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Abstract

The error probability of Probabilistically Checkable Proof
(PCP) systems can be made exponentially small in the number
of queries by using sequential repetition. In this paper we are
interested in determining the precise rate at which the error
goes down in an optimal protocol, and we make substantial
progress toward a tight resolution of this question. A PCP
verifier uses ¢ amortized query bitsif, for somet, it makes gt
queries and has error probability at most 2~¢. A PCP charac-
terization of NP using 2.5 amortized query bitsis known [26],
and, unless P=NP, no such characterizationis possible using 1
amortized query bits [7]. We present a PCP characterization
of NP that uses roughly 1.5 amortized query bits. Our result
has two main implications.

Separating PCP from 2-Provers 1-Round: In the 2-Provers
1-Round (2P1R) model the verifier has access to two oracles
(or provers) and can make one query to each oracle. Each
answer is a string of [ bits (/ is called the answer size). A
2P1R protocol with answer size ! can be simulated by a PCP
that reads 2! bits; we show that the converse does not hold for
! > 7, unless P=NP. No such separation was known before.
The Max kCSP problem: The Boolean constraint satisfaction
problem with constraintsinvolving at most & variables, usually
called Max kCSP, is known to be hard to approximate within
a factor 2~ 4% [26], and a 2 - 2~ *-approximation algorithm
is aso known [25]. We prove that Max kCSP is NP-hard to
approximate within a factor of roughly 2~2%/3

1 Introduction

PCP characterizationsof NP [6, 5, 12, 4, 3, 8, 13,9, 7, 15, 16,
26] are the best known tool to prove results about the hard-
ness of approximation of combinatorial optimization prob-
lems. Progress in this area has been driven by the goal of
characterizing NP via increasingly more efficient PCP veri-
fiers, under various formalizations of the notion of efficiency,
and we now stand on a point where PCP constructions are
known that are optimal with respect to some trade-off of these
parameters.

The most important efficiency parametersin PCP construc-
tions are the number of queries that the verifier asks to the
oracle proof and the soundness. The soundness of a verifier is
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the probability that it acceptsa“proof” of awrong statement,
that is, the error probability in the case of “no-instances’. The
verifier may make errors also in the case of yes-instances, i.e.
it may reject the valid proof of a correct statement. In this
paper we will restrict ourselves to protocols that accept valid
proofswith probability at least 1 — ¢, wheree > 0 isaconstant
that can be made arbitrarily small independently of the other
parametersof interest (al most-per fect compl eteness), therefore
whenever we will use the term “error” this should always be
interpreted as “ soundness’.

One direction of research is to concentrate on protocols
using a minimal amount of queries (i.e. 3) and then reduce
the soundness as much as possible. An optimal protocol of
this kind has been constructed by Hastad in [16], where he
describes a verifier that makes 3 queries, has almost perfect
completeness, and soundness 1/2.

A somewhat orthogonal line of researchisto fix somesmall
error probability and ask what i sthe minimal number of queries
that suffice to characterize NP with a PCP protocol having that
error. Iterating Hastad’s protocol ¢ times we get a PCP sys-
tem that asks 3¢ queries, has almost perfect completeness and
soundness2~!. Isit possibleto achieve error 2~ with signifi-
cantly lessthan 3¢ queries? This question has someinteresting
applications, that will be described later. For starters, we can
observethat at least ¢ queries are necessary (see[7]); therefore
the optimal protocol will have query complexity ¢t for some
1 < ¢ < 3. g isthe amortized query complexity of the PCP.

One possibleapproach to creating PCPswith low amortized
guery complexity is to iterate a basic protocol severa times,
while recycling queries between various iterations. This ap-
proach is similar to the approaches used to reduce error in
PCPs when measuring other resources: in particular, random-
ness and “free bits”. In the former case, the methods used for
recycling randomness while reducing error in general proba-
bilistic computation [1, 17] turns out to be quite useful and are
used, for instance, in [3, 28, 2]. In the latter case (minimizing
“free bits") also, the notion of recycling can be analyzed and
the works of [9, 7, 14, 15] show that this method leads to sig-
nificant benefits. Our task, however differs from the previous
cases in some critical aspects. For instance, in the context of
recycling randomness, arandom bit is counted asa“ recycled”
bit, if it is obtained by applying some (arbitrary) function to
the previously used random bits. In contrast, while recycling
gueries, the recycled query hasto be identical to a previously
issued query. The contrast between recycling free bits and



guery bits is exhibited by the following example: In the case
of free hits, the known analyses yield protocols in which the
error decreases as a polynomial in the number of iterations
(and this suffices!); in the case of recycling queries, the error
of the protocol needsto go down exponentialy in the number
of iterations.

Despite these difficulties, the idea of repeating a basic pro-
tocol several times with recycling of queries has been pur-
sued by Trevisan [26] with some success. His analysisyields
query-efficient Linearity Tests and PCP constructions. The
PCP verifier of [26] has error 1/4 and makes 5 queries (there-
fore, the amortized query complexity is 2.5.) The verifier
repeats twice the 3-query verifier of Hastad [16]; one query
is recycled between the two executions. Other, possibly more
efficient, recycling schemes were also described in [26] and
one of them was analyzed for the simpler problem of Linearity
Testing, resulting in a linearity tester having amortized query
complexity 1.5.

The latter result mentioned above, however, does not im-
mediately translate to the context of PCP constructions. (An
intrinsic reason for thisis given by alower bound of Bellare et
al. [7] — thisis discussed further in the next section.) In this
paper we abstract a new “proof-composition” technique based
ontherecent work of Hastadin [15]. Wethen createanew ver-
ifier to use with the composition technique by modifying the
verifier of Trevisan[26]. Theresultisafamily of PCP verifiers
that, for any k&, make 3% + 2 queries“ non-adaptively” and have
error 2~2%. The term non-adaptive implies that the queries
are chosen purely as a function of the input and the random
coins and are not a function of answers to previous queries.
This aspect is needed for one the applications given below.
In order to state our main result more formally, recal that a
probabilistically checkable proof system is described by an
(r, ¢)-restricted non-adaptive PCP verifier, i.e., a probabilistic
polynomial time oracle machine, who oninput z, tosses (| |)
random coinsand makes ¢( |« |) non-adaptive queriesto aproof
oracle P. A language L € naPCP. ,[r, ¢] (“na’ stands for
non-adaptive queries) if there exists an (r, ¢)-restricted non-
adaptive verifier V' satisfying: (1) (completeness) If = € L,
then3 P st. Prg[VF (z : R) accepts] > c. (2) (soundness)
If = ¢ L, thenV P Prg[V¥(x : R) accepts] < s (where
V¥ (z; R) denotes the computation of V' on input = and ran-
dom string R with oracle P). Our PCP construction proves
the following theorem.

Theorem 1 (Main) For every ¢ > 0 and positive integer £,
NP =naPCP,_, y-2:[log, 3k + 2].

The amortized query complexity of our family of protocols
tends to 1.5. The two main consequences of our result are
described bel ow.

PCP vERSUS 2-PROVERS 1-RouND. In a 2-Provers 1-Round
(2P1R) protocol the verifier has access to two oracles (or

provers) P and () representing a membership proof of an
NP statement. The verifier is alowed to make only one query
to each oracle; upon being queried, the oracle answers with
a string of [ bits (/ is said to be the answer size of the pro-
tocol.) The query complexity of such a 2P1R proof system
is defined to be 2{. The completeness and soundness of this
proof system are defined in the usual way and thus the notion
of amortized query complexity also extends naturally. (The
amortized query complexity is g if the query complexity is ¢k
and the soundness error is 2~ .)

It isclear that a 2P1R protocol can be simulated by a PCP
systemwith no larger query complexity, but the 2P1R seemsto
be aweaker model. In particular, it is non-trivial to show that
the error of 2P1R proof systems can be reduced by increasing
answer sizes, whilean analogousresult isquite straightforward
for PCPs. The former question was a subject of significant
attention in the past and was finally resolved by Raz [21]; and
an ensuing 2P1R protocol for NP turns out to be a critical
ingredient in many efficient constructions of PCPs (including
ours). Despitethissignificant differencein behavior and utility
of 2P1R proof systems and PCPs, no separation between the
two was known. The only limitation known on the power of
2P1R proof systemsis due to Serna et al. [23], who show a
lower bound of 2 on the amortized query complexity of any
2P1R proof system recognizing an NP-complete language.
The results of [23] are even stronger since they imply that
even a PCP that can query two entries from a non-Boolean
proof (each entry being a string of [ bits) can only recognize
languages in P as long as the error islessthan 2~ 7.

By constructing aPCP verifier for NP with amortized query
complexity of 1.5, we derive a separation between PCPs and
2P1R. In fact the separation actually holds for any answer
sizel > 7. In the full version of this paper, we describe
a generalization of the 2P1R model and of the 2-query non-
Boolean PCP model. In this model the verifier accesses a
binary table but can only read two “blocks’ of | consecutive
bits. (This model was proposed to us by Shafi Goldwasser and
Amit Sahai.) We extend theresult of Sernaet al. to thismodel
as well, thereby concluding that the separation between PCPs
and 2P1R is due to the “locality” of the access mechanism of
the latter model.

APPLICATIONS TO THE MAX kCSP PROBLEM. For an integer
k > 1, the Max kCSP is the Boolean constraint satisfaction
problem with constraints involving at most & variables (see
[18, 10, 25, 24, 27, 19, 29, 30].) Max kCSP was known to be
hard to approximate within 2~-** [26], our result implies that
it is hard to approximate within a factor of roughly 2-2%/3,
The best known algorithm has an approximation ratio 2~ (*=1)
[25] (note that a random solution is 2~ * -approximate.)



2 Techniques: Previous Works and Our Con-
tribution

2.1 Thestandard proof composition paradigm
and limitations

All the recent constructions of Probabilistically Checkable
Proofs rely on the proof-composition methodology, invented
by Arora and Safra [4]. The main idea is to construct two
proof systems, that optimize different efficiency parameters,
and then combine them together in order to build a composed
system that is efficient under all the parameters. Composition
is done between an “outer verifier” 17°4* that is typicaly a
2-Provers 1-Round (2P1R) protocol’ and an “inner” verifier
Vin. The verifier of the composed system V °°™P expects a
proof that be the entry-wise encoding of the proof of }/°ut
using an error correcting code. V7 °°™P simulates the behav-
ior of ¥ °u*, chooses two entries of the proof, and then calls
as a “subrouting” V'™ to determine whether the encoding of
these entries “look like” being encodings of something that
V°ut would have accepted. Therefore the properties of 1™
are the following: it knows the acceptance predicate of 1 °4t,
and it has oracle access to two strings that are allegedly en-
codings of answers that 77°"* would have accepted. V' tests
whether this is the case. An inner verifier with, say, amost
perfect completeness and soundness 1/2, has the following
properties:

— Whenever the conditions are satisfied, then V'™ accepts
with probability 1 — ¢;

— Whenever V'™ acceptswith probability > 1/2, the strings
it is accessing are “close” to being correct encodings of
consistent answers.

It is not immediate to come up with a usable formalization of
the second property. One way is to define a decoding pro-
cedure that given a string, that is an alleged encoding of an
answer, returns a possible answer for the 2P1R protocol. V™
satisfies the second condition if whenever it accepts a pair of
strings with probability > 1/2 the decoding procedure, ap-
plied independently to the two strings, will produce consistent
answers. This is still a bit too much restrictive. In the most
useful formulation, the decoding procedures are randomized
andtheguaranteeisthat if V'™ acceptswith probability greater
than 1/2+é then the decoding procedures produce aconsistent
pair of strings with probability at least §’, where ' depends
only on é. Such a decoding procedure isimplicit in the work
of Bellare et al. [8]. In what follows, arecursive composition
scheme using a randomized decoding procedure and a 2P1R
outer verifier will be called the canonical composition method-
ology. Observe that the definition of inner verifier dependson
the error correcting code and the decoding procedure that is

1The 2-Prover 1-Round construction of Raz [21] is currently the standard
onefor this application.

being used. An inner verifier has to test both that the two
strings are valid codewords (or, at least, “close” to being valid
codewords) of the error-correcting code being used (codeword
test) and that the decodings of the strings are likely to be con-
sistent answers of the outer verifier (consistency test). Each of
this tasks gives rise to different difficulties and limitations.

EFFICiIENT CODEWORD TEST. Much of the recent progressin
designing inner verifiers and so PCP constructions came from
improved waysof testing whether the given strings are correct
codeword of the used error correcting code. The current stan-
dard for the error correcting code is the Long code introduced
by Bellare, Goldreich and Sudan [7]. The encoding with the
Long code of amessagea € {0, 1}" istheevaluationof f(a)
forany f : {0,1}" — {0,1}. Therefore the length of the
Long code of a is 22". The best known methodology to an-
alyze codeword tests for the Long code uses Fourier analysis
on {0, 1}". This technique was introduced and applied with
great success by Hastad in his recent works on PCP construc-
tions[14, 16]. Trevisan[26] usesthis techniquesto show how
to test the Hadamard code and the Long code with roughly
1.5 amortized query bit. These constructions could not be
extended to a full PCP constructions, due to an inherent bot-
tleneck in the consistency test that holds for any inner verifier
in the canonical composition methodology, that we describe
next.

EFFICIENT CONSISTENCY TEST. It isnot hard to see that proof
systems designed with the canonical composition methodol-
ogy cannot achieve an amortized query complexity better than
2. Let A and B bethe two strings given in input to the inner
verifier, ¢4 and ¢ be the number of queries that the verifier
asksto A and B respectively, and ¢ = ¢4 + ¢ bethe tota
query complexity. If A and B are random Long codes, and
the verifier has perfect or almost perfect completeness, then
thereis a probability 2~ min{ea.95} > 2-49/2 that the verifier
accepts (we will have to subtract a factor ¢ for the case of
amost perfect completeness.) A slightly more involved ar-
gument shows that 1 amortized free bit is also a lower bound
for the canonical composition methodology (see [7].) Free
bits are an efficiency parameter of PCPs that is motivated by
applicationsto proving hardness of approximation for the Max
Cligue problem. The number of free bits of a PCP systemis
always no more than the number of query bits. In systems
designed to optimize free bits, the number of queries can be
doubly exponentialy larger than the number of free bits, or
more. Bellare et a. [7] have shown that a protocol with a
certain number ¢ of amortized query bits can aways be trans-
formed into another that has ¢ — 1 (average) amortized free
bits, so the lower bound of one amortized free bit implies the
lower bound of two amortized query bits.



2.2 Overcomingthelimitations: A new compo-
sition theorem

The free bit lower bound has been overcome in a recent work
by Hastad [15], where for any ¢ > 0 he describes a construc-
tion that uses ¢ amortized free bits. To avoid the lower bound,
Hastad considers an inner verifier that looks at tables A and
By, ..., By, whereeachpair (A, B;) would have been apos-
sible input for an inner verifier in the canonical composition
methodology. The advantage of working with several tables
is that the decoding of A can now be done as a function of
By, ..., B, and so the argument showing that 2 amortized
guery bits are a lower bound does not hold any more. Hastad
does not present his result with respect to an explicit compo-
sition theorem and, in his proof, it is hard to distinguish the
protocol-specific difficulties from the ones related to the gen-
eral ideaof using several tables. One of themain contributions
of our work isto extract the explicit composition theorem from
the work of [15] and then adapt it to our purpose. The novel
ingredient in this composition theorem is a new definition of
an outer verifier that makes several queries, specificaly k + 1
where the parameter & is a positive integer. A verifier with
similar soundness conditions was used to avoid arelated lower
bound (but not for use in composition of proofs) in the work
of Feige on Set Cover [11]. The composition theorem com-
poses such an outer verifier with inner verifiers that look at
several tables A, By, ..., B;. The composition theorem and
the associated properties of the inner verifier are described in
Section 3.

The composition theorem reduces the task of construct-
ing an efficient PCP verifier (with respect to amortized query
complexity) to the task of constructing the appropriate inner
verifier. At this point we need to deviate from the work of
Hastad, as argued next: The “inner verifier” of Hastad first
reads a certain number of (free) bits / from A, and then ap-
plies a codeword test on each B;, using {/k free bits in each
codeword test. A separate analysis shows that each codeword
test has error probability at most p = pz ;, and then a union
bound establishes that the probability that one or more tests
fail isat most kp. Thefinal soundnesswill bealittle morethan
this bound. The bad news of this method is that the free bit
complexity of the composed verifier is 2k times greater than
the free bit complexity of the codeword test (each codeword
test uses [/ k free bit, and the total number of free bits is 21,
including the bits read in A) and the error is worse than the
error of the codeword test. However the amortized free bit
complexity of the codeword test can be made arbitrarily small,
and despite the increase that happens during the composition,
the final amortized free bit complexity can still be made ar-
bitrarily small. In our case, however we can not afford such
luxuries. Sinceacodeword test must useat |east oneamortized
guery bit, the multiplicative factors involved in the composi-
tion can not be hidden any more, and the composition scheme

of Hastad would blow the amortized query complexity out of
control.

The second part of our work is thus a new inner verifier
that is obtained by iterating & times (with recycling) a5 query
protocol of [26] (which is, in turn, a 2-fold iteration, with
recycling, of the 3-query protocol of [16]). The novelty in
this verifier is that in each iteration it uses adifferent B-table,
while recycling the queries made on the A-table. In contrast,
the basic protocol of [26] would expect two tables A and B
and would read 2 bits in A and 3 bits in B; therefore our
iterated protocol reads 3k + 2 bits. A tight analysis shows
that the soundness of the iterated protocol is 2~2%. We stress
the following point of difference from [15]: Asin [15] we do
k tests, one for each B;; each test has individually soundness
p = 1/4, however our analysisof the soundnessof theiterated
verifier does not give an error kp, but rather p*, that is, the
error goes down exponentially in £, instead of growing with &
asin[15]. Detailsof thisinner verifier are given in Section 5.

OPEN QUESTIONS. The eventua goal in this line of work is
to find, for any ¢ > 0, a PCP characterization of NP where
the verifier has amortized query complexity 1 4+ . Since
this result would also imply a characterization of NP with
¢ amortized free bits for any ¢ > 0, and since only a very
complicated proof isknown of thislatter result [14, 15], wedo
not expect this goal to be easy to achieve. Towards this goal,
it would be interesting to first find a codeword test having
amortized query complexity 1 + <. Tests are presented in [26]
which are conjectured to have such efficiency. As discussed
in[26], the Fourier analysis of such protocols cannot prove an
amortized query complexity better than 1.5 unless the proof
is somehow “ specialized” on the Fourier spectrum of Boolean
functions.? Progressin thisdirection promisesto have exciting
mathematical content. Once a codeword test with a better
Fourier analysis will be known, the techniques of the present
paper (the way of splitting queries between tables, and our
composition theorem) should suffice to extend the result to a
full PCP construction.

3 Our New Composition Scheme

In this section we introduce our new definition of outer veri-
fier, an appropriate corresponding notion of inner verifier, and
describe the composition theorem. (The actual construction
of the outer verifier, the inner verifier and the proof of the
composition theorems are deferred to | ater sections.)

As mentioned earlier all known constructions use the ver-
ifier of Raz [21] as the outer verifier. We will also useit in
order to derive our new outer verifier.

2Current proof techniques use properties of the Fourier spectrum of
Boolean functions which are shared by dl the functions of unit ¢5 norm,;
one can show that techniques of this kind do not suffice to go below 1.5
amortized query bits.



Recall that theverifier of Raz worksinthefollowingway: it
generates, according to a certain distribution, atriple (p, ¢, 7)
where p is a query to the oracle P, ¢ is a query to the oracle
() and 7 is afunction mapping from the domain of answers of
() to the domain of answersof P. The verifier asks query p to
oracle P, receiving a certain answer a, and then asks query ¢
to oracle @, receiving answer b, and it accepts iff #(b) = a.
When the canonical composition method isused, the composed
verifier expects a proof that be the entry-wise Long code of
all the answers of P and (). The composed verifier generates
atriple (p, ¢, 7) according to the same distribution of Raz's
verifier, will look at the tables A and B, being the encoding of
the answersto p and ¢ respectively, and will execute the inner
verification procedure on them. Thus, the inner verification
procedure is given 7 and has accessto A and B and the task
is to determine whether B is the Long code of some b and A
isthe Long code of some a such that 7 (b) = a.?

At the same abstract level, our outer verifier generates &
triples(p, ¢;, 71), - - -, (p, ¢&, 7& ), Where p is arandom query
to P drawn according to the distribution of Raz’s verifier and
(p, ¢i, 7;) are sampled on the marginal distribution of the
triples of Raz's verifier given that the first entry is p. The
verifier queries p to P receiving a as an answer, and queries
q1,...,q toQ receiving by, . . ., by asanswers. We say that
the verifier strongly accepts if ¢ = w1(b1) = - - m(bz),
we say that it weakly accepts when at least two of the values
a,m(b1), ..., (by) arethe same, and we say that it rejects
when the values a, 71(b1), .. ., mx(by) are al different. On
input avalid statement and acorrect proof, our verifier strongly
accepts with probability one. On input an invalid statement,
and for every pair of proofs, our verifier rejects with high
probability. The composed verifier looks at the table A that
is the encoding of the answer to p and to By, ..., B, that
are respectively the encodings of the answersto ¢4, ..., ¢z,
and then executes the inner verification procedure. Therefore
an inner verifier with completeness ¢ and soundness s has to
accept with probability at least ¢ encodings of answers that
would make the outer verifier strongly accept, and if the in-
ner verifier accepts with probability s + 6 its proofs, then a
decoding procedure should produce decodings that make the
outer verifier at least weakly accept with probability at least
&', where &’ dependsonly on é.

Before formalizing the above discussion we need to intro-
duce some notation in order to specify the encoding scheme
used. From now on Boolean functions will be defined with
valuesin {1, —1} rather than {0, 1}. The association is that
—1 standsfor 1 (or true) and 1 standsfor 0 (or false). Observe
that multiplication in {1, —1} acts as Boolean xor in {0, 1}.
For an integer k, we denote by [k] the set {1,...,k}. For

3Normally, the acceptance condition of Raz's verifier is described as
“m(b) = a and h(b) = 1", where h is a boolean function generated by
the verifier together with p, g, 7. Following [26], we avoid this additional
complication by encoding 7 into A.

two sets o and 3 we denote by aAB = (a U ) — (e N B)
their symmetric difference. Recall that A is commutative and
associative.

For an integer n, we denote by F,, the set of functions
f:[n] — {1,—1}. The operator o denctes composition of
functions, i.e. if f € F,, and 7 : [m] — [n] then the function
fom € Fy isdefined as (f o 7)(b) = f(=(b)) for any
b e [m].

We say that a function A : F, — {1,—1} is linear iff
A(f)A(g) = A(fg) fordl f,g € F,,. There are 2" linear
functions. There is a linear function [, for any set o C
{1, —1}"; it isdefined as

lo(f) =TT f(a).
aca

By convention, we say that a product ranging over the empty
setequals 1. ThelLong codeistheset of linear functionswhose
support is asingleton, i.e. LONG,, = {l;4} : a € [n]}. We
say that i1, is the Long code of a. Thus, the Long code
is formed by n codewords of length 2”. This definition is
equivalent to the definition mentioned earlier in Section 2, but
will be more convenient in our analysis.

Finally, we need a notion analogousto that of folding from
[7]. Observe that if A = Iy, is a codeword of the Long
code, then A(f) = f(a) = —(—f(a)) = —A(—F) for any
f; for any function 4 : F,, — {1, —1} wewill define a new
function A’ that satisfies such a property. The definition of A’
isasfollows:

Iff(1)=1

e | A
A(f)—{ “A(—f) I f(1) = —1.

We stress that, for any f, A’(f) can be evaluated with one
query to A, moreover A’ isequal to A if A isacodeword of
the Long code.

We are now ready to define our outer and inner verifier and
the composition theorem.

Definition 2 (k-Outer Verifier) A k-outer verifier for a lan-
guage L with soundness ¢ and completeness s, and answer
size [ is a randomized polynomial time oracle algorithm V'
that is given oracle access to two oracles P and ) with the
propertiesthat for every input string =,

— [EFFICIENCY] each oracle answersa query with at most [
bits. The verifier usesat most O(log(|#|)) random bits.

— [ORACLE AccEss] After tossing its random coins, the ver-
ifier generatesqueriesp, q1, . . ., q; and functions

71,..., 7 : [m] — [n]. The verifier queriesp to P re-
ceiving answer a and ¢4, . . ., ¢ to () receiving answers
bi, ..., bg.

— [CoMPLETENESS] If 2 € L, thereexists oracles P and @)
such that with probability at least ¢ 1 strongly accepts.

— [SounDNEsg] If « & L, for every oracles P, Q), V' rejects
with probability at least 1 — s.



A 1-outer verifier correspondsto the standard notion of canon-
ical inner verifier, asin [8, 9, 7]. For any &, we are able to
construct k-outer verifiers.

Theorem 3 (Construction of k-outer verifiers) For every

k > 1 and for every s > 0, there exists a k-outer veri-
fier with perfect completeness, soundness s and answer size
O(logk/s).

The proof is postponed to Section 4.

Definition 4 (k-Inner Verifier) A k-inner verifier is a ran-
domized oracle algorithm V' that is given a sequence of func-
tionswy, ..., 7 wherer; : {1,—-1}" — {1,—1}",and has
oracle accessto a function A : F,, — {1,—1} andtoa se
quenceof functions By, . . ., By where B; : F,,, — {1, —1}.

Definition 5 (Decoding Procedure) A decoding procedureis
a randomized algorithm D,, such that on input a function
A: F, — {l,—1} an element of [n].

Definition 6 (Good Inner Verifier) A k-inner verifier V is

(¢, s, ¢)-good with respect to a decoding procedure D if for

any my,...,m : [m] — [n],any A : F, — {1,—1}, and

any By,..., By : F, — {1, -1}, the following properties

hold.

— [NumBER OF QUERIES] V makesat total number of at most
¢ non-adaptive oracle queries.

— [ComPLETENESS] if A isthe Long code of ¢, and B; isthe
long code of b;, and 7;(b;) = a, then

Pr[V(A' By,..., B}, 71,...,m)accepts] > c.

— [SouNDNESS] For any constant &6 > 0, there is a posi-
tive constant 6 > 0 independent of m, n, (but possibly
dependent on $) such that

If Pr[V(A', B,..., B, m,...,m)accepts] > s+ 6
D(A), m(D(B1)), ..., m(D(Bg)) ,
Then Px not all different =

Our Composition Theorem is as follows. (The proof is
deferred to Section 4.3.)

Theorem 7 If there exists a (¢, s, ¢)-good k-inner verifier V'
with respect to a decoding procedure DD then for any ¢ > 0
NP = naPCP, ,.[log, ¢].

4 Construction of k£-Outer Verifiers and the
Composition Theorem

In this section we shall prove Theorem 3 and Theorem 7. Our
construction of outer verifiers uses the 2-Prover 1-Round pro-
tocol of Raz [21] (indeed, aslight revisitation of it), therefore
we will start reviewing its construction, even though it has
appeared in several places, including [7, 16].

41 A 1-Outer Verifier

It is a consequence of the PCP Theorem [3] that there exists
apolynomial time reduction that given an instance ¢ of 3SAT
generates an instance ¢ of 3SAT such that if ¢ is satisfiable
then also ¢ is satisfiable, and if ¢ is not satisfiable then every
assignment satisfies lessthen afraction p of the clauses of ¢,
where p < 1 is an absolute constant. Using a reduction of
Papadimitriou and Yannakakis [20] (see also further elabora-
tion by Feige [11]) we can make sure that every variable in
¢ occurs in exactly the same number of clauses. (This will
not be really necessary for our purposes, but will simplify the
exposition.) The transformation of ¢ in ¢ defines a simple
2-Prover 1-Round proof system: on input a formula ¢ with
N variablesand M variables, the verifier has oracle accessto
twotables P : [N] — Band Q) : [M] — [7] that are suppos-
edly two encodings of the same satisfying assignment for .
Specifically, for every variable z, P(z) containsthevalueof x
in the assignment, and for every clause C', Q(C') contains the
values of the three variables occurring in C' according to the
same assignment (the value is encoded as a number between
1 and 7, that is the index of the partial assignment in the lex-
icographic order among the assignments that satisfy ). The
verifier picks at random aclause C' in ¢ and one of the three
variables occurring in C' (say, z, the ¢-th variable in ) and
readsa = P(z)and b = Q(C). If b encodes a satisfying as-
signment b1, bo, b3 for C' and b; = a then the verifier accepts,
otherwise it rejects. It is easy to show that this verifier has
perfect completenessand soundness1 — (1 — p)/3 < 1.

The soundness of the previously described protocol can be
reduced by iterating the protocol several timesin parallel. The
protocol obtained by ¢ parallel repetitions does the following:
it picks at random clauses C1, . . ., C; (possibly with repeti-
tions), and picks avariable z; for every clause C;. Prover P
is supposed to contain an assignment to every t-tuple of vari-
ables, and () an assignment to the variables occurring in every
t-tuple of clauses (encoded as an element of [7]%). The ver-
ifier asks (a1, ...,a¢) = P(xy,...,2¢) and (by,..., ;) =
Q(Ch,...,Cy)andchecksthat w(by, ..., b:) = (a1,...,as)
where 7 : [7]! — {0, 1}! is the function that “extracts’ (or
“projects’) from the values of all the variables occurring in
Cy,...,Cythevauesof x4, ..., z;. Wenoticethat sinceev-
ery variable occursin exactly the same number of clauses(and
every clause contains exactly the same number of variables)
the verifier generates the same distribution if it first picks at
random¢ variables x4, . . ., x; and then aclauses C; for every
x;, where C; ischosen uniformly among the clauseswhere x;
occurs.

Raz proves that the verifier obtained by making ¢ parallel
repetitions has soundness 2~ 2(*) and, by definition, it has per-
fect completeness and answer size ¢ log 7. From now on, we
will abstract all the details of Raz verifier that are not necessary
for our proof, and we will use the following description of it
(see Figure 1): it has oracle accessto tables P € {0, 117>V



Verifier Voul (o, P, Q)
Randomly pick p € [N]
Pick (¢, =) according to D(p)
Leta = P(p)andb = Q(q)
accept iff 7(b) = a

Figure 1. A description of the 2-Provers 1-Round
protocol of Raz [21].

Verifier Vo4 (o, P, Q)
Randomly pick p € [N]
Samplek pajrs(Qla 7Tl)a R (Qka Tk) fromD(p)
Leta = P(p)andb; = Q(g;)forj=1,...k

strongly accept if a = m1(by) = - - - = 7 (by,)
weakly accept if the values
a,m(by), ..., m(by) arenot al different

reject if the values
a,m(b1), ..., m(by) areall different

Figure 2. Our k-outer verifier.

and Q € {0, 1}7*M |t first picks arandom entry in P (i.e.
auniformly distributed number p between 1 and V) and then
decides the query ¢ for P and the projection function 7; we
make no assumptionon how ¢ and 7 are selected giventhat p is
selected, andwe call their distribution D(p). For every o > 0,
such a verifier exists with perfect completeness, soundness o
and answer sizemax{m,n} = O(log1/c).

4.2 Construction of k-Outer Verifiers

Our k-outer verifier is depicted in Figure 2.

Wewant to prove that whenever the k-outer verifier accepts
with probability larger than ¢ then the formulais satisfiable.
Wewill prove the latter statement by using the soundness con-
dition of Raz's verifier, and showing how to construct proofs
for Raz verifier that makeit accept with sufficiently large prob-
ability.

Let P and @ be proofs that the k-inner verifier weakly
acceptswith probability at least s, that is

E[P(p), m1(Q(q1)),. .., 7(Q(qx)) not al different] > s,

where the expectation is over the choices of p € [N] and
(g;, m;)'s from D(p). We will consider the pair of proofs
(P’, Q) where P’ is constructed randomly as follows:

— For every p € [N], wesample k — 1 pairs (¢;,7;), ¢ €
[k — 1], from D(p), and then we select arandom element

a from the multiset P(p), #1(Q(q1)); - - -, 71(Q(gr-1)),
andwelet P'(p) = a.

Now we claim that Raz's verifier accepts (P’, Q) with
probability at least s/k?, where the probability is taken both
over the verifier's coin tosses and over the construction of P’.

We first observe that the probability that Raz’s verifier ac-
ceptsis equal to the probability that the following experiment
succeeds:

— Pick randomly p € [N]; sample k& — 1 pairs (g;, ™),
i € [k — 1], from D(p); choose at random another pair
(g, m) from D(p); choose at random an element « from
P(p), Tl(Q(ql)), R ﬂ'k—l(Qk—l(qk—l)) and aCCGptlff
a = m(Q(q)).

This probability is clearly the same as the probability that
the following random process succeeds.

— Pick randomly p € [N]; sample k pairs (¢;, ;), © € [k],
fromD(p); pick arandom j € [k]; pick arandom element
ainthemultiset { P(p)} U{m;(Q(q:)) }iz; and accept iff
a=m;(Q(q;))-

Conditioned upon the k-outer verifier weakly accepting
whenit selectsp, (¢1, 71), . . ., (¢x, 7% ), the previous process
accepts with probability at least 1/k2. It follows that Raz's
verifier acceptswith probability at least s /k2. Thisacceptance
probability is expected over the choices of P/, but there must
be a choice of P’ for which the acceptance probability is at
least that much.

4.3 The Composition Theorem

We now come to the proof of the Composition Theorem. Let
Vin be a (e, s, ¢)-good k-inner verifier, and let ¢ > 0 be
fixed. The PCP verifier V°°™P that we are claiming to exist
will expect as a proof a pair of tables LP and L) that be
the entry-wise encoding with the Long code of avalid pair of
proof oracles P and () for the k-outer verifier. Wewill useak-
outer verifier with perfect completeness and soundness o; we
will specify o later but we anticipate that it will be a constant
depending only on £. We denote by F'P(gq) (respectively
FQ(gq)) the folding of the ¢-th entry of LP (respectively,
L@Q). Notice that even though 1V <°™P has only oracle access
to LP and L@, it can simulate an oracle accessto ' P and
F'() asdescribed in Section 3.

The V<°™P verifier isdescribedin Figure 3. It picksqueries
P, q1,...,qrandprojectionsry, . . ., 7 asthek-outer verifier
would, and then it executes the inner verification procedure.

Claim 8 V<°™P has completeness ¢ and query complexity q.

PROOF: 1/ <°™P accesses the proof only by running V', and
by hypothesis V'™ reads at most ¢ bits. When LP and LQ
are valid proof, the input that is passed to V'™ satisfies the
completeness condition of V™. Therefore V'™ accepts with



Veri fier VeomP(p, LP, LQ)
Randomly pick p € [N]
Sample k pairs(q1, 71), - - ., (qx, 7) from D(p)
LetA=FP(p)andB; = FQ(g;)forj=1,... .k
RunVi™(A, By, ..., B, m1,..., k)

Figure 3. The composed verifier that uses a k-
inner verifier V',

probability at least ¢ over its coin tosses, for every particular
coin toss of VP This implies that V' °°™P accepts with
probability at least c. m]

Claim 9 V°°™P has soundnessat least s + ¢.

PrROOF: We have to prove that when VV<°™P acceptsits oracle
proofs LP and L) with probability at least s 4+ ¢ then ¢
is satisfiable. Using the soundness condition of the k-outer
verifier, in order to show that ¢ is satisfiable it is enough to
exhibit oracle proofs P and () that would make the k-outer
verifier weakly accept with probability at least .

Let LP, L@ and ¢ be such that

Pr[Ve™P(p, LP, LQ) accepts] > s+ ¢ (€h)

and let N and M be the number of entries of LP and L@,
respectively. Given L P and L@, we define oracle proofs P
and () for the k-outer verifier with the following randomized
procedure:

(1) Independently for p € [N]: set P(p) = D(F P(p)).

(2) Independently for ¢ € [M]: set Q(¢q) = D(FQ(q)).
Remember that 1D isarandomized algorithm. Inthe above def-
inition of P and () the executions of 1D have to be independent
each time.

An averaging argument using (1) shows that for at least
afraction £/2 of the random choices of V<°™P, j.e. for at
least afraction /2 of the p, (q1, m1), . . ., (¢&, 71), the inner
verifier accepts with probability at least s + ¢/2; we cal G
the set of such good k + 1-tuples. By the soundness condition
of the inner verifier we have that there exists some constant
& = 6.5 such that for every (p, (¢1,m1), . .., (¢x, 7)) € G,
it is the case that the probability over the choices D that the
multiset{ P(p), 71(Q(q1)), - - ., 71 (Q(qx)) } containsat least
two identical elementsisat least 6.

For amultiset S, let I(.S) denotethe event that it containsat
least two identical elements. The probability that the k-outer
verifier weakly accepts P and () (expected over the way P
and () are chosen) is

Prpqp (a3 HHEPR), m(Q(01)), -, me(Qgx))}]
I{P(p), m(Q(q1)), -, m(Qax))})

> P :
- I‘PyQ g|Ven (pa (fh, ﬂ-l)a ey (Qk, ﬂ-k)) € G

Innery, - (A, B1,..., Br, 1, ..., Tt)
Choose uniformly at random
fi,fe€Fpandyy,. ..
Fori=1,2andj=1,...,k
choose at randome; ; € F,,, such that
Vbe {1,—-1}"Prle; ;(b))=1=1-¢
ifforal: =1,2andj =1,...,k
A(fi)Bj(gj) = Bj((fiemj)gjei;)
then accept
elsergect

angfm

Figure 4. The inner verifier.

Pr, (4000, (a1, 1), - (qr, Tr)) € G
56 >0
2

This completes the proof of the Composition Theorem. a

5 Main Result

In this section we describe the inner verifier used in our paper
and give an outline of itsanalysis.

5.1 Thelnner Verifier

For any k£ and ¢ > 0, our inner verifier Inner;, . is described
in Figure 4. Innery, . is obtained by iterating a basic 3-cquery
inner verifier by Hastad [16]. The basic protocol would access
two tables A and B, would pick a function f uniformly from
the domain of A, afunction ¢ uniformly from the domain of
B, and a function e from the domain of B but with a non-
uniform distribution; the verifier would accept if and only if
A(f)B(g) = B((fom)ge). By recycling queries, wemanage
to execute 2k iterations of the basic protocol while using only
3k + 2 queriesinstead of 6% queries. Specifically, each of the
two queries that we ask on A is used & times, and some of
the queries that we ask on B are used twice. The recycling
mechanism that we employ in Inner;, . is similar to the one
used in the K5 ;. test of [26]. The latter was, however, only a
codeword test, and so it had as input asingle table.

5.2 Background on Fourier Analysis

To analyze the properties (i.e., the soundness) of this verifier,
we need to resort to Fourier analysis. We give some back-
ground here. Recall the definition of linear functions from
Section 3.

For afunction 7 : {1,—-1}" — {1,—1}" andaset 3 C
{1, =1} wedefinew(8) = {=(b) : b € 5}



We can seeafunction A : F,, — {1, —1} asareal-valued
function A : F,, — R. Theset of functions A : F,, — R is
avector space over the reals of dimension 22" . We define the
following scalar product between functions.

A B= o 3 ANBUY) = EA()B()]
reFn

The set of linear functions is easily seen to form an or-
thonormal basis for the set of functions A : 7, — R. This
impliesthat for any function A : F,, — R we have

A(f) = Aala(f) where A, = A -1,

Parseval’s identity implies that for every 4 : {1,—1}" —
{1,-1}itholdsy" A2 =1.

Finally, from the definition of folding (i.e., for every f,
A'(f) = —A'(=f)) itfollowsthat A/, = 0 for any o of even
size, in particular for o = 0.

5.3 TheDecoding Procedure

The decoding procedure D is based on the fact that, by Parse-
val’sidentity, the squares of the Fourier coefficients A,'s and
B@‘s sum to 1 and can hence be thought of as a probability
distribution.

For atable A : {0,1}™ — {0, 1}, the decoding procedure
is defined as follows:

— Pick aset « C [n] with probability A2; pick a random
element a € «, return a. (Notice that thisis well defined
only when Ay = 0, whichistrue for afolded A.)

The claims about the number of queries made by the inner
verifier and about its compl etenessproperty are easily verified.
Hence we turn our attention to its soundness.

54 TheAnalysis
Welet k& and ¢ be fixed for the rest of this section.

Proposition 10 The acceptance probability of inner, . is

Ts2E | [] A(f)Bj(95)Bi((fi o mp)gseis)| .

(i,4)€es
wherethe expectation is taken over f1, f2, g;'sand e; ;'s.

This proposition is proven as in [26]; it follows from the
arithmetization of the acceptance condition of the inner ver-
ifier, which is a function of the A(f;)'s, B;(g;)'s etc. To
analyze the expression above, we need to analyze the Ts’s.
Of course when S is empty then 75 is 1. We prove that if

T is high for any other set .S then the success probability of
the decoding procedure is high. We divide the analysis into
two cases, depending on whether none or at least one of the
sets Vs21{j : (1,5) € S} and Ws2{j : (2,7) € S} have
odd cardinality. We state without proof the main intermediate
steps of our analysis. A complete proof can be found in a
preliminary full version of this paper [22]

Lemmal1l For any non-empty set S C [2] x [k], if Ts >
6, then the decoding procedure of Section 5.3 leads to weak
acceptance with probability at least CZ—Q wherec isa constant
depending only on «.

Theorem 12 For any k and ¢, Inner; . is a ((1 — 2¢)2*,
272k 3k + 2)-good inner verifier with respect to (D, Ds)
(the decoding procedure defined in Section 5.3.)

PrOOF: The verifier certainly makes 3% + 2 non-adaptive
queries. If the input of the verifier satisfies the completeness
conditions, thenlet A bethelong codeof a and B; bethelong
code of b; (we also have 7;(b;) = a.) The test acceptsif and
only if ¢; ;(b;) = 1 for al (¢,5) € [2] x [k], an event that
happens with probability (1 — 2¢)2*.

Let A, By,..., B and mq, ..., m; be such that Inner;, .
accepts with probability at least 2~ 2% + 6. Then, from Propo-
sition 10, there must be at least one non-empty S C [2] x [#]
such that

E| [T AG)Bj(9)Bi((f o mj)gjeis)| =6,

(i,§)€ES

where the expectation is over the choices of the functions f;,
f2, g;’sand e; ;'s. Then, by Lemma 11, we have that the
decoding procedure of Section 5.3 succeeds with probability
at least

1 62
Sk poly(8)
where ¢ is a constant that dependsonly one. m]

Theorem 1 follows from Theorem 7 and Theorem 12.
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