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Abstract

We show that the minimum distance of a linear code (or
equivalently, the weight of the lightest codeword) is not ap-
proximable to within any constant factor in random polyno-
mial time (RP), unless NP equals RP. Under the stronger
assumption that NP is not contained in RQP (random
quasi-polynomial time), we show that the minimum distance
is not approximable to within the factor 2log(1−ε) n, for any
ε > 0, where n denotes the block length of the code. Our
results hold for codes over every finite field, including the
special case of binary codes. In the process we show that
the nearest codeword problem is hard to solve even under
the promise that the number of errors is (a constant factor)
smaller than the distance of the code. This is a particularly
meaningful version of the nearest codeword problem.

Our results strengthen (though using stronger assump-
tions) a previous result of Vardy who showed that the min-
imum distance is NP-hard to compute exactly. Our results
are obtained by adapting proofs of analogous results for
integer lattices due to Ajtai and Micciancio. A critical com-
ponent in the adaptation is our use of linear codes that per-
form better than random (linear) codes.

1. Introduction

In this paper we study the computational complexity of
two central problems from coding theory: (1) The complex-
ity of approximating the minimum distance of a linear code
and (2) The complexity of error-correction in codes of rela-
tively large minimum distance.
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An error-correcting code C over a q-ary alphabet Σ of
block length n, is a collection of strings from Σn. The Ham-
ming distance between two strings x,y ∈ Σn is the number
∆(x,y) of coordinates in which x and y differ. The (Ham-
ming) weight of a string x is wt(x) = ∆(x,0). The (mini-
mum) distance of the code, denoted ∆(C), is the minimum
over all pairs of distinct strings x,y ∈ C of the Hamming
distance between x and y. The information content of the
code is the quantity logq |C|, which counts the number of
message symbols that can be encoded by an element of C.
If q is a prime power, and Fq denotes the finite field on q
elements, then by setting Σ = Fq it is possible to think of
Σn = Fnq as a vector space. A code over Fq is linear if
it is a linear subspace of Σn = Fnq . For such a code, the
information content is just its dimension as a vector space
and the minimum distance equals the weight of the lightest
non-zero codeword. It is customary to refer to a linear code
of block length n, dimension k and minimum distance d as
an [n, k, d]q code. We use an n × k matrix A ∈ Fn×kq of
rank k to define a linear code CA = {Ax | x ∈ Fkq} of
length n and dimension k.

1.1. The Minimum Distance Problem.

Three of the four central parameters associated with a
linear code, namely n, k and q, are evident from its matrix
representation. The minimum distance problem (MINDIST)
is that of evaluating the fourth — namely — given a ma-
trix A ∈ Fn×kq find the minimum distance of the code
CA = {Ax | x ∈ Fkq}. It is easy to see that a code with
minimum distance d can unambiguously correct any error
vector of weight bd−1

2 c or less. (For details on the com-
putational complexity of the error correction problem see
the next paragraph.) Therefore, computing the minimum
distance of a code is obviously related to the problem of
evaluating its error correction capability. The central nature
of this parameter makes this a fundamental computational
problem in coding theory. The problem gains even more
significance in light of the fact that long q-ary codes chosen
at random give the best parameters 1 known for any q < 46

1For squares q ≥ 49, linear AG codes can perform better than random
ones [14] and are constructed in polynomial time. For any q ≥ 46 it is still



(in particular, for q = 2). Such a choice is expected to pro-
duce a code of large distance, but no efficient methods are
known to lower bound the distance of a code produced in
this manner. A polynomial time algorithm to compute the
distance would be the ideal solution to this problem, as it
could be used to construct good error correcting codes by
choosing a matrix at random and checking if the associated
code has a large minimum distance. No such algorithm is
known. The complexity of this problem (can it be solved
in polynomial time or not?) was first explicitly questioned
by Berlekamp, McEliece and van Tilborg [7] in 1978 who
conjectured it to be NP-complete. This conjecture was fi-
nally resolved in the affirmative by Vardy ([15]) in 1997.
([15] also gives further motivations and detailed account of
prior work on this problem.) We examine the approxima-
bility of this parameter and show that it is hard to approx-
imate the minimum distance to within any constant factor,
unless NP = RP (i.e., every problem in NP has a poly-
nomial time probabilistic algorithm that always reject NO
instances and accepts YES instances with high probability).
Under the stronger assumption that NP does not have ran-
dom quasi-polynomial time2 algorithms (RQP), we get that
the minimum distance of a code of block length n is not ap-
proximable to within a factor of 2log(1−ε) n for any constant
ε > 0. (This factor is a naturally occurring factor in the
study of the approximability of optimization problems —
see the survey of Arora and Lund [4].) Our methods adapt
the proof of the non-approximability of the shortest lattice
vector problem (SVP) due to Micciancio [13] which in turn
is based on Ajtai’s proof of the hardness of SVP [3].

1.2. The Error Correction Problem.

In the process of obtaining the inapproximability result
for the minimum distance problem, we also shed light on
the general error-correction problem for linear codes. Infor-
mally, the error-correction problem addresses the compu-
tational complexity of recovering a codeword from a “re-
ceived word” that is close to the codeword in Hamming
distance. The simplest formulation of the error-correction
problem is the Nearest Codeword Problem (NCP) (also
known as the “maximum likelihood decoding problem”).
Here, the input instance consists of a linear code given by
its matrix A ∈ Fn×kq and a received word x ∈ Fnq and the
goal is to find the nearest codeword y ∈ CA to x. The NCP
is a well-studied problem: Berlekamp et al. [7] showed that
it is NP-hard; and more recently Arora, Babai, Stern and
Sweedyk [2] showed that the distance of the received word
to the nearest codeword is hard (unless NP ⊆ QP, deter-

possible to do better than random codes using an exponential procedure
[16].

2f(n) is quasi-polynomial in n if it grows slower than 2logc n for some
constant c.

ministic quasi-polynomial time) to approximate to within a
factor of 2log(1−ε) n, for any ε > 0.

However the NCP only provides a first cut at under-
standing the error-correction problem. It shows that the
error-correction problem is hard, if we try to decode ev-
ery linear code for arbitrary amounts of error. In contrast,
the positive results from coding theory show how to per-
form error-correction in specific linear codes for a small
amount of error relative to the distance of the code. Thus
the hardness of the NCP may come from one of two fac-
tors: (1) The problem attempts to decode every linear code
and (2) The problem attempts to recover from too many er-
rors. Both issues have been raised in the literature [15],
but only the former has seen some progress [6]. One prob-
lem that has been defined to study the latter phenomenon is
the “Bounded distance decoding problem” (BDD, see [15]).
This is a special case of the NCP where the error is guar-
anteed (or “promised”) to be less than half the minimum
distance of the code. This case is motivated by the fact that
within such a distance, there may be at most one codeword
and hence decoding is clearly unambiguous. Also this is
the case where many of the classical error-correction algo-
rithms (for say BCH codes, RS codes, AG codes etc.) work
in polynomial time.

To compare the general NCP, and the more specific
BDD problem, we introduce a parameterized family of
problems that we call the Relatively Near Codeword Prob-
lem (RNC). For real ρ, RNC(ρ) is the following problem:

Given a generator matrix A ∈ Fn×kq of a linear code
CA of minimum distance d, an integer t with the promise
that t < ρ · d, and a received word x ∈ Fnq , find a code-
word within distance t from x. (The algorithm may fail if
the promise is violated, or if no such codeword exists. In
other words, the algorithm is expected to work only when
the amount of error that occurs is limited in proportion to
the error that the code was designed to tolerate.)

Both the nearest codeword problem (NCP) and the
bounded distance decoding problem (BDD) are special
cases of RNC(ρ): NCP = RNC(∞) while BDD = RNC( 1

2 ).
Till recently, not much was known about RNC(ρ) for con-
stants ρ < ∞, leave alone ρ = 1

2 (i.e., the BDD problem).
No finite upper bound on ρ can be easily derived from the
Arora et al.’s NP-hardness proof for NCP [2]. (In other
words, their proof does not seem to hold for RNC(ρ) for
any ρ <∞.) It turns out, as observed by Jain et al. [9], that
Vardy’s proof of the NP-hardness of the minimum distance
problem also shows the NP-hardness of RNC(ρ) for ρ = 1
(and actually extends to some ρ = 1− o(1)).

In this paper we significantly improve upon this situa-
tion, by showing NP-hardness (for random reductions) of
RNC(ρ) for every ρ > 1

2 bringing us much closer to an
eventual (negative?) resolution of the bounded distance de-
coding problem.



1.3. Results and Techniques.

The main result of this paper (see Theorem 15) is that
approximating the minimum distance problem within any
constant factor is hard for NP under polynomial reverse
unfaithful random reductions (RUR-reductions, [10]), and
approximating it within 2log(1−ε) n is hard under quasi-
polynomial RUR-reductions. These are probabilistic re-
ductions that maps NO instances always to NO instances
and YES instances to YES instances with high probabil-
ity. The probability a YES instance is not mapped to a
YES instance is called the soundness error and in all reduc-
tions presented in this paper it can be made exponentially
small in a security parameter s in poly(s) time. Although
not a proper NP-hardness result (i.e., hardness under de-
terministic polynomial reductions), hardness under polyno-
mial RUR-reductions also gives evidence of the intractabil-
ity of a problem as the existence of a (random) polyno-
mial time algorithm to solve the hard problem would imply
NP = RP (random polynomial time), i.e. every problem
in NP would have a probabilistic polynomial algorithm that
always rejects NO instances and accepts YES instances with
high probability. Similarly, hardness for NP under quasi-
polynomial RUR-reductions implies that the hard problem
cannot be solved in RQP unless NP ⊆ RQP (random
quasi-polynomial time).

In order to prove these results, we first study the “Rela-
tively near Codeword Problem” and show that the optimiza-
tion version of RNC(ρ) is hard to approximate to within
any constant factor γ for any ρ > 1/2 unless NP = RP
(see Theorem 9). In particular RNC(ρ) is hard to approxi-
mate to within γ = 1/ρ. This problem immediately reduces
to approximating the minimum distance of a code within
γ = 1/ρ. This gives a first inapproximability result for
the minimum distance problem within some constant factor
γ > 1. We then use tensor product constructions to “am-
plify” the constant and prove the claimed hardness results
for the minimum distance problem.

The hardness of approximating the relatively near code-
word problem RNC(ρ) for ρ > 1/2 is obtained by adapting
a technique of Micciancio [13], which is in turn based on the
work of Ajtai [3] (henceforth Ajtai-Micciancio). They con-
sider the analogous problem over the integers (rather than
finite fields) with Hamming distance replaced by Euclidean
distance. Much of the adaption is straightforward; in fact,
some of the proofs are even easier in our case due to the
difference. The main hurdle turns out to be in adapting the
following combinatorial problem considered and solved by
Ajtai-Micciancio:

Given an integer k construct, in poly(k) time, an
integer d, a lattice L in Zk with minimum dis-
tance d and a vector v ∈ Zk such that a (Eu-
clidean) ball of radius ρ · d around v contains at

least 2k
ε

vectors from L (where ρ < 1 and ε > 0
are some constants independent of k).

In our case we are faced with a similar problem with Zk
replaced by Fkq and Euclidean distance being replaced by
Hamming distance. The Ajtai-Micciancio solution to the
above problem involves number-theoretic methods and does
not translate to our setting. Instead we show that if we con-
sider a linear code whose performance (i.e., trade-off be-
tween rate and distance) is better than that of a random code,
and pick a random light vector in Fnq , then the resulting con-
struction has the required properties. We first solve this
problem over sufficiently large alphabets using high rate
Reed-Solomon codes. (This construction has been used in
the coding theory literature to demonstrate limitations to the
“list-decodability” of Reed-Solomon codes [11].) We then
translate the result to small alphabets using the well-known
method of concatenating codes [8].

2. Notations and problem definition

For a vector v ∈ Fnq and set S ⊆ Fnq , let ∆(v, S) =
minw∈S{∆(v,w)} be the (Hamming) distance between v
and S. For vector v ∈ Fnq and positive integer r, let
B(v, r) = {w ∈ Fnq |∆(v,w) ≤ r} be the ball of radius
r centered in v. Given a generator matrix A ∈ Fn×kq , we
consider the linear code CA = {Ax | x ∈ Fkq} of distance
∆(CA) = min{wt(Ax) | x 6= 0}.

In order to study the computational complexity of coding
problems, we formulate them in terms of promise problems.
A promise problem is a generalization of the familiar notion
of decision problem. The difference is that in a promise
problem not every string is required to be either a YES or a
NO instance. Given a string with the promise that it is either
a YES or NO instance, one has to decide which of the two
sets it belongs to.

The following promise problem captures the hardness of
approximating the minimum distance problem within a fac-
tor γ.

Definition 1 (Minimum Distance Problem) For prime
power q and γ ≥ 1, an instance of GAPDISTγ,q is a pair
(A, d), A ∈ Fn×kq and d ∈ Z+, such that

• (A, d) is a YES instance if ∆(CA) ≤ d.

• (A, d) is a NO instance if ∆(CA) > γ · d.

In other words, given a code A and an integer d with
the promise that either ∆(CA) ≤ d or ∆(CA) > γ · d,
one must decide which of the two cases holds true. The
relation between approximating the minimum distance of
A and the above promise problem is easily explained. On
one hand, if one can compute a γ-approximation d′ ∈



[∆(CA), γ · ∆(CA)] to the minimum distance of the code,
then one can easily solve the promise problem above by
checking whether d′ ≤ γ · d or d′ > γ · d. On the other
hand, assume one has a decision oracle O that solves the
promise problem above3. Then, the minimum distance of
a given code A can be easily approximated using the or-
acle as follows. Notice that O(A, n) always returns YES
while O(A, 0) always return NO. Using binary search,
one can efficiently find a d such that O(A, d) = YES and
O(A, d − 1) = NO. This means that (A, d) is not a NO
instance and (A, d−1) is not a YES instance4, and the min-
imum distance ∆(CA) must lie in the interval [d, γ · d].

Similarly we can define the following promise problem
to capture the hardness of approximating RNC(ρ) within a
factor γ.

Definition 2 (Relatively Near Codeword Problem)
For prime power q, ρ > 0 and γ ≥ 1, an instance of
GAPRNC(ρ)

γ,q is a triple (A,v, t), A ∈ Fn×kq , v ∈ Fnq and
t ∈ Z+, such that t < ρ ·∆(CA) and5

• (A,v, t) is a YES instance if ∆(v, CA) ≤ t.

• (A,v, t) is a NO instance if ∆(v, CA) > γt.

It is immediate that the problem RNC(ρ) gets harder as
ρ increases. It is hardest when ρ = ∞ in which case we
obtain the promise problem associated to approximating the
nearest codeword problem:

Definition 3 (Nearest Codeword Problem) For prime
power q and γ ≥ 1, an instance of GAPNCPγ,q is a triple
(A,v, t), A ∈ Fn×kq , v ∈ Fnq and t ∈ Z+, such that

• (A,v, t) is a YES instance if ∆(v, CA) ≤ t.

• (A,v, t) is a NO instance if ∆(v, CA) > γ · t.

The promise problem GAPNCPγ,q is NP-hard for every
constant γ ≥ 1 (cf. [2]6), and this result is critical to our
hardness result(s).

3. Hardness of the relatively near codeword
problem

As outlined in Section 1, our reduction relies on the con-
struction of a linear code CA and a Hamming sphere of ra-
dius r < ρ ·∆(CA) (for some ρ < 1) containing exponen-
tially (in the block length) many codewords. Obviously, it

3By definition, when the input does not satisfies the promise, the oracle
can return any answer.

4Remember that the oracle can give any answer if the input is neither
a YES instance nor a NO one. So, one it would be wrong to conclude that
(A, d− 1) is a NO instance and (A, d) is a YES one.

5Strictly speaking, the condition t < ρ ·∆(CA) is a promise and hence
should be added as a condition in both the YES and NO instances of the
problem.

6To be precise, Arora et al. [2] present the result only for binary codes.
In fact, their proof is valid for any alphabet.

must be ρ ≥ 1
2 because any sphere of radius r < ∆(CA)/2

can contain at most one codeword. We now prove that for
any ρ > 1

2 it is actually possible to build such a code and
sphere. After the development of this combinatorial tool,
we prove the hardness of approximating the relatively near
codeword problem by reduction from the nearest codeword
problem.

3.1. Construction of the combinatorial tool

We first show how to construct a linear code and a sphere
(with radius smaller than the minimum distance of the code)
containing a number of codewords exponential in the alpha-
bet size. Then, we use code concatenation to derive a sim-
ilar result for fixed alphabet in which the number of code-
words in the sphere is exponential in the block length of the
code.

Lemma 4 For any ε ∈ (0, 1), there exists an algorithm
that, on input a prime power q, outputs, in poly(q) time,
three integers l,m, r > 0 and a matrix A ∈ Fl×mq such that

• the linear code defined by A has minimum distance
∆(CA) > 2(1− ε)r,

• the expected number of codewords inside a random
sphere B(v, r) (v chosen uniformly at random from
Flq) is at least qεbq

εc/4.

Proof: Let r = bqεc, l = q and m = q − b2(1− ε)rc.
We let A be a generating matrix of the [q,m, q − m + 1]
extended Reed-Solomon code (cf. [5, 12]). For example,
let the columns of A correspond to the polynomials xi (for
i = 0, . . . ,m− 1) evaluated on all elements of Fq .

Clearly, A can be constructed in time polynomial in q
and the minimum distance satisfies

∆(CA) = q −m+ 1 = b2(1− ε)rc+ 1 > 2(1− ε)r.

Now, lets bound the expected number of codewords in
B(v, r) when v is chosen uniformly at random in Fqq . First
of all notice that

Exp
v∈Fqq

[|CA ∩ B(v, r)|] =
∑

x∈CA

Pr
v∈Fqq
{x ∈ B(v, r)}

=
∑

x∈CA

Pr
v∈Fqq
{v ∈ B(x, r)}

=
|CA| · |B(0, r)|

qq

= qm−q · |B(0, r)|
≥ q−2(1−ε)r · |B(0, r)|.

Let’s now bound the size of the ball B(0, r):

|B(0, r)| ≥
(
q

r

)
(q − 1)r



≥
(q
r

)r
(q − 1)r

≥ q(1−ε)r(q − 1)r

= q(2−ε)r
(

1− 1
q

)r
≥ q(2−ε)r

(
1− 1

q

)q
≥ q(2−ε)r

4

where in the last inequality we have used the monotonic-
ity of (1 − 1/q)q and q ≥ 2. Finally, combining the two
inequalities we get

Exp
v∈Fqq

[|CA ∩ B(v, r)|] ≥ q−2(1−ε)rq(2−ε)r/4

= qεr/4 = qεbq
εc/4.

2

¿From the previous lemma, it immediately follows that
there exists a sphere B(v, r) containing at least qεbq

εc/4
codewords from CA. However, while the lemma asserts
that A and r can be easily computed, it is not clear how
to efficiently determine the center of the sphere. Let µ =
Exp
v∈Flq

[|B(v, r) ∩ CA|] be the expected number of codewords

in the sphere when the center is chosen uniformly at random
from Flq . It is fairly easy to find spheres containing a number
of codewords not much bigger than µ. In fact, by Markov’s
inequality Prv∈Fql(|B(v, r) ∩ CA| > αµ) < 1/α when v
is chosen uniformly at random from Fqq . It turns out that if
v is chosen uniformly at random from B(0, r) (instead of
the whole Flq), then a similar lower bound can be proved.
Namely, Prv∈B(0,r)(|B(v, r) ∩ CA| < δµ) < δ. In fact,
this is just a special case of the following quite general fact.

Fact 5 Let G be a group, H ⊂ G a subgroup and S ⊂
G an arbitrary subset of G. Let µ be the expected size of
H∩Sz when z is chosen uniformly at random fromG (here
Sz denotes the set {s · z | s ∈ S}). Choose x ∈ S−1 =
{s−1 | s ∈ S} uniformly at random. Then for any δ ≤ 1,

Pr
x∈S−1

{|H ∩ Sx| ≤ δµ} ≤ δ.

Proof: First, we compute the expectation

µ = Exp
z∈G

[|H ∩ Sz|]

=
∑
y∈H

Pr
z∈G
{y ∈ Sz}

=
|H| · |S|
|G|

.

Now, pick y ∈ H uniformly at random and independently
from x (which is chosen uniformly at random from S−1).

We notice that

Pr
x,y
{xy = z} =

|{x ∈ S−1, y ∈ H: y = x−1z}|
|S| · |H|

=
|H ∩ Sz|
|H| · |S|

.

Moreover, sinceH is a subgroup,Hy = H and |Sx∩H| =
|Sxy ∩ Hy| = |S(xy) ∩ H|. Therefore, denoting by I(z)
be the indicator variable that equals 1 if |Sz ∩H| ≤ δµ and
0 otherwise, we can write

Pr
x
{|Sx ∩H| ≤ δµ} = Pr

x,y
{|S(xy) ∩H| ≤ δµ}

=
∑
z∈G

Pr
x,y
{xy = z} · I(z)

=
∑
z∈G

|Sz ∩H| · I(z)
|H| · |S|

≤ |G| · δµ
|H| · |S|

= δ

2

Applying Fact 5 on group G = (Fqq,+), subgroup H =
(CA,+) and the set S = B(0, r) we immediately get the
following corollary to Lemma 4. Notice then that if we set
v = x then Sx = v + B(0, r) = B(v, r).

Corollary 6 For any ε ∈ (0, 1) there exists a probabilistic
algorithm that on input a prime power q, outputs in time
polynomial in q integers l,m, r > 0, a matrix A ∈ Fl×mq

and a vector v ∈ Flq such that

• A defines a linear code with minimum distance
∆(CA) > 2(1− ε)r,

• for any δ ≤ 1, the probability that |B(v, r) ∩ CA| is
smaller than δqεbq

εc is at most 4δ.

It is important to notice that in the previous lemma one
must use arbitrarily large alphabets in order to get arbitrar-
ily many codewords in the ball. We would like to prove a
similar result in which the alphabet size can be kept fixed
and only the block length of the code increases. This can
be easily accomplished using the standard construction of
concatenating codes [8]. The idea is to apply Corollary 6
to a sufficiently large extension field Fqc and then represent
each element of Fqc as a sequence of elements of Fq .

Lemma 7 For ε ∈ (0, 1) and finite field Fq , there exists a
probabilistic polynomial time algorithm that on input in-
tegers k, s ∈ Z+, outputs, in poly(k, s) time, integers
l,m, r ∈ Z+, a matrix A ∈ Fl×mq and a vector v ∈ Flq
such that

• ∆(CA) > 2(1− ε)r



• The probability that B(v, r) contains less than qk

codewords is at most q−s.

Proof: Let c be an integer such that εcbqεcc ≥ k + s + 2
and q′ = qc is polynomial in s and k. For example, let
c = dε−1 ·max{logq(k + s+ 2), 1}e.

Apply Corollary 6 to prime power q′ = qc to obtain in-
tegers l′,m′, r′, matrix A′ ∈ Fl

′×m′
q′ and vector v′ ∈ Fl′q′

such that ∆(CA′) > 2(1− ε)r′, and for all δ ≤ 1 the proba-
bility that |B(v′, r′)∩CA′ | is smaller than δ ·(q′)εb(q

′)εc is at
most 4δ. In particular, when δ = q−(s+2), with probability
at least 1− 4 · q−(s+2) ≥ 1− q−s we have

|B(v′, r′) ∩ CA′ | ≥ qcεbq
cεc/qs+2 ≥ qk+s+2/qs+2 = qk.

So, the sphere B(v′, r′) contains the required number of
codewords with sufficiently high probability. It only re-
mains to reduce the alphabet size from qc to q. This can
be done concatenating the code CA with a [qc, c, qc − qc−1]
linear Hadamard code. Details follow.

Recall that Fqc is a c-dimensional vector space over
Fq . Fix a basis b1, . . . , bc ∈ Fqc of Fqc over Fq and
let φi: Fqc → Fq be the coordinate functions such that
x =

∑c
i=1 φi(x)bi. Notice that the φi’s are linear, i.e.,

φi(ax + by) = aφi(x) + bφi(y) for all a, b ∈ Fq and
x, y ∈ Fqc . For all x ∈ Fqc , let now h(x) be the sequence
of all Fq-linear combinations of the φi(x),

h(x) =

(
c∑
i=1

aiφi(x)

)
a1,...,ac∈Fq

and extend h to Fq
c

qc componentwise

h̃(x1, . . . , xqc) = h(x1), h(x2), · · · , h(xqc).

Notice that h: Fqc → Fqcq is linear, h(0) = 0 and
wt(h(x)) = qc−1(q − 1) for all x 6= 0. Therefore
wt(h̃(w)) = qc−1(q−1) ·wt(w) and ∆(h̃(w1), h̃(w2)) =
qc−1(q − 1) · ∆(w1,w2). We now define CA as the con-
catenation of CA′ and h, i.e.,

CA = h̃(CA′) = {h̃(w) : w ∈ CA}.

Further, let v = h̃(v′), r = qc−1(q − 1) · r′, l = qc · l′ and
m = c ·m′. A generating matrix A ∈ Fl′×m′q for CA can
be easily obtained replacing each element a in A′ by the
corresponding matrix [h(a · b1) | . . . | h(a · bc)] ∈ Fqc×cq .

We claim that these settings satisfy the requirements of
the lemma. Notice first that since wt(h̃(w)) = qc−1(q−1)·
wt(w), we have ∆(CA) = qc−1(q−1)·∆(CA′) > 2(1−ε)r.
Further, |CA ∩ B(v, r)| = |CA′ ∩ B(v′, r′)| and thus the
probability that B(v, r) contains fewer than qk codewords
is at most q−s. 2

In the next subsection we will use the codewords inside
the ball B(v, r) to represent the solutions to a nearest code-
word problem. In order to be able to represent any possible
solution, we need first to project the codewords in B(v, r)
to the set of all strings over Fq of some shorter length. This
is accomplished in the next lemma by another probabilistic
argument. Given a matrix T ∈ Fk×lq and a vector y ∈ Flq ,
let T(y) = Ty denote the linear transformation from Flq to
Fkq . Further, let T(S) = {T(y) | y ∈ S}.

Lemma 8 For any ε ∈ (0, 1) and finite field Fq there ex-
ists a probabilistic polynomial time algorithm that on input
(1k, 1s) outputs integers l,m, r, matrices A ∈ Fl×mq , and
T ∈ Fk×lq and a vector v ∈ Flq such that

1. ∆(CA) > 2(1− ε)r.

2. T(B(v, r) ∩ CA) = Fkq with probability at least 1 −
q−s.

Proof: Run the algorithm of Lemma 7 on input
(12k+s+1, 1s+1). Let l,m, r,A,v be the output of the al-
gorithm and define S = B(v, r) ∩ CA. The first property
directly follows from the previous lemma. Moreover, with
probability at least 1 − q−(s+1) we have |S| ≥ q2k+s+1.
Choose T ∈ Fk×lq uniformly at random. We want to
prove that with very high probability T(S) = Fkq . Choose
a vector t ∈ Fkq at random and define a new function
T′(y) = Ty + t. Clearly T′(S) = Fkq iff T(S) = Fkq .
Notice that the random variables T′y (y ∈ S) are pairwise
independent and uniformly distributed. Therefore for any
vector x ∈ Fkq , T′y = x with probability p = q−k. Let
Nx be the number of y ∈ S such that T′y = x. By linear-
ity of expectation and pairwise independence of the T′y we
have Exp [Nx] = |S|p and Var [Nx] = |S|(p− p2) < |S|p.

Applying Chebychev’s inequality we get

Pr{Nx = 0} ≤ Pr{|Nx − Exp [Nx] | ≥ Exp [Nx]}

≤
Var [Nx]

Exp [Nx]2

<
1
|S|p

≤ q−(k+s+1).

Therefore, for any x ∈ Fkq , the probability that T′y 6= x
for every y ∈ S is at most q−(k+s+1). By union bound,
with probability at least 1 − q−(s+1), for every x ∈ Fkq
there exists a vector y ∈ S such that Ty = x. Adding up
the error probabilities, we find that with probability at least
1 − (q−(s+1) + q−(s+1)) ≥ 1 − q−s, T(S) = Fkq , proving
the second property. 2



3.2. The reduction

We can now prove the inapproximability of the relatively
near codeword problem.

Theorem 9 For any ρ > 1/2, γ ≥ 1 and any finite field
Fq , GAPRNC(ρ)

γ,q is hard for NP under polynomial RUR-
reductions. Moreover, the error probability can be made
exponentially small in a security parameter s while main-
taining the reduction polynomial in s.

Proof: Let η be an integer strictly bigger than 1/(2ρ −
1) and let γ′ = (η + 1)γ. We prove the hardness of
GAPRNC(ρ)

γ,q by reduction from GAPNCPγ′,q .
Let (C′,v′, t′) be an instance of GAPNCPγ′,q with

C′ ∈ Fn×kq . We want to map it to an instance (C,v, t)
of GAPRNC(ρ)

γ,q. Invoking Lemma 8 on input (1k, 1s) and
ε = 1− (1 + 1/η)/(2ρ) ∈ (0, 1), we obtain integers l,m, r,
a generating matrix A ∈ Fl×mq of a linear code with min-
imum distance ∆(CA) > 2(1 − ε)r = ((1 + 1/η)/ρ)r,
a matrix T ∈ Fk×lq and a vector w ∈ Flq such that
T(CA ∩ B(w, r)) = Fkq with probability at least 1− q−s.

Notice that C′TA ∈ Fn×mq defines a linear code whose
codewords are a subset of CC′ . Define C by stacking up ηt′

copies of A and r copies of C′TA:

C =



A
...
A

C′TA
...

C′TA



 ηt′

 r

Define vector v as the concatenation of ηt′ copies of w and
r copies of v′:

v =



w
...
w
v′
...
v′



 ηt′

 r

Finally, let t = (η + 1)t′r. The output of the reduction is
(C,v, t).

First notice that (regardless of the input instance
(C′,v′, t′)), we can establish t ≤ ρ ·∆(CC) as follows:

ρ ·∆(CC) ≥ ρηt′ ·∆(CA)

> ρηt′
(

1 + 1/η
ρ

)
r

= (η + 1)t′r = t.

We now prove that if (C′,v′, t′) is a YES in-
stance of GAPNCPγ′,q , then (C,v, t) is a YES in-
stance of GAPRNC(ρ)

γ,q , and if (C′,v′, t′) is a NO in-
stance of GAPNCPγ′,q , then (C,v, t) is a NO instance of
GAPRNC(ρ)

γ,q.
Assume (C′,v′, t′) is a NO instance, i.e., the distance of

v′ from CC′ is greater than γ′t′. For all x ∈ Fmq we have

∆(Cx,v) ≥ r ·∆((C′TA)x,v′)
≥ r ·∆(v′, CC′)
> r · γ′t′

= r(η + 1)γt′ = γt

proving that (C,v, t) is a NO instance. (Notice that NO
instances get mapped to NO instances with probability 1, as
required.)

Conversely, assume (C′,v′, t′) is a YES instance, i.e.,
there exists x such that ∆(C′x,v′) ≤ t′. Let y = Az be a
codeword in CA such that ∆(y,w) ≤ r and Ty = x. We
know such a codeword will exists with probability at least
1− q−s. In such a case, we have

∆(Cz,v) = ηt′∆(Az,w) + r∆(C′TAz,v′)
≤ ηt′r + rt′ = t,

proving that (C,v, t) is a YES instance. 2

Remark 10 The reduction given here is a randomized
many-one reduction (or a randomized Karp reduction)
which fails with exponentially small probability. However
it is not a Levin-reduction: i.e., given a witness for a YES
instance of the source of the reduction we do not know how
to obtain a witness to YES instances of the target in poly-
nomial time. The problem is that given a solution x to the
nearest codeword problem, one has to find a codeword y in
the sphere B(w, r) such that Ty = x. Our proof only as-
serts that with high probability such a codeword exists, but
it is not known how to find it. This was the case also for
the Ajtai-Micciancio hardness proof for the shortest vector
problem, where the failure probability was only polynomi-
ally small.

As discussed in the introduction, hardness under polyno-
mial RUR-reductions easily implies the following corollary.

Corollary 11 For any ρ > 1/2, γ ≥ 1 and any finite field
Fq , GAPRNC(ρ)

γ,q is not in RP unless NP = RP.

4. Hardness of the Minimum Distance Problem

In this section we prove the hardness of approximating
the Minimum Distance Problem. We first derive an inap-
proximability result to within some constant bigger than one
by reduction from GAPRNC(ρ)

γ,q. Then we use direct prod-
uct constructions to amplify the inapproximability factor to
any constant and to any factor 2log(1−ε) n (ε > 0).



4.1. Inapproximability to within some constant

The inapproximability of GAPDISTγ,q to within a con-
stant γ ∈ (1, 2) immediately follows from the hardness of
GAPRNC(1/γ)

γ,q .

Lemma 12 . For every γ ∈ (1, 2), and every finite field
Fq , GAPDISTγ,q is hard for NP under polynomial RUR-
reductions with exponentially small soundness error.

Proof: The proof is by reduction from GAPRNCγ
−1

γ,q . Let

(C,v, t) be an instance of GAPRNCγ
−1

γ,q and assume with-
out loss of generality that v does not belong to code gen-
erated by C. (One can easily check whether v ∈ CC
by solving a system of linear equations. If v ∈ CC
then ∆(v, CC) = 0 and (C,v, t) is a YES instance.)
Define the matrix C′ = [C|v]. We now prove that if
(C,v, t) is a YES instance of GAPRNCγ

−1

γ,q , then (C′, t)
is a YES instance of GAPDISTγ,q , and if (C,v, t) is a NO

instance of GAPRNCγ
−1

γ,q , then (C′, t) is a NO instance of
GAPDISTγ,q . Notice that in either case ∆(CC) > γt.

Assume (C,v, t) is a YES instance, i.e., there exists a
x such that ∆(Cx,v) ≤ d. Then, Cx − v is a non-zero
vector of the code generated by C′ of weight at most t.

Conversely, assume (C,v, t) is a NO instance and let
y = Cx +wv be any non-zero vector of C′. If w = 0 then
y = Cx is a non-zero element of CA and therefore wt(y) >
γt (using the promise). On the other hand, if w 6= 0 then
wt(y) = wt(C(w−1x)− v) > γt as ∆(v, C(C)) > γt. 2

4.2. Inapproximability to within bigger factors

To amplify the hardness result obtained above, we take
the direct product of the code with itself. We first define
direct products.

Definition 13 For i ∈ {1, 2}, let Ci be a linear code gen-
erated by Ai ∈ Fni×kiq . Then the direct product of C1 and
C2, denoted C1 ⊗ C2 is a code over Fq of block length n1n2

and dimension k1k2 whose codewords, when expressed as
matrices in Fn1×n2

q , are the set {A1XAT
2 |X ∈ Fk1×k2q }.

A generating matrix for the code C1 ⊗ C2 can be easily de-
fined as the matrix A1 ⊗A2 ∈ Fn1n2×k1k2

q whose columns

(when expressed as matrices) are given by A(j1)
1 · (A(j2)

2 )T

where A(ji)
i is the ith column of Ai and ji ∈ {1, . . . , ki}

for i ∈ {0, 1}.

Notice that the codewords of C1⊗C2 are matrices whose
columns are codewords of C1 and rows are codewords of C2.
In our reduction we will need the following fundamental
property of direct product codes.

Proposition 14 [12] For linear codes C1 and C2 of mini-
mum distance d1 and d2, their direct product is a linear
code of distance d1d2.

Proof: Let A1 and A2 be the generators of C1 and C2.
Consider two codewords M1 = A1X1AT

2 and M2 =
A1X2AT

2 of C1 ⊗ C2. For any λ1, λ2 ∈ Fq , the matrix
λ1M1 +λ2M2 is also a codeword of C1⊗C2 since it can be
expressed as A1(λ1X1 +λ2X2)AT

2 . Thus C1⊗C2 is linear.
We now show that for any non-zero matrix X , A1XA2

has at least d1d2 non-zero entries. Consider first the matrix
A1X . Since this matrix is non-zero, there must be some
column which is non-zero. Since every column is a code-
word from C1, this implies that this column must have at
least d1 non-zero entries. Thus A1X has at least d1 non-
zero rows. Now consider the matrix (A1X)AT

2 . At least
d1 rows of this matrix are non-zero and each must have at
least d2 non-zero entries. This completes the claim.

Finally, we verify that the minimum distance of C1 ⊗ C2
is exactly d1d2. To see this consider vectors xi ∈ Fkiq such
that Aixi has exactly di non-zero elements. Then notice
that the matrixM = A1x1xT2 AT

2 is a codeword of C1⊗C2.
Expressing M as (A1x1)(A2x2)T we see that its ith row
is zero if the ith coordinate of A1x1 is zero and the jth
column of M is zero if the jth coordinate of A2x2 is zero.
Thus M is zero on all but n− d1 rows and n− d2 columns
and thus at most d1d2 entries are non-zero. 2

We can now prove the following theorem.

Theorem 15 For every finite field Fq the following holds:

• For every real γ > 1, GAPDISTγ,q is hard for NP
under polynomial RUR-reductions.

• For every ε > 0, GAPDISTγ,q is hard for NP un-
der quasi-polynomial RUR-reductions for γ(n) =
2log(1−ε) n.

In both cases the error probability is exponentially small in
a security parameter.

Proof: Let γ0 be such that GAPDISTγ0,q is hard by
Lemma 12. Given an instance (A, d) of GAPDISTγ0,q , con-
sider the instance (A⊗l, dl) of GAPDISTγl0,q , where

A⊗l = (· · · ((A⊗A)⊗A) · · · ⊗A)︸ ︷︷ ︸
l

is a generator matrix of

C⊗lA = (· · · ((CA ⊗ CA)⊗ CA) · · · ⊗ CA)︸ ︷︷ ︸
l

for an integer parameter l ∈ Z+. By Proposition 14 it fol-
lows that YES instances map to YES instances and NO in-
stances to NO instances. Setting l = log γ

log γ0
yields the first



part of the theorem. Notice that for constant l, the size of
A⊗l is polynomial in A, and A⊗l can be constructed in
polynomial time.

To show the second part, just set γ0 = 2 and l =
log

1−ε
ε n in the previous reduction. This time the block

length of A⊗l will be N = nl = 2log1/ε n which is quasi-
polynomial in the block length n of the original instance A.
The reduction can be computed in quasi-polynomial (in n)
time, and the approximation factor achieved is

γ(N) = 2l = 2log
1−ε
ε n = 2log1−εN .

2

As for the relatively near codeword problem, the follow-
ing corollary can be easily derived from the hardness result
under RUR-reductions.

Corollary 16 For every finite field Fq the following holds:

• For every real γ > 1, if GAPDISTγ,q is not in RP
unless NP = RP.

• For every ε > 0, GAPDISTγ,q is not in RQP for
γ(n) = 2log(1−ε) n unless NP ⊆ RQP.

5. Other reductions

We proved that approximating the minimum distance
problem is hard for NP under RUR-reductions, i.e. prob-
abilistic reductions that map NO instances to NO instances,
and map YES instances to YES instances with high proba-
bility. (This is similar to the hardness proof for the shortest
vector problem in [3, 13].)

An obvious question is whether it is possible to re-
move the randomization and make the reduction determin-
istic. We notice that our reduction (as well as the Ajtai-
Micciancio ones for SVP) uses randomness in a very re-
stricted way. Namely, the only part of the reduction where
randomness is used is the proof of Lemma 8. The con-
struction in the lemma depends only on the input size, and
not the particular input instance we are reducing. So, if the
construction succeeds, the reduction will faithfully map all
YES instances (of the appropriate size) to YES instances.
Therefore, the statement in Lemma 8 can be easily modi-
fied to obtain hardness results for NP under deterministic
non-uniform reductions, i.e. reductions that take a polyno-
mially sized advice that depends only on the input size7:

Corollary 17 For every finite field Fq the following holds:

7Since our reduction achieves exponentially small error probability,
hardness under non-uniform reductions also follows from general results
about derandomization [1]. However, the ad-hoc derandomization method
we just described is more efficient and intuitive.

• For any ρ > 1/2, and γ ≥ 1 GAPRNC(ρ)
γ,q is hard

for NP under non-uniform deterministic polynomial
reductions.

• For every real γ > 1, GAPDISTγ,q is hard for NP un-
der non-uniform deterministic polynomial reductions.

• For every ε > 0 and γ(n) = 2log(1−ε) n, GAPDISTγ,q
is hard for NP under non-uniform deterministic quasi-
polynomial reductions.

We notice also that a uniform deterministic construction
satisfying the properties of Lemma 8 would immediately
give a proper NP-hardness result (i.e. hardness under deter-
ministic Karp reductions) for the relatively near codeword
problem and the minimum distance problem.
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