating the variables in the model.Once a satisfactory model has been obtained, further inferences and predictions are typicallybased on the assumption that the �nal model is correct. This is problematical in two respects. Inmany situations one may believe that the true distribution of z has a very complex structure towhich any statistical model is at best an approximation. Furthermore, the statistical properties ofparameter estimators in the �nal model may be a�ected by the fact that several models have beenestimated and tested on the same set of data, and failure to allow for this can lead to inaccurateinferences.As an example of this last problem, we consider stepwise regression. This is a widely usedprocedure for identifying the best statistical model, in this case deciding which elements of thex component of the data vector should appear in the regression model (2). Because randomvariability can cause x variables that are actually unrelated to y to appear to be statisticallysigni�cant, the estimated regression coe�cients of the variables selected for the �nal model tendto be overestimates of the absolute magnitude of the true parameter values. This \selection bias"leads to underestimation of the variability of the error term in the regression model, which can leadto poor results when the �nal model is used for prediction. In practice it is often better to use allof the available variables rather than a stepwise procedure for prediction [14].3.5 Recent developmentsDevelopments in statistical theory since the 1970s have addressed some of the di�culties with theclassical frequentist approach. Akaike's information criterion [17], and related measures of Schwarzand Rissanen, provide likelihood-based comparisons of nonnested models. Development of robustestimators [6] has made inference less susceptible to outliers and inuential data values. Greateruse of nonlinear models enables a wider range of x{y relationships to be accurately modeled.Simulation-based methods such as the bootstrap [3] enable better assessment of accuracy in �nitesamples.4 Vapnik's statistical learning theoryOne reason that classical statistical modeling has a large subjective component is that most of themathematical techniques used in the classical approach assume that the form of the correct modelis known and that the problem is to estimate its parameters. In data mining, on the other hand,the form of the correct model is usually unknown. In fact, discovering an adequate model, even ifits form is not exactly correct, is often the purpose of the analysis. This situation is also faced inclassical statistical modeling and has led to the creation of the diagnostic checks discussed earlier.However, even with these diagnostics, the classical approach does not provide �rm mathematicalguidance when comparing di�erent types of models. The question of model adequacy must still bedecided subjectively based on the judgment and experience of the data analyst.This latter source of subjectivity has motivated Vapnik and Chervonenkis [24, 25, 26] to developa mathematical basis for comparing models of di�erent forms and for estimating their relative8



adequacies. This body of work, now known as statistical learning theory, presumes that the formof the correct model is truly unknown and that the goal is to identify the best possible modelfrom a given set of models. The models need not be of the same form and none of them needbe correct. In addition, comparisons between models are based on �nite-sample statistics, notasymptotic statistics as is usually the case in the classical approach. This shift of emphasis to�nite samples enables over�tting to be quantitatively assessed. Thus, the underlying premise ofstatistical learning theory closely matches the situation actually faced in data mining.4.1 Model speci�cationAs in classical statistical modeling, models for the data must be speci�ed by the analyst. However,instead of specifying a single (parametric) model whose form is then assumed to be correct, a seriesof competing models must be speci�ed one of which will be selected based on an examination ofthe data. In addition, a preference ordering over the models must also be speci�ed. This preferenceordering is used to address the issue of over�tting. In practice, models with fewer parameters ordegrees of freedom are preferable to those with more, since they are less likely to over�t the data.When applying statistical learning theory, one searches for the most preferable model that bestexplains the data.4.2 EstimationEstimation plays a central role in statistical learning theory just as it does in classical statisticalmodeling; however, what is being estimated is quite di�erent. In the classical approach, the form ofthe model is assumed to be known and, hence, emphasis is placed on estimating its parameters. Instatistical learning theory, the correct model is assumed to be unknown and emphasis is placed onestimating the relative performance of competing models so that the best model can be selected.The relative performance of competing models is measured through the use of loss functions.The negative log-likelihood functions employed in classical statistical modeling are also used instatistical learning theory when comparing probability distributions. However, other loss functionsare also considered for di�erent kinds of modeling problems.In general, statistical learning theory considers the loss Q(z; �) between a data vector z and aspeci�c model �. In the case of a parametric family of models, the notation introduced earlier isextended so that � de�nes both the speci�c parameters of the model and the parametric familyto which the model belongs. In this way, models from di�erent families can be compared. Whenmodeling the joint probability density of the data, the appropriate loss function is the same jointnegative log-likelihood used in classical statistical modeling:Q(z; �) = � log p(z;�) :Similarly, when the data vector z can be decomposed into two components, z = [x; y] and we areinterested in modeling the conditional probability distribution of y as a function of x, then theconditional negative log likelihood is the appropriate loss function:Q(z; �) = � log p(y j x;�) :On the other hand, if we are not interested in the actual distribution of y but only in constructinga predictor f(x;�) for y that minimizes the probability of making an incorrect prediction, then the0/1 loss function used in pattern recognition is appropriate:Q(z; �) = � 0; if f(x;�) = y,1; if f(x;�) 6= y.9



In general, Q(z; �) can be chosen depending on the nature of the modeling problem one faces. Itspurpose is to measure the performance of a model so that the best model can be selected. The onlyrequirement from the point of view of statistical learning theory is that, by convention, smallerlosses imply better models of the data.Once a loss function has been selected, identifying the best model would be relatively easy ifwe already knew all of the statistical properties of the data. If the data vector z is generated by arandom process according to the probability measure F (z), then the best model � is the one thatminimizes the expected loss R(�) with respect to F (z), whereR(�) = Z Q(z; �) dF (z) :The model that minimizes R(�) is optimal from a decision-theoretic point of view. In the termi-nology of decision theory, � is a decision vector, z is an outcome, and Q(z; �) is the (negative)utility measure of the outcome given the decision. Utility measures provide a numerical encodingof which outcomes are preferred over others, as well as a quantitative measurement of the degreeof uncertainty one is willing to accept in choosing a risky decision that has a low probability ofobtaining a highly desirable outcome versus a more conservative decision with a high probabilityof a moderate outcome. Choosing the decision vector � that has the best expected (negative)utility R(�) produces an optimal decision consistent with the risk preferences de�ned by the utilitymeasure|that is, the best model given the loss function.Unfortunately, in practice, the expected loss R(�) cannot be calculated directly because theprobability measure F (z) that de�nes the statistical properties of the data is unknown. Instead,one must choose the most suitable model one can identify based on a set of observed data vectorszi, i = 1; : : : ; `. Assuming that the observed vectors are statistically independent and identicallydistributed, the average loss Remp(�; `) for the observed data can be used as an empirical estimatorof the expected loss, where Remp(�; `) = 1̀ X̀i=1Q(zi; �) :Statistical learning theory presumes that models � are chosen by minimizing Remp(�; `). Note thatthis presumption is consistent with standard model-�tting procedures used in statistics in whichmodels and/or their parameters are selected by optimizing numerical criteria of this general form.The fundamental question of statistical learning theory is the following: under what conditionsdoes minimizing the average empirical loss Remp(�; `) yield models that also minimize the expectedloss R(�), since the latter is what we actually want to accomplish? This question is answeredby considering the accuracy of the empirical loss estimate. As in classical statistics, accuracy isexpressed in terms of con�dence regions; however, in this case, con�dence regions are constructedfor the expected losses, not for the parameters. The expected loss R(�) for a model � is regardedas �xed but unknown, since the probability measure F (z) that de�nes the statistical properties ofthe data vectors is �xed but unknown. On the other hand, the average empirical loss Remp(�; `)is a random quantity that we can sample, since its value depends on the values of the observeddata vectors zi, i = 1; : : : ; `, used in its calculation. Statistical learning theory therefore considerscon�dence regions for R(�) given Remp(�; `).To construct these con�dence regions, we need to consider the probability distribution of thedi�erence between the expected and average empirical losses while taking into account the fact thatmodels are selected by minimizing average empirical loss . This latter caveat is the key issue thatdistinguishes statistical learning theory from classical statistics. One of the fundamental theorems10



of statistical learning theory shows that, in order to account for the fact that models are selected byminimizing average empirical loss, one must consider the maximum di�erence between the expectedand average empirical losses; that is, one must consider the distribution ofsup�2� ���R(�)� Remp(�; `)��� ;where � is the set of models one is selecting from.The reason that the maximum di�erence must be considered has to do with the phenomenonof over�tting. Intuitively speaking, over�tting occurs when the set of models to choose from hasso many degrees of freedom that one can �nd a model that �ts the noise in the data but does notadequately reect the underlying relationships. As a result, one obtains a model that looks goodrelative to the training data but that performs poorly when applied to new data. This mathe-matically corresponds to a situation in which the average empirical loss Remp(�; `) substantiallyunderestimates the expected loss R(�). Although there is always some probability that the averageempirical loss will underestimate the expected loss for a �xed model �, both the probability andthe degree of underestimation are increased by the fact that we explicitly search for the model thatminimizes Remp(�; `). Because of this search, the maximum di�erence between the expected andaverage empirical losses is the quantity that governs the con�dence region.The landmark contribution of Vapnik and Chervonenkis is a series of probability bounds thatthey have developed to construct small-sample con�dence regions for the expected loss given theaverage empirical loss. The resulting con�dence regions di�er from those obtained in classicalstatistics in three respects. First, they do not assume that the chosen model is correct. Second,they are based on small-sample statistics and are not asymptotic approximations as is typically thecase. Third, a uniform method is used to take into account the degrees of freedom in the set ofmodels one is selecting from independent of the forms of those models. This method is based on ameasurement known as the Vapnik-Chervonenkis (VC) dimension.The VC dimension of a set of models can conceptually be thought of as the maximum numberof data vectors for which one is pretty much guaranteed to �nd a model that �ts exactly. Forexample, the VC dimension of a linear regression or discriminant model is equal to the number ofterms in the model (i.e., the number of degrees of freedom in the classical sense), since n linearterms can be used to exactly �t n points. The actual de�nition of VC dimension is more generaland does not formally require an exact �t; nevertheless, the intuitive insights gained by thinkingabout the consequences of exact �ts are often valid with regard to VC dimension. For example, oneconsequence is that in order to avoid over�tting the number of data samples should substantiallyexceed the VC dimension of the set of models to choose from; otherwise, one could obtain an exact�t to arbitrary data.Because VC dimension is de�ned in terms of model �tting and numbers of data points, it isequally applicable to linear, nonlinear and nonparametric models, and to combinations of dissimilarmodel families. This includes neural networks, classi�cation and regression trees, classi�cation andregression rules, radial basis functions, Bayesian networks, and virtually any other model familyimaginable. In addition, VC dimension is a much better indicator of the ability of models to �tarbitrary data than is suggested by the number of parameters in the models. There are examplesof models with only one parameter that have in�nite VC dimension and, hence, are able to exactly�t any set of data [22, 23]. There are also models with billions of parameters that have small VCdimensions, which enables one to obtain reliable models even when the number of data samples ismuch less than the number of parameters. VC dimension coincides with the number of parameters11



only for certain model families, such as linear regression/discriminant models. VC dimensiontherefore o�ers a much more general notion of degrees of freedom than is found in classical statistics.In the probability bounds obtained by Vapnik and Chervonenkis, the size of the con�denceregion is largely determined by the ratio of the VC dimension to the number of data vectors. Forexample, if the loss function Q(z; �) is the 0/1 loss used in pattern recognition, then with probabilityat least 1� �,Remp(�; `)� pE2 � R(�) � Remp(�; `) + E2 0@1 +s1 + 4Remp(�; `)E 1A ;where E = 4h̀ �ln 2h̀ + 1�� 4̀ ln��4�and where h is the VC dimension of the set of models to choose from. Note that the ratio of theVC dimension h to the number of data vectors ` is the dominant term in the de�nition of E and,hence, in the size of the con�dence region for R(�). Other families of loss functions have analogouscon�dence regions involving the quantity E .The concept of VC dimension and con�dence bounds for various families of loss functions arediscussed in detail in books by Vapnik [21, 22, 23]. The remarkable properties of these bounds arethat they make no assumptions about the probability distribution F (z) that de�nes the statisticalproperties of the data vectors, they are valid for small sample sizes, and they are dependent onlyon the VC dimension of the set of models and on the properties of the loss function employed.The bounds are therefore applicable for an extremely wide range of modeling problems and for anyfamily of models imaginable.4.3 Model selectionAs discussed at the beginning of this section, the data analyst is expected to provide not just asingle parametric model, but an entire series of competing models ordered according to preference,one of which will be selected based on an examination of the data. The results of statistical learningtheory are then used to select the most preferable model that best explains the data.The selection process has two components: one is to determine a cut-o� point in the preferenceordering, the other is to select the model with the smallest average empirical loss Remp(�; `) fromamong those models that occur before the cut-o�. As the cut-o� point is advanced through thepreference ordering, both the set of models that appear before the cut-o� and the VC dimension ofthis set steadily increase. This increase in VC dimension has two e�ects. The �rst e�ect is that withmore models to choose from one can usually obtain a better �t to the data; hence, the minimumaverage empirical loss steadily decreases. The second e�ect is that the size of the con�dence regionfor the expected loss R(�) steadily increases because the size is governed by the VC dimension. Tochoose a cut-o� point in the preference ordering, Vapnik and Chervonenkis advocate minimizingthe upper bound on the con�dence region for the expected loss; that is, minimize the worst-caseestimate of R(�). For example, if the 0/1 loss function were being used, one would choose thecut-o� so as to minimize the left hand side of the inequality presented above for a desired settingof the con�dence parameter �. The model � that minimizes the average empirical loss Remp(�; `)for those models that occur before the chosen cut-o� is then selected as the most suitable modelfor the data.The overall approach is illustrated by the graph in Figure 1. The process balances the ability12
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Figure 1: Expected loss and average empirical loss as a function of the preference cut-o�.to �nd increasingly better �ts to the data against the danger of over�tting and thereby selectinga poor model. The preference ordering provides the necessary structure in which to comparecompeting models while at the same time taking into account their e�ective degrees of freedom(i.e., VC dimension). The result is a model that minimizes the worst-case loss on future data. Theprocess itself attempts to maximize the rate of convergence to an optimum model as the quantityof available data increases.4.4 Use of validation dataOne drawback to the Vapnik-Chervonenkis approach is that it can be di�cult to determine the VCdimension of a set of models, especially for the more exotic types of models. Even for simple linearregression/discriminant models, the situation is not entirely straightforward. The relationshipstated above that the VC dimension is equal to the number of terms in such a model is actuallyan upper bound on the VC dimension. If the models are written in a certain canonical form,then the VC dimension is also bounded by the quantity R2A2 + 1, where R is the radius of thesmallest sphere that encloses the available data vectors and A2 is the sum of the squares of thecoe�cients of the model in its canonical form. As Vapnik has shown [22], this additional boundon the VC dimension makes it possible to obtain linear regression/discriminant models whose VCdimensions are orders of magnitude smaller than the number of terms, even if the models containbillions of terms. This fact is extremely fortunate because it o�ers a means of avoiding the \curse ofdimensionality," enabling reliable models to be obtained even in high-dimensional spaces by basingthe preference ordering of the models on the sum of the squares of the model coe�cients.In cases where the VC dimension of a set of models is di�cult to determine, the expected losscan be estimated using resampling techniques [3]. In the simplest of these approaches, the availableset of data is randomly divided into training and validation sets. The training set is used �rst toselect the best-�tting model for each cut-o� point in the preference ordering. The validation setis then used to estimate the expected losses of the selected models by calculating their average13



empirical losses on the validation data. Finally, the model with the smallest upper bound for theexpected loss on the validation data is chosen as the most suitable model.Because only a �nite number of models are evaluated on the validation set (models with contin-uous parameters implies an in�nite set of models), it is very easy to obtain con�dence bounds forthe expected losses of these models independent of their exact forms and without having to worryabout VC dimension [22]. In particular, the same equations for the con�dence bounds are used asbefore, except that E now has the valueE = 2̀v lnN � 2̀v ln � ;where N is the number of models evaluated against the validation set and `v is the size of thevalidation set. Moreover, because the number N of such models is typically small relative to thesize `v of the validation set, one can obtain tight con�dence regions for the expected losses ofthese models given their average empirical losses on the validation data. Since the same underlyingprinciples are at work, this approach exhibits the same kind of relationship between the expectedand average empirical losses as that shown in Figure 1.Although this validation-set approach has an advantage in that it is relatively easy to obtainexpected loss estimates, it has the disadvantage that dividing the available data into subsetsdecreases the overall accuracy of the resulting estimates. This decrease in accuracy is usuallynot much of a concern when data is plentiful. However, when the sample size is small, �ttingmodels to all of the data and calculating the VC dimension for all relevant sets of models becomesmore attractive.5 Computational learning theory and PAC learningThe statistical theory of minimization of loss functions provides a general analysis of the conditionsunder which a class of models is learnable. The theory reduces the task of learning to that of solvinga �nite dimensional optimization problem: given a class of models @, a loss function Q, and a setof data vectors z1; : : : ; z`, �nd the model � 2 @ which minimizes the empirical loss PiQ(zi; �).The perfect complement to this theory would be an e�cient algorithm for every class of models@, which takes as inputs data vectors z1; : : : ; z` and produces the model � which minimizes theempirical loss on the samples z1; : : : ; z`. Before even de�ning e�ciency formally (we shall doso soon), we point out that such e�cient algorithms are not known to exist. Furthermore, thewidespread belief is that such algorithms will not exist for many class of models. As we shallelaborate on presently, this turns out to be related to the famous question from computationalmathematics: is P = NP?Given that the answer to this question is most probably negative, the next best hope wouldbe to characterize the model classes for which e�cient algorithms do exist. Unfortunately, suchcharacterizations are also ruled out due to the inherent undecidability of such questions. In viewof these barriers, it becomes clear that the question of whether a given model class allows for ane�cient algorithm to solve the minimization problem has to be tackled on an individual basis.The computational theory of learning, initiated by Valiant's work in 1984, is devoted to theanalysis of these problems. We cover some of the salient results in this area in this brief survey.There are plenty of results that show how to solve such minimization problems for various classesof models. These show the diversity within the area of computational learning. We shall howeverfocus on results that tend to unify the area. Thus most of this survey is focused on formulating14



the right de�nition for the computational setting and examining several parameters and attributesof the model.5.1 Computational model of learningThe complexity of a computational task is the number of elementary steps (addition, subtraction,multiplication, division, comparison, etc.) it takes to perform the computation. This is studied asa function of the input and output size of the function to be computed. The well-entrenched andwell-studied notion of e�ciency is that of polynomial time: an algorithm is considered e�cient ifthe number of elementary operations it performs is bounded by some �xed polynomial in the inputand output sizes. The class of problems which can be solved by such e�cient algorithms is denotedby P (for Polynomial time). This shall be our notion of e�ciency as well.In order to study the computational complexity of the learning problem, we have to de�nethe input and output sizes carefully. The input to the learning task is a collection of vectorsz1; : : : ; z` 2 Rn, but ` itself may be thought of as a parameter to be chosen by the learning algorithm.Similarly, the output of the learning algorithm is again a representation of the model, the choice ofwhich may be left unclear by the problem. The choice could easily allow an ine�cient algorithm topass as e�cient, by picking an unnecessarily large number of samples or an unnecessarily verboserepresentation of the hypothesis. In order to circumvent such di�culties, one forces the runningtime of the algorithm to be polynomial in n (the input size of a single sample) and the size ofthe smallest model from the class @ that �ts the data. The running time is not allowed to growwith `|at least, not directly. But the smallest ` required to guarantee good convergence growsas a polynomial in d, the VC dimension of @, and typically the output size of the smallest outputconsistent with the data will be at least d. Thus indirectly this does allow the running time to bea polynomial in `.In contrast to statistical theory, which �xes both the concept class @ (which actually explainsthe data) and the hypothesis class @0 (from which the hypothesis comes) and studies the learningproblem as a function of parameters of @ and @0, computational learning theory usually �xes @and leaves the choice of @0 to the learning algorithm. The only requirement from the learningalgorithm is that with high probability (bounded away from 1 by a con�dence parameter �), thelearning algorithm produces a hypothesis whose prediction ability is very close (given by an accuracyparameter �) to the minimum loss achieved by any model from the class @. The running time isallowed to be a polynomial in 1=� and 1=� as well.The above discussion can now be formalized in the following de�nition, which is popularlyknown as the PAC model (for Probably Approximately Correct). Given a class of models @, a lossfunction Q and a source of random vectors z 2 Rn that follow some unknown distribution F (z), a(generalized) PAC learning algorithm is one that takes two parameters � (the accuracy parameter)and � (the con�dence parameter), reads ` random examples z1; : : : ; z` as input, the choice of `being decided by the algorithm, and outputs a model (hypothesis) h(z1; : : : ; z`), possibly from aclass @0 6= @, such thatPrF �[z1; : : : ; z`] 2 Rn` : R(h(z1; : : : ; z`)) � inf�2@R(�) + �� � � ;where R( � ) is the same expected loss considered in statistical learning theory. The algorithm is saidto be e�cient if its running time is bounded by a polynomial in n, 1=�, 1=� and the representationsize of the � in @ that minimizes the loss. 15



While the notion of generalized PAC learning (cf. [5]) is itself general enough to study anylearning problem, in this survey we shall focus on the boolean pattern-recognition problems typicallyexamined in computational learning theory. Here the data vector z is partitioned into a vectorx 2 f0; 1gn�1 and a bit y 2 f0; 1g that is to be predicted. The model � is given by a functionf� : f0; 1gn�1 ! f0; 1g and the loss function Q(z; �) of a vector z = [x; y] is 0 if f�(x) = y and 1otherwise. In addition, the learning problem is usually noise-free in the sense that inf�2@R(�) = 0.Hence the accuracy parameter � represents the maximum prediction error desired for the model.5.2 Intractable learning problemsHenceforth we focus on problems for which Q(z; �) is computable e�ciently (i.e., f�(x) is com-putable e�ciently). For such Q and @, the problem of �nding the � that minimizes Q lies in awell-studied computational class NP. NP consists of problems that can be solved e�ciently by analgorithm that is allowed to make nondeterministic choices. In the case of learning, the nonde-terministic machine can nondeterministically guess the � that minimizes the loss, thus solving theproblem easily. Of course, the idea of an algorithm that makes nondeterministic choices is merelya mathematical abstraction|and not e�ciently realizable. The importance of the computationalclass NP comes from the fact that it captures many widely studied problems such as the Trav-eling Salesperson Problem, or the Graph Coloring Problem. Even more important is the notionof NP-hardness|a problem is NP-hard if the existence of an e�cient (polynomial-time) algorithmto solve it would imply a polynomial-time algorithm to solve every problem in NP. The famousquestion \Is NP = P?" asks exactly this question: do NP-hard problems have e�cient algorithmsto solve them?It is easy to show that several PAC learning problems are NP-hard if the hypothesis class isrestricted (to something �xed). A typical example is that of learning a pattern-recognition problem:\3-term DNF". It can be shown that learning 3-term DNF formulae with 3-term DNF is NP-hard.Interestingly however it is possible to e�ciently learn a broader class \3 CNF" which contains 3-term DNF. Thus this NP-hardness result is not pointing to any inherent computational bottlenecksto the task of learning|it merely advocates a judicious choice of the hypothesis class to make thelearning problem tractable.It is harder to show that a class of problems is hard to learn independent of the representationof choice for the output. In order to show the hardness of such problems one needs to assumesomething stronger than NP 6= P. A common assumption here is that there exist functions whichare easy to compute, but hard to invert, even on randomly chosen instances. Such instances arecommon in cryptography, and in particular are the heart of well-known cryptosystems such as RSA.If this assumption is true, it implies that NP 6= P. Under this assumption it is possible to show thatpattern recognition problems, where the pattern is generated by a Deterministic Finite Automaton(or Hidden Markov Model) are hard to learn, under some distributions on the space of the datavectors. Recent results also show that patterns generated by constant depth boolean circuits arehard to learn under the uniform distribution.In summary, the negative results shed new light on two aspects of learning. Learning is easier,i.e., more tractable, when no restrictions are placed on the model used to describe the given data.Furthermore, the complexity of the learning process is de�nitely dependent on the underlyingdistribution according to which we wish to learn.16



5.3 PAC learning algorithmsWe now move to some lessons learnt from positive results in learning. The �rst of these focuses onthe role of the parameters � and � in the de�nition of learning. As we will see these are not verycritical to the learning process. The second issue we will consider is the role of \classi�cation noise"in learning and present an alternate model which shows more robustness towards such noise.The strength of weak learning. Of the two fuzz parameters, � and �, used in the de�nitionof PAC learning, it seems clear that � (the accuracy) is more signi�cant than � (the con�dence),especially for pattern recognition problems. For such problems, given an algorithm which can learna model � with probability, say 2=3 (or any con�dence strictly greater than 1=2), it is easy to boostthe con�dence of getting a good hypothesis as follows. Pick a parameter k and run the learningalgorithm k times, producing a new hypothesis each time. Denote these hypotheses by h1; : : : ; hk.Use for the new prediction the algorithm whose prediction on any vector x is the majority vote ofthe predictions of h1; : : : ; hk. It is easy to show, by an application of the law of large numbers, thatthe majority vote is �-inaccurate with probability 1� exp(�ck) for some c > 0.The accuracy parameter, on the other hand, does not appear to allow such simple boosting. Itis unclear as to how one could use a learning algorithm which can learn to predict a model � withinaccuracy 1=3 to get a new algorithm which can predict a model with inaccuracy 1%. However, ifwe are lucky enough to be able to �nd learning algorithms which learn to predict with inaccuracy1=3, independent of the distribution from which the data vectors are picked, then we could use thesame learning algorithm on the region where our earlier predictions are inaccurate to boost ouraccuracy. Of course, the problem is that we don't know where our earlier predictions were wrong (ifwe knew we would change our prediction!). Though it appears that this reasoning has led us backto square one, it turns out not to be the case. In 1986, Schapire showed how to turn this intuitionto get a boosting result for the accuracy parameter as well. This result demonstrates a surprisingrobustness of PAC learning: weak learning (with inaccuracy barely below 1=2) is equivalent tostrong learning (with inaccuracy arbitrarily close to 0). However we stress that this equivalenceholds only if the weak learning is representation independent. Strong learning of a model @ undera �xed distribution F can be achieved by this method only if @ can be learned weakly under everydistribution.Learning with noise. Most results in computational learning start by assuming that the datais observed with no prediction noise. This is not an assumption justi�ed by reality. It is madeusually to get a basic understanding of the problem. However in order to make a computationallearning result useful in practice, one must allow for noise. Numerous examples are known where analgorithm which learns without classi�cation noise, can be converted into one that can tolerate someamount of noise as well. However this is not universally true. To understand why some algorithmsare tolerant to errors while others are not, a model of learning called statistical query model hasbeen proposed by Kearns in 1992. This model restricts a learning algorithm in the following way:instead of actually seeing data vectors z as sampled from the space, the learning algorithm workswith an oracle and gets to ask \statistical" questions about the data vectors. A typical statisticalquery asks for the probability that an event de�ned over the data space occurs for a vector chosenat random from the distribution under which we are attempting to learn. Further, the query ispresented with a tolerance parameter � . The oracle responds with the probability of the event towithin an additive error of � . It is easy to see how to simulate this oracle, given access to randomsamples of the data. Furthermore, it is easy to see how to simulate this oracle even when the data17



Table 1: Statisticians' and data miners' issues in data analysis.Statisticians' issues Data miners' issuesModel speci�cation AccuracyParameter estimation GeneralizabilityDiagnostic checks Model complexityModel comparison Computational complexityAsymptotics Speed of computationvectors come with some classi�cation noise, but less than � . Thus learning with access only to astatistical query oracle is a su�cient condition for learning with classi�cation noise. Almost allknown algorithms that learn with classi�cation noise can be shown to learn in the statistical querymodel. Thus this model provides a good standpoint from which to analyse the e�ectiveness of apotential learning strategy when attempting to learn in the presence of noise.Alternate models for learning. This survey has focused on the PAC model since it is closeto the spirit of data mining. However, a large body of work in computational learning focuses onmodels other than the PAC model. This body of work considers learning when one is allowed toask questions about the data one is trying to learn. Consider for instance a handwriting recognitionprogram, which generates some patterns and asks the teacher to indicate what letter this patternseems to resemble. It is conceivable that such learning programs may be more e�cient than passivehandwriting recognition programs. A class of learning algorithms that behave in this manner hasbeen studied under the label of learning with queries. Other models for learning that have beenstudied include capture scenarios of supervised learning and learning in an online setting.5.4 Further readingWe have given a very informal sketch of the various new questions posed by studying the processof learning, or �tting models to a given data, from the point of view of computation. Due to spacelimitations, we do not give a complete list of references to the sources of the results mentionedabove. The interested reader is referred to the the text on this subject by Kearns and Vazirani [9]for a detailed coverage of the topics above with complete references. Other surveys on this topicinclude, those by Valiant [20] and Angluin [1]. Finally a number of di�erent lecture notes are nowavailable online on this topic. This survey, has in particular used those of Mansour [12], whichincludes pointers to other useful home pages for tracking recent developments in computationallearning and their applicability to practical scenarios.6 ConclusionsThe foregoing sections illustrate some di�erences of approach between classical statistics and data-mining methods that originated in computer science and engineering. Table 1 summarizes what weregard as the principal issues in data analysis that would be considered by statisticians and dataminers.In addition, the approaches of statistical learning theory and computational learning theoryprovide productive extensions of classical statistical inference. The inference procedures of classical18



statistics involve repeated sampling under a given statistical model; they allow for variation acrossdata samples but not for the fact that in many cases the choice of model is dependent on the data.Statistical learning theory bases its inferences on repeated sampling from an unknown distributionof the data, and allows for the e�ect of model choice, at least within a prespeci�ed class of modelsthat could in practice be very large. The PAC-learning results from computational learning theoryseek to identify modeling procedures that have a high probability of near-optimality over all possibledistributions of the data. However, the majority of the results assume that the data are noise-freeand that the target concept is deterministic. Even with these simpli�cations, useful positive resultsfor near-optimal modeling are di�cult to obtain, and for some modeling problems only negativeresults have been obtained.To some extent, the di�erences between statistical and data-mining approaches to modeling andinference are related to the di�erent kinds of problems on which these approaches have been used.For example, statisticians tend to work with relatively simple models for which issues of computa-tional speed have rarely been a concern. Some of the di�erences, however, present opportunitiesfor statisticians and data miners to learn from each other's approaches. Statisticians would do wellto downplay the role of asymptotic accuracy estimates based on the assumption that the correctmodel has been identi�ed, and instead give more attention to estimates of predictive accuracyobtained from data separate from those used to �t the model. Data miners can bene�t by learningfrom statisticians' awareness of the problems caused by outliers and inuential data values, andby making greater use of diagnostic statistics and plots to identify irregularities in the data andinadequacies in the model.As noted earlier, statistical methods are particularly likely to be preferable when fairly simplemodels are adequate and the important variables can be identi�ed before modeling. In problemswith large data sets in which the relation between class and feature variables is complex andpoorly understood, data mining methods o�er a better chance of success. However, many prac-tical problems fall between these extremes, and the variety of available models for data analysis,exempli�ed by those listed in Section 2.2, o�ers no sharp distinction between statistical and data-mining methods. No single method is likely to be obviously best for a given problem, and use of acombination of approaches o�ers the best chance of making secure inferences. For example, a rule-based classi�er might use additional feature variables formed from linear combinations of featurescomputed implicitly by logistic discriminant or a neural-network classi�er. Inferences from severaldistinct families of models can be combined, either by weighting the models' predictions or by anadditional stage of modeling in which predictions from di�erent models are themselves used asinput features|\stacked generalization" [28]. The overall conclusion is that statisticians and dataminers can pro�t by studying each other's methods and using a judiciously chosen combination ofthem.AcknowledgementsWe are happy to acknowledge helpful discussions with several participants at the Workshop on DataMining and its Applications, Institute of Mathematics and its Applications, Minneapolis, November1996 (J.H.), many conversations with Vladimir Vapnik (E.P.), and comments and pointers fromYishay Mansour, Dana Ron and Ronitt Rubinfeld (M.S.).19
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