
Hardness of Approximate Hypergraph Coloring

Venkatesan Guruswami∗ Johan Håstad† Madhu Sudan∗ ‡

Abstract

We introduce the notion of covering complexity of a prob-
abilistic verifier. The covering complexity of a verifier on
a given input is the minimum number of proofs needed to
“satisfy” the verifier on every random string, i.e., on ev-
ery random string, at least one of the given proofs must be
accepted by the verifier. The covering complexity of PCP
verifiers offers a promising route to getting stronger inap-
proximability results for some minimization problems, and
in particular, (hyper)-graph coloring problems. We present
a PCP verifier for NP statements that queries only four bits
and yet has a covering complexity of one for true statements
and a super-constant covering complexity for statements
not in the language. Moreover, the acceptance predicate of
this verifier is a simple Not-all-Equal check on the four bits
it reads. This enables us to prove that for any constant c,
it is NP-hard to color a 2-colorable 4-uniform hypergraph
using just c colors, and also yields a super-constant inap-
proximability result under a stronger hardness assumption.

1 Introduction

In this paper we study a variant of the standard notion of
a probabilistically checkable proof (PCP). In the standard
notion, the probabilistic verifier is provided restricted ora-
cle access to a proof, is allowed some probability of error,
and the goal is to find a proof that maximizes the accep-
tance probability of the verifier (on any given input). For
integer valued functions r(·) and q(·), the verifier is said to
be (r, q)-restricted if it tosses at most r(n) coins and queries
the proof for at most q(n) bits, on inputs that are n bits long.
A language L belongs to the class PCPc,s[r, q] if an (r, q)-
restricted verifier accepts the language with completeness c

∗Laboratory for Computer Science, MIT, 545 Tech-
nology Square, Cambridge, MA 02139. Email:
{venkat@theory.lcs.,madhu@}mit.edu
†Department of Numerical Analysis and Computer Science, Royal

Institute of Technology, SE-100 44 Stockholm, Sweden. Email:
johanh@nada.kth.se
‡Supported in part by an MIT-NEC Research Initiation Award, a Sloan

Foundation Fellowship and NSF Career Award CCR-9875511.

and soundness s. I.e., for instances in the language there ex-
ist proofs that are accepted by the verifier with probability
at least c, while for instances not in the language no proof
is accepted with probability more than s.

In the variant we consider here, we allow multiple
proofs, say Π1, . . . ,Πk, to be provided to the verifier. We
require that for every random string used by the verifier,
at least one of the proofs Πi must be accepted by the ver-
ifier. The goal now is to find the smallest set of proofs
that satisfy this property and the cardinality of this set is
said to be the covering complexity of the verifier on this
input. Analogous to the class PCP, we may define the class
cPCPc,s[r, q] to be the class of all languages for which there
exist (r, q)-restricted verifiers that satisfy the following con-
ditions: (Completeness) If x ∈ L, the covering complexity
of V on x is at most 1/c. (Soundness) If x 6∈ L then the
covering complexity of V on x is at least 1/s.

The class cPCP arises naturally in the study of cer-
tain minimization problems, and in particular in the study
of the approximability of graph coloring. Traditionally,
however the class has not been focussed on explicitly.
Instead all previous (PCP based) results on graph color-
ing [21, 18, 10] have implicitly relied on the obvious con-
tainment PCP1,s[r, q] ⊆ cPCP1,s[r, q]. Thus it sufficed to
prove strong containments of NP in PCP to get hardness
result for graph coloring.

This approach was quite successful in proving strong
(and in fact essentially tight) inapproximability of graph
coloring for general graphs [10], but for graphs whose chro-
matic number is a small constant, however, the known hard-
ness results are much weaker. For example, for 3-colorable
graphs the best known hardness result only rules out color-
ing using 4 colors [18, 14]. This paper is motivated by the
quest for strong (super-constant) inapproximability for col-
oring graphs whose chromatic number is a small constant,
and the kind of PCP constructions that this question moti-
vates. A necessary (but not sufficient condition) for such
a result is a containment of NP in cPCPc,o(1)[O(log n), q]
for c > 0 and constant q. However such a result can not
be obtained by passing through PCP, since it is known that
if NP ⊆ PCPc,s[O(log n), q] then s ≥ c2−q (and hence
s = Ω(1) as well). Moreover, while the existence of “good”
cPCP’s is implied by a strong hardness result for coloring

(for example the hardness of c-coloring 3-colorable graphs
for every constant c), such a result is not known to be true
for PCP’s (see [14] for related discussions). In light of
these facts, in order to get the stronger inapproximability
results for coloring, it may be better to study cPCP directly,
and we do so in this paper.

Our Results. Our main result is a containment of NP in
the class cPCP1,ε[O(log n), 4], for every ε > 0. If the ran-
domness is allowed to be slightly super-logarithmic, then
the soundness can be reduced to some explicit o(1) func-
tion. Technically, this result is of interest in that it over-
comes the qualitative limitation described above of pass-
ing through standard PCPs. Furthermore, our proof shows
how to apply the (by now) standard Fourier-analysis based
techniques to the studying of covering complexity as well.
Thus it lays out the hope for applying such analysis to other
cPCP’s as well.

Unfortunately, the resulting cPCP fails to improve inap-
proximability of graph coloring. In part, this is due to the
rather fragile nature of covering complexity, which makes
the utility of cPCP’s to be closely tied to the actual pred-
icates used by the verifier in deciding its actions. In stan-
dard PCPs one can use gadgets to transform the predicates
used by the verifier, thus allowing one to transform hardness
results among different problems. In covering PCPs such
transformations typically completely destroy the properties
of the PCP. For example, to design a covering PCP ap-
propriate for use in hardness results for 3-colorable graphs,
the verifier must be restricted to working with proofs that
are strings from {0, 1, 2}∗ and the verifiers actions are only
allowed to read two elements of the proof and verify they
are unequal.

Keeping this finicky nature of covering PCPs in mind,
we design a different verifier (whose query complexity is
also 4 bits), but whose acceptance predicate just checks if
not all of the 4 bits read are equal, and thus corresponds di-
rectly to coloring of 4-uniform hypergraphs. Recall that a
4-uniform hypergraph H is given by a set of vertices V and
a collectionE of 4-element subsets of V called hyperedges.
(In a general hypergraph there is no restriction on the num-
ber of vertices in any hyperedge.) A k-coloring is a map
from V to the set {1, 2, . . . , k} such that in every edge at
least two vertices are assigned distinct colors, i.e., no edge
is monochromatic. The goal here is to find the chromatic
number of H , which is the smallest k such that a k-coloring
of the given hypergraph exists.

Hypergraph coloring has been studied in the literature
from both the combinatorial and algorithmic angle. In
contrast with graphs, deciding if a given hypergraph is 2-
colorable is NP-hard, even for 3-uniform hypergraphs [20].
The property of hypergraph 2-colorability, also called Prop-
erty B, has been studied in the extremal combinatorics lit-
erature for long and much work has been done on proving

hypergraph families 2-colorable and the corresponding al-
gorithmic questions [9, 5, 6, 22, 23, 26, 24]. It has also been
studied by computer scientists due to its connections to the
graph coloring and satisfiability problems. Inspired in part
by the work of [17] on approximate graph coloring, several
authors [1, 8, 19] have provided approximation algorithms
for coloring 2-colorable hypergraphs. The best known re-
sult for 2-colorable 4-uniform hypergraphs is a polynomial
time coloring algorithm that uses Õ(n3/4) colors [1, 8]
where n is the number of vertices. No non-trivial hardness
results seem to be known, and in fact it was not known prior
to our work if 3-coloring a 2-colorable 4-uniform hyper-
graph is NP-hard. Our result yields a super-constant lower
bound on coloring 2-colorable 4-uniform hypergraphs: we
prove that c-coloring such hypergraphs is NP-hard for any
constant c (Theorem 4.4), and moreover there exists a con-
stant c0 > 0 such that, unless NP ⊆ DTIME(nO(log logn)),
there is no polynomial time algorithm to color a 2-colorable
4-uniform hypergraph using c0 log log log n colors (Theo-
rem 4.5). A similar hardness result also holds for coloring
2-colorable k-uniform hypergraphs for any k ≥ 5 by reduc-
tion from the case of 4-uniform hypergraphs (the details of
this reduction are omitted here and will appear in the full
version).

There is also a natural maximization version of hyper-
graph 2-coloring: color the vertices with two colors so that
a maximum number of hyperedges are non-monochromatic.
For k-uniform hypergraphs, this is clearly the same problem
as Max k-Set Splitting. For k = 4 (the case we study here),
a tight hardness result of 7/8 + ε is known [16] — thus
the problem is “approximation resistant” and a random 2-
coloring is the best one can do. Obtaining a hardness for the
minimization version as always turns out to be more diffi-
cult. For k = 3, a tight hardness result is not known even for
the maximization version (see [13]). In fact, algorithms that
do (much) better than a random 2-coloring are known for
this case [11], and thus the problem is not “approximation
resistant”. We believe this indicates that getting a strong in-
approximability for coloring 3-uniform hypergraphs similar
to our result here is likely to be even harder, and the same
applies for coloring 3-colorable graphs as well.

2 Preliminaries

We first repeat the formal definition of a covering PCP.

Definition 1 (Covering PCP) A language L belongs to the
class cPCPc,s[r, q] if there is an (r, q)-restricted verifier V
such that on input x: (i) if x ∈ L then there is a set of at
most 1/c proofs such that V accepts at least one of them for
any random choice it makes, and (ii) if x /∈ L, for any set
of k proofs Π1,Π2, . . . ,Πk with k < 1/s, there is random
string for which V rejects every Πi, 1 ≤ i ≤ k.

2.1 Covering PCPs and Graph Coloring
We now verify our intuition that “good” covering PCPs

(i.e., those which have a large gap in covering complexity
between the completeness and soundness cases) are neces-
sary for strong lower bounds on the approximating the chro-
matic number. As usual, for a graph G, we denote by χ(G)
its chromatic number, i.e., the minimum number of colors
required in a proper coloring of G.

Proposition 2.1 Suppose for functions f, g : Z+ → Z+,
given a graph G on n vertices, it is NP-hard to distinguish
between the cases χ(G) ≤ f(n) and χ(G) ≥ g(n). Then
NP ⊆ cPCPdlog f(n)e−1,dlog g(n)e−1

[
O(log n), 2

]
.

Proof: Let the vertex set of G be V = {v1, v2, . . . , vn}.
The covering PCP will consist as proofs Π1,Π2, . . . ,Πk

which correspond to “cuts” Γ1, . . . ,Γk of G, i.e., each Πi

will be n-bits long, with the jth bit being 1 or 0 depending
on which side of the cut Γi contains vj . The verifier will
simply pick two vertices vj1 and vj2 at random such that
they are adjacent in G, and then check if the jth

1 and jth
2

bits differ in any of the k proofs. The minimum number k
of proofs required to satisfy the verifier for all its random
choices is clearly the cut cover number κ(G) of G, i.e., the
minimum number of cuts that cover all edges ofG. It is easy
to see that κ(G) = dlogχ(G)e, and therefore the claimed
result follows. 2

The logarithms in the covering completeness and sound-
ness above (as are all logs in this paper) are to the base 2.
One can get a similar result for any base q, by letting the
proofs be q-ary strings and the verifier read two q-ary sym-
bols from the proof. In light of this, we get the following.

Corollary 2.2 If there exists an ε > 0 such that it is
NP-hard to nε-color a 3-colorable graph, then NP ⊆
cPCP1,(ε log3 n)−1

[
O(log n), 2

]
where the covering PCP is

over a ternary alphabet, and the verifier reads two ternary
symbols from the proof.

In light of the above Corollary, very powerful covering PCP
characterizations of NP are necessary in order to get strong
hardness results for coloring graphs with small chromatic
number. A result similar to Proposition 2.1, with an iden-
tical proof, also holds for hypergraph coloring, and thus
motivates us to look for good covering PCP characteriza-
tions of NP in order to prove hardness results for coloring
2-colorable hypergraphs.

Proposition 2.3 If there exists a function f : Z+ → Z+

such that f(n)-coloring a 2-colorable r-uniform hyper-
graph is NP-hard, then NP ⊆ cPCP1, 1

log f(n)

[
O(log n), r

]
.

In particular, if c-coloring 2-colorable r-uniform hyper-
graphs is NP-hard for every constant c, then NP ⊆
cPCP1, 1k

[
O(log n), r

]
for every constant k ≥ 1.

2.2 Preliminaries on Long Code
We now describe a very redundant error-correcting code,

called the long code. The long code was first used by [7],
and has been very useful in all PCP constructions since.
We first develop some notation.

We represent boolean values by the set {1,−1} with 1
standing for FALSE and −1 for TRUE. This representation
has the nice feature that XOR just becomes multiplication.
For any domain D, denote by FD stands for the space of all
boolean functions f : D → {1,−1}. The long code of an
element x in a domain D, denoted LONG(x), is simply the
evaluations of all the 2|D| boolean functions inFD at x. IfA
is the long code of a, then we denote byA(f) the coordinate
of A corresponding to function f , so that A(f) = f(a).

Folding of Long Codes: A Discussion. A function A :
FD → {1,−1} is said to be folded if A(f) = −A(−f)
for all f ∈ FD [7]. A codeword of the long code is clearly
folded (since A(f) = f(a) = −(−f(a)) = −A(−f)).
One can assume that the proofs which are purportedly long
codes are folded since for any A : FD → {1,−1}, one can
define a new function A′ by: A′(f) = A(f) if f(α0) = 1
and A′(f) = −A(−f) if f(α0) = −1, where α0 is some
fixed element of D, and now A′ is clearly folded.

Thus for several applications one can assume access to
folded proofs, and this turns out to be essential for several
PCP constructions. Tight results for certain applications
call for working without the folding assumption though, a
good example is set splitting [16]. Folding illustrates one of
many natural things that could go wrong in the analysis of
covering soundness, since even though for our (first) cPCP
construction (Theorem 3.5 of Section 3) we can assume the
proof tables are folded, our analysis has to deal with tables
that are not folded. The discussion following Lemma 3.2 of
Section 3 further brings out this point.

3 PCP Construction I
In this section, for any constant k, we describe a (cov-

ering) PCP construction that uses logarithmic randomness,
makes 4 queries (and reads 4 bits from these locations), has
perfect completeness and covering soundness at most 1/k.
By allowing slightly super-logarithmic randomness, we can
even achieve an o(1) covering soundness, for some explicit
o(1) function.

The PCP construction is based on the one in [16] for
proving a tight hardness result for 4-Set Splitting. Our anal-
ysis, however, is different, and proves that no k proofs can
together satisfy all the predicates tested by the PCP verifier.
(In contrast the analysis in [16] would prove that this PCP
has perfect completeness and soundness 3/4 + ε, for ε > 0
as small as desired. The perfect completeness implies per-
fect covering completeness, but the soundness analysis has
to be different in our case.) We provide below a high-level

description of the PCP construction; this is not meant to be
complete, but should give some sense of the ideas used in
the construction.

3.1 Preliminaries on Proof Composition

Our PCP constructions (also) follow the paradigm of proof
composition, by composing an “outer verifier” with an “in-
ner verifier”. In its most modern and easy to apply form,
one starts with an outer proof system which is a 2-Prover
1-Round proof system (2P1R) construction for NP.

Label Cover. We abstract the 2P1R by a graph-theoretic
optimization problem called LABEL COVER. The spe-
cific version of LABEL COVER we refer to is the maxi-
mization version LabelCovermax discussed in [2] (see [2]
for related versions and the history of this problem). A
LabelCovermax instance LC consists of a bipartite graph
H = (V,W,F) with vertex set V ∪W and edge set F , “la-
bel sets” LV , LW which represent the possible labels that
can be given to vertices in V,W respectively, and projection
functions πv,w : LW → LV for each v ∈ V and w ∈ W
such that (v, w) ∈ F . The optimization problem we con-
sider is to assign a label `(v) ∈ Lv (resp. `(w) ∈ LW)
to each v ∈ V (resp. w ∈ W) such that the fraction of
edges e = (v′, w′) with `(v′) = πv′,w′(`(w′)) (call such
an edge “satisfied”) is maximized. The optimum value of
a LabelCovermax instance LC, denoted OPT(LC), is the
maximum fraction of “satisfied” edges in any label assign-
ment. In the language of LabelCovermax, the PCP theo-
rem [4, 3] together with the parallel repetition theorem of
Raz [25] yields the following (the proof is standard and we
omit it; see the Remark following the statement of the The-
orem though).

Theorem 3.1 There exist absolute constants d0, e0 > 0
such that for any δ, 0 < δ < 1, there is a polynomial
time transformation mapping instances ϕ of SAT to in-
stances LC = (V,W,F, LV , LW , {πv,w|(v, w) ∈ F}) of
LabelCovermax such that

(i) |V |, |W | ≤ nd0 log δ−1
where n is the size of the SAT

instance ϕ.

(ii) |LV |, |LW | ≤ δ−e0 .

(iii) If ϕ is satisfiable then OPT(LC) = 1, while if ϕ is not
satisfiable then OPT(LC) ≤ δ.

(iv) The projection functions are “smooth”, i.e., map large
subsets of their domain to large subsets of their range.
More specifically, there is an absolute constant c, 0 <
c < 1, such that for each w ∈W and every β ⊆ LW ,

Pr
v∈RN(w)

[|πv,w(β)| ≥ |β|c] ≥ 1− |β|−c (1)

where N(w) = {v ∈ V |(v, w) ∈ F}.

Remark: Conditions (i) to (iii) are standard for
LabelCovermax. We require Condition (iv) for some tech-
nical aspects which arise in the proof, and it follows from a
combinatorial Lemma in [16] that this condition can also be
met for the projection functions in the above Theorem.

Constructing a “Composed” PCP. Note that the above
Theorem implies a PCP where the proof is simply the la-
bels of all vertices in V,W of the LabelCovermax instance
and the verifier picks an edge e = (v, w) ∈ F at random
and checks if the labels of v and w are “consistent”, i.e.,
πv,w(`(w)) = `(v). By the properties guaranteed in the
Theorem, this PCP uses O(log n log δ−1) randomness, has
perfect completeness and soundness at most δ. While the
soundness is excellent, the number of bits it reads from the
proof in total (from the two “locations” it queries) is huge
(O(log δ−1)). In order to improve the query complexity,
one “composes” this “outer” verification with an “inner”
verification procedure. The inner verifier is given as in-
put a projection function π : LW → LV , and has oracle
access to purported encodings, via the encoding function
Enc of some error-correcting code, of two labels a ∈ LV
and b ∈ LW , and its aim is to check that π(b) = a (with
“good” accuracy) by making very few queries to Enc(a) and
Enc(b). The inner verifiers we use have a slightly differ-
ent character: they are given input two projections π1 and
π2 and have oracle access to purported encodings Enc(b)
and Enc(c) of two labels b, c ∈ LW , and the aim is to
test whether π1(b) = π2(c). This interesting feature was
part of and necessary for Håstad’s construction for set split-
ting [16], and our PCPs also inherit this feature.

In our final PCP system, the proof is expected to be the
encodings of the labels `(w) of all verticesw ∈W using the
encoding Enc. For efficient constructions the code used is
the long code of [7], i.e., Enc

def= LONG. We denote the por-
tion of the (overall) proof that corresponds to w by LP(w),
and in a “correct” proof LP(w) would just be LONG(`(w))
(the notation LP stands for “long proof”).

The construction of a PCP now reduces to the construc-
tion of a good inner verifier that given a pair of stringsB,C
which are purportedly long codes, and projection functions
π1 and π2, checks if these strings are the long codes of two
“consistent” strings b and c whose respective projections
agree (i.e., π1(b) = π2(c)). Given such an inner verifier
IV, one can get a “composed verifier” Vcomp using stan-
dard techniques as follows (given formula ϕ the verifier first
computes the LabelCovermax instance LC in polynomial
time and then proceeds with the verification):

1. Pick v ∈ V at random and w,w′ ∈ N(v) at random

2. Run the inner verifier with input πv,w and πv,w′ and
oracle access to LP(w) and LP(w′).

3. Accept iff the inner verifier IV accepts

We denote by Vcomp(IV) the composed verifier obtained
using inner verifier IV. The (usual) soundness analysis of
the composed PCP proceeds by saying that if there is a
proof that causes the verifier Vcomp to accept with large,
say (s + ε), probability, where s is the soundness we are
aiming for, then this proof can be “decoded” into labels for
V ∪ W that “satisfy” more than a fraction δ of the edges
in the LabelCovermax instance, and by Theorem 3.1 there-
fore the the original formula ϕ was satisfiable. In our case,
we would like to make a similar argument and say that if at
most k proofs together satisfy all tests of Vcomp, then these
proofs can be “decoded” into labels for V ∪W that satisfy
more than δ fraction of edges of LC.

3.2 The Inner Verifier

We now delve into the specification of our first “in-
ner verifier”, which we call Basic-IV4. This inner veri-
fier is essentially the same as the one for 4-set splitting
in [16], but has a different acceptance predicate. Recall
the inner verifier is given input two projections functions
π1, π2 : LW → LV and has oracle access to two ta-
bles B,C : FLW → {1,−1}, and aims to check that B
(resp. C) is the long code of b (resp. c) which satisfy
π1(b) = π2(c).

Inner Verifier Basic-IV4B,Cp (π1, π2)
Choose uniformly at random f ∈ FLV , g1, h1 ∈ FLW
Choose at random g′, h′ ∈ FLW such that ∀b ∈ LW ,

Pr[g′(b) = 1] = p and Pr[h′(b) = 1] = p
Set g2 = −g1(f ◦ π1 ∧ g′); h2 = −h1(−f ◦ π2 ∧ h′).
Accept iff (B(g1) 6= B(g2)) ∨ (C(h1) 6= C(h2))

For a technical reason, as in [16, 15, 12], the final inner
verifier needs to run the above inner verifier for the bias
parameter p chosen at random from an appropriate set of
values. The specific distribution we use is the one used by
Håstad [16] (the constant c used in its specification is the
constant from Equation (1)).

Inner Verifier IV4B,Cγ (π1, π2)
Set t = d1/γe, ε1 = γ2 and εi = ε

4/c
i−1 for 1 < i ≤ t.

Choose p ∈ {ε1, . . . , εt} uniformly at random.
Run Basic-IV4B,Cp (π1, π2).

Note that the inner verifier above has perfect complete-
ness. Indeed when B,C are long codes of b, c where
π1(b) = π2(c) = a (say), then for each f ∈ FLV , if
f(a) = 1 then B(g1) = g1(b) while B(g2) = B(−g1(f ◦
π1∧g′)) = −g1(b) and so these are not equal, and similarly
for the case when f(a) = −1.

3.3 Covering Soundness analysis
Let X(γ) be the indicator random variable for the re-

jection of a particular proof Π = {LP(w) : w ∈ W}
by the composed verifier Vcomp(IV4γ) (henceforth V1(γ)).
The probability that V1(γ) rejects Π taken over its random
choices is clearly the expectation

E[X(γ)] = E

[(
1 +B(g1)B(g2)

2

)(
1 + C(h1)C(h2)

2

)]
.

(2)
taken over the random choices of v, w,w′, p, f, g1, h1, g2

and h2. (Here B,C are tacitly understood to stand
for LP(w) and LP(w′) respectively and will equal
LONG(`(w)) and LONG(`(w′)) respectively in a “correct”
proof.) We wish to say that no k proofs can together satisfy
all the tests which V1(γ) performs. Now, if Xk(γ) is the in-
dicator random variable for the rejection of a set of k proofs
{LPi(w) : w ∈ W}, 1 ≤ i ≤ k, by the verifier V1(γ), then
the overall probability that V1(γ) rejects all these k proofs,
taken over its random choices, is exactly

E[Xk(γ)] =
1
4k
(
E
[k∏
i=1

(
1 +Bi(g1)Bi(g2)

)
(
1 + Ci(h1)Ci(h2)

)])
(3)

where the expectation is once again taken over
v, w,w′, p, f, g1, h1, g2 and h2. We will now argue
(see Lemma 3.2 below) that if this rejection probability is
much smaller than 4−k, then there is a way to obtain labels
`(u) for u ∈ V ∪W by “decoding” Π1 such that more than
δ fraction of the edges (v, w) are satisfied by this labeling,
i.e., `(v) = πv,w(`(w)). Together with Theorem 3.1, this
implies that the rejection probability (from Equation (3))
for any set of k proofs for a false claim of satisfiability (of
ϕ), can be made arbitrarily close to 1

4k
, and in particular is

non-zero, and thus the covering soundness of the composed
verifier is less than 1/k.

Lemma 3.2 There is an absolute constant a′ > 0 such that
for every integer k ≥ 1, every ε, 0 < ε < 4−k, and all γ ≤
ε/8, if E[Xk(γ)] < 1

4k
− ε, then OPT(LC) > 2−2a

′γ−1

.

Before presenting the formal proof of Lemma 3.2, we
first highlight the basic approach. The power of arithme-
tizing the rejection probability for a set of k proofs as in
Equation (3) is that one can expand out the product and
analyze the overall expectation as a sum of expectations
of terms of the form BS(g1)BS(g2), CT (h1)CT (h2) or
BS(g1)BS(g2)CT (h1)CT (h1), for S, T ⊆ {1, 2, . . . , k}
where BS =

∏
i∈S Bi and CT =

∏
i∈T Ci, and analyze

the terms individually. We can now imagine two new proofs
B̃ = BS and C̃ = CT which are exclusive-ors of subsets
of the k given proofs. (Note that even if our original Bi’s

are assumed to be folded, this is no longer true for the ta-
bles B̃ and C̃, and thus we need to perform our analysis
with tables that are not folded. This is why we started with
IV4 which can be analyzed without folding [16].) Now one
can apply existing techniques from [16] to analyze terms
involving the tables B̃ and C̃ and show that B̃(g1)B̃(g2)
and C̃(h1)C̃(h2) cannot be too negative, and similarly if
the expectation of B̃(g1)B̃(g2)C̃(h1)C̃(h2) is too much be-
low zero, then in fact OPT(LC) is quite large. (In short,
at a high level, we are saying that if there exist k proofs
such that the verifier accepts at least one of them with good
probability, then some exclusive-or of these proofs is also
accepted by the verifier with good probability, and we know
this cannot happen by the soundness analysis of [16] for the
case of a single proof.) This is formalized in the following
two Lemmas which are Lemmas 7.9 and 7.12 from [16] (we
have changed the statements slightly from those in [16]).

Lemma 3.3 ([16]) For every γ > 0 and for allB : FLW →
{1,−1}, and all w ∈W

E
p,v∈N(w),f,g,g′

[
B(g1)B(g2)

]
≥ −4γ ,

where the distribution of p, f, g1, g2 is the same as the one
in IV4γ .

Lemma 3.4 ([16]) For every γ > 0 and all proof
tables {Bw} and {Cw} (indexed by w ∈ W)
where each Bw, Cw : FLW → {1,−1}, we have
E
[
Bw(g1)Bw(g2)Cw′(h1)Cw′(h2)

]
is at least

−7γ − OPT(LC)22O(γ−1)
,

where the expectation is taken over
p, v, w,w′, f, g1, g2, h1, h2, and where the distribution
of p, f, g1, g2, h1, h2 is the same as the one in IV4γ .

Proof of Lemma 3.2: The proof is actually simple given
Lemmas 3.3 and 3.4. We pick a γ > 0 that satisfies γ < ε

8 .
By Equation (3), if E[Xk(γ)] < 4−k − ε, then there exist
subsets S1, S2 of {1, 2, . . . , k}, S1 ∪ S2 6= ∅, such that

E
[
BS1(g1)BS1(g2)CS2(h1)CS2(h2)

]
< −ε (4)

where BS1 (resp. CS2) denotes Πj∈S1Bj (resp. Πj∈S2Cj).
Suppose one of S1, S2 is empty, say S2 = ∅. Lemma 3.3

applied to BS1 (which is a function mapping FLW →
{1,−1}), gives E[BS1(g1)BS1(g2)] ≥ −4γ which together
with Equation (4) above yields γ > ε

4 , a contradiction since
γ ≤ ε/8.

Now suppose both S1 and S2 are non-empty. Now we
apply Lemma 3.4 to BS1 and CS2 to get that the expecta-

tion in Equation (4) is at least −7γ − OPT(LC)22O(γ−1)
.

Together with Equation (4) this yields (using ε ≥ 8γ)

OPT(LC) > γ2−2O(γ−1)
> 2−2a

′γ−1

for some absolute constant a′ > 0. 2

We are now ready to state and prove the main Theorem of
this section.

Theorem 3.5 For every constant k, NP ⊆
cPCP1, 1k

[log, 4].

Proof: The proof will follow easily from Lemma 3.2 and
Theorem 3.1. Let ε = 1

2 · 4
−k and γ = ε/8, and pick δ > 0

small enough so that 2−2a
′γ−1

> δ. By Lemma 3.2 we
have E[Xk(γ)] < 1

4k
− ε = 1

2·4k implies OPT(LC) > δ.
Consider the PCP with verifier Vcomp(IV4γ). Using Theo-
rem 3.1, we get that if the input formula ϕ is not satisfiable,
the verifier Vcomp(IV4γ) rejects any k proofs with proba-
bility at least 1

2·4k . Since it clearly has perfect completeness
and makes only 4 queries, the claimed result follows. 2

Remark on tightness of the analysis: In fact, Lemma 3.2
can be used to show that for any ε > 0, there exists a (cov-
ering) PCP verifier that makes 4 queries, has perfect com-
pleteness and which rejects any set of k proofs with proba-
bility at least 1

4k
− ε. Note that this analysis is in fact tight

for the verifier Vcomp(IV4) since a random set of k proofs
is accepted with probability 1− 4−k.

4 PCP Construction II and Hardness of Hy-
pergraph Coloring

In the previous section we gave a PCP construction
which made only 4 queries into the proof and had cover-
ing soundness smaller than any desired constant. This is
already interesting in that it highlights the power of taking
the covering soundness approach (since as remarked in the
Introduction one cannot achieve arbitrarily low soundness
using classical PCPs with perfect completeness that make
some fixed constant number of queries). We next turn to
applying this to get a strong inapproximability result for hy-
pergraph coloring.

The predicate tested by the inner verifier IV4γ is
F (x, y, z, w) = (x 6= y) ∨ (z 6= w), and to get a hard-
ness result for hypergraph coloring, we require the predicate
to be NAE(x, y, z, w) which is true unless all of x, y, z, w
are equal. Note that NAE(x, y, z, w) is true whenever
F (x, y, z, w) is true, so one natural approach is to simply
replace the predicate F tested by IV4γ by NAE without
losing perfect completeness. The challenge of course is to
prove that the covering soundness does not suffer in this
process, and this is exactly what we accomplish, though the
proof gets much more complicated. Let us call the new in-
ner verifier, obtained by changing the predicate tested by
IV4γ , as IV-NAE4γ (we hide the dependence on γ when no
confusion can arise).

4.1 Soundness Analysis: Intuition
Note that for a particular random choice of functions

(f, g1, g2, h1, h2) the inner verifier rejects all k proofs
{LPi(w) : w ∈ W} exactly when Bi(g1) = Bi(g2) =
Ci(h1) = Ci(h2) for every i, 1 ≤ i ≤ k. As in Lemma 3.2,
we wish to argue that if the probability of this (rejection)
happening is small then there is an assignment of labels to
the vertices in LC that satisfy a “good” fraction of its edges.

It is possible to arithmetize the probability that the ver-
ifier Vcomp(IV-NAE4) rejects all k proofs (over its random
coin tosses) similar to expression (3) in the analysis of the
previous section. In the case of (3) we were able to “bound”
all the terms that arose from expanding out the product. The
arithmetization of the NAE predicate is a little more com-
plicated, and a tight analysis in the spirit of the previous
section seems difficult and there are terms in the expansion
of the arithmetization which we are unable to bound or ar-
gue about directly.

Instead we take a “two-step” approach. We know from
the analysis of the previous section that the probability that
Bi(g1) = Bi(g2) holds for all i, 1 ≤ i ≤ k, simul-
taneously, is (roughly) 2−k, and similarly for Ci(h1) and
Ci(h2). We now wish to say that we will in addition also
have Bi(g1) = Ci(h1) for every i with reasonably large
probability, so that the verifier with NAE predicate will also
reject all k proofs with good probability. To prove this,
note that B and C are really only different names for the
same “tables” and the distinction is only that (g1, g2) is cho-
sen differently from (h1, h2) (once v, f are picked). For a
fixed v, f , denote by ∆v,f the distribution of the 2k bits
{Bi(g1), Bi(g2)}ki=1 ∈ {1,−1}2k given that the verifier
IV-NAE4γ picked v, f . (The distribution ∆v,f is governed
by the random choices of w ∈ W , the “bias parameter” p,
and g1, g2 ∈ FLW as in verifier IV4γ . The distribution thus
depends on the parameter γ though we hide this for nota-
tional convenience.) It is also easy to check that once v, f is
picked, the distribution of the bits {Ci(h1), Ci(h2)}ki=1 ∈
{1,−1}2k that the verifier reads is exactly ∆v,−f . Hence,
if the distributions ∆v,f and ∆v,−f are nearly the same,
then Bi(g1) = Bi(g2) = Ci(h1) = Ci(h2) holds for all
i with good probability (this is shown in Lemma 4.6), and
therefore the verifier rejects with good probability as well.
We will also show that if there is a significant difference
between the distributions ∆v,f and ∆v,−f , then there is a
way to “decode” this difference between the distributions
into labels for the vertices of the LabelCovermax instance
LC that satisfy a good fraction of edges (this is Lemma 4.7).
In either situation we get the desired result.

4.2 The actual soundness analysis
We now proceed to the formal analysis. We need a few

definitions. For each fixed (v, f) (here v ∈ V and f ∈ FLV
as usual), we will use the distribution ∆v,f on {1,−1}2k

defined above. Define

M
def=
{
~y = (y1, y2, . . . , y2k) ∈ {1,−1}2k : y1 = y2∧

∧ y3 = y4 ∧ · · · ∧ y2k−1 = y2k

}
.

Note that the action of the verifier Vcomp(IV-NAE4γ) in
question given k proofs can be viewed as picking v ∈ V
and f ∈ FLV at random, and then picking x, x′ ran-
domly and independently from {1,−1}2k according to the
distributions ∆v,f and ∆v,−f respectively, and finally re-
jecting if and only if all k proofs are “wrong”, i.e., if
x, x′ ∈M and x = x′. Thus the probability that the verifier
Vcomp(IV-NAE4γ) rejects a set of k proofs {LPi(w) : w ∈
W}ki=1 is precisely Pr

v,f,x,x′
[x = x′ ∧ x ∈ M]. The lemma

below is similar in spirit to Lemma 3.2 and states that if the
verifier rejects some set of k proofs with low probability,
then in fact OPT(LC) is quite high. The Lemma is proved
in Section 4.4.

Lemma 4.1 There is an absolute constant b′ > 0 such that
for every integer k ≥ 1 and all sufficiently small γ > 0, if

Pr
v,f,x∈∆v,f ,x′∈∆v,−f

[
x = x′ ∧ x ∈ M

]
≤ 2−(4k+7), then

OPT(LC) > 2−2b
′2k

.

Theorem 4.2 For every constant k, NP ⊆
cPCP1, 1k

[log, 4], where moreover the predicate verified by
the PCP upon reading bits x, y, z, w is NAE(x, y, z, w).

Proof: Similar to the proof of Theorem 3.5 (using
Lemma 4.1 in place of Lemma 3.2). 2

4.3 Hardness results for hypergraph coloring

Since the predicate used by the PCP of Theorem 4.2 is
that of 4-set splitting, we get the following Corollary.

Corollary 4.3 For every constant k ≥ 2, given an instance
of 4-set splitting, it is NP-hard to distinguish between the
case when there is a partition of the universe that splits all
the 4-sets, and when for every set of k partitions there is at
least one 4-set which is is not split by any of the k partitions.

The above hardness can be naturally translated into a hard-
ness result for coloring 4-uniform hypergraphs.

Theorem 4.4 (Main Theorem) For any constant c ≥ 2, it
is NP-hard to color a 2-colorable 4-uniform hypergraph us-
ing c colors such that there is no monochromatic 4-set.

Proof: Follows from the above Corollary since a 4-set
splitting instance can be naturally identified with a 4-
uniform hypergraph whose hyperedges are the 4-sets, and
it is easy to see that the minimum number of partitions k
needed to split all 4-sets equals dlg ce where c is the mini-
mum number of colors to color the hypergraph such that no
hyperedge is monochromatic. 2

Theorem 4.5 Assume NP 6⊆ DTIME(nO(log logn)). Then
there exists an absolute constant c0 > 0 such that there is
no polynomial time algorithm that can color a 2-colorable
4-uniform hypergraph using c0 log log log n colors, where
n is the number of vertices in the hypergraph.

Proof: This follows since the covering soundness of the
PCP in Theorem 4.2 can be made an explicit o(1) function.
Indeed, to have a covering soundness of 1/ log g(n), com-
bining Lemma 4.1 with Theorem 3.1, the proof size we need
is nO(log δ−1)2δ

−O(1)
where δ = 2−2O(g(n))

. We can thus
have nO(log logn) size proofs by letting δ−1 = (log n)O(1)

and g(n) = O(log log log n). Similarly to Theorem 4.4,
this implies g(n)-coloring a 2-colorable 4-uniform hyper-
graph is hard unless NP ⊆ DTIME(nO(log logn)). 2

4.4 Proof of Lemma 4.1
The Proof: The proof comprises of several intermediate
steps. We will not be concerned with getting the best
possible bounds in an attempt not to obscure the proof.
Lemma 4.1 follows from the following two lemmas. The
first one states that if the distributions ∆v,f and ∆v,−f
are close to each other, then the probability that the veri-
fier rejects all k proofs is large. The proof of this Lemma
is omitted here and can be found in the full version, but
it is quite standard and follows since x, x′ drawn accord-
ing to ∆v,f and ∆v,−f are equal with large probability if
the distributions are close to each other, and we know that
Pr

x∈∆v,f

[x ∈ M] is large from the analysis of the previous

section.

Lemma 4.6 For every integer k ≥ 1, and for all γ ≤
2−(k+4), if Pr

v,f,x∈∆v,f ,x′∈∆v,−f

[
x = x′ ∧ x ∈ M

]
≤

2−(4k+7) (recall that the distributions ∆v,f and ∆v,−f de-
pend upon γ), then

E
v,f

[∑
y∈{1,−1}2k

|∆v,f (y)−∆v,−f (y)|
]
> 2−(4k+6) . (5)

Lemma 4.7 There are absolute constants d′, e′ > 0 such
that for every ε > 0, every integer k ≥ 1 and every γ >
0, if E

v,f

[∑
y∈{1,−1}2k |∆v,f (y) − ∆v,−f (y)|

]
> ε, then

OPT(LC) > (ε2−2k)e
′
2−2d

′γ−1

.

Lemma 4.1 now follows since combining Lemma 4.7 with

the Condition (5), we get OPT(LC) > 2−O(k)2−2O(2k)
, and

this clearly implies that OPT(LC) > 2−2b
′2k

for some ab-
solute constant b′ > 0. 2 (Lemma 4.1)

Proof of Lemma 4.7: We are given that

E
v,f

[∑
y∈{1,−1}2k

∣∣∆v,f (y)−∆v,−f (y)
∣∣] > ε .

Now consider the Fourier expansion of ∆v,f as ∆v,f (y) =∑
α∈{0,1}2k ∆̂v,f,α`α(y) where `α(y) =

∏
j:αj=1 yj , and

similarly for the function ∆v,−f . Then using the above con-
dition ε is less than

E
v,f

[∑
y∈{1,−1}2k

∣∣ ∑
α∈{0,1}2k

(∆̂v,f,α − ∆̂v,−f,α)`α(y)
∣∣]

≤ 22k E
v,f

[∑
α

|∆̂v,f,α − ∆̂v,−f,α|
]
,

and this implies that there exists an α ∈ {0, 1}2k such that

E
v,f

[
|∆̂v,f,α − ∆̂v,−f,α|

]
>

ε

24k
. (6)

We will use any (fixed) such α to define “proof ta-
bles” Av, Dw, Ew for every v ∈ V and w ∈ W where
Av : FLV → {1,−1} and Dw, Ew : FLW → {1,−1}. For
any v ∈ V , the table A = Av (we will omit the subscript
v though it should be treated as implicit) is defined as fol-
lows: For f ∈ FLV ,A(f) = sign(∆̂v,f,α−∆̂v,−f,α) where
sign(x) is the sign function that takes value 1 if x > 0 and
−1 if x < 0. Note that clearly A(f) = −A(−f)1; so that
the A-table is folded.

To define Dw, Ew, first, set α1 ∈ {0, 1}k (resp. α2 ∈
{0, 1}k) to be the projection of α on the odd coordinates
{1, 3, . . . , 2k − 1} (resp. even coordinates {2, 4, . . . , 2k}).
(Here α1 and α2 “correspond” to the Bi(g1) and Bi(g2)
coordinates respectively.) For any g ∈ FLW , we define
D(g) = Dw(g) =

∏
i:α1(i)=1Bi(g) and similarly E(g) =

Ew(g) =
∏
i:α2(i)=1Bi(g), where Bi stands for LPi(w).

We will omit the subscript on D,E for notational conve-
nience, and it should always be treated as implicit. The key
property satisfies by these tables is captured by the follow-
ing two Claims about the properties of the tables A,D,E
defined above. Proofs of these claims are sketched at the
end of this section.

Claim 1: E
v,w,p,f,g1,g2

[
A(f)D(g1)E(g2)

]
=

22k−1 E
v,f

[∣∣∆̂v,f,α − ∆̂v,−f,α
∣∣] where the distribu-

tion of p, f, g1, g2 is the same as the one used by the inner
verifier IV4.

Claim 2: For every ζ > 0, and every γ > 0,
if E

v,w,p,f,g1,g2

[
A(f)D(g1)E(g2)

]
> ζ then there is

a constant δ depending only on ζ and γ, with δ =
ζO(1)2−2O(γ−1)

, such that OPT(LC) > δ.

Combining the result of Claim 1 with Equation (6) we get

E
v,w,p,f,g1,g2

[
A(f)D(g1)E(g2)

]
> ε2−(2k+1) , (7)

1When ∆̂v,f,α = ∆̂v,−f,α, we assume that A(f) is defined to be
f(`0) for some fixed `0 ∈ LV , so that A(f) = −A(−f) holds even in
this case.

and the proof of Lemma 4.7 is now complete using Claim
2 together with the above Equation (7). 2 (Lemma 4.7)

Proof of Claim 1: Observe that for each fixed (v, f),
E

p,w,g1,g2

[
D(g1)E(g2)

]
equals∑

y∈{1,−1}2k

(
Pr
[
(Bi(g1)Bi(g2))ki=1 = y

]
·
∏

i: αi=1

yi

)
=

∑
y∈{1,−1}2k

∆v,f (y)`α(y) = 22k∆̂v,f,α .

Now E
v,w,p,f,g1,g2

[
A(f)D(g1)E(g2)

]
equals

1
2

(
E

v,w,p,f,g1,g2

[
A(f)D(g1)E(g2)

]
− E
v,w,p,−f,g1,g2

[
A(f)D(g1)E(g2)

])
=

22k

2

(
E
v,f

[
sign(∆̂v,f,α − ∆̂v,−f,α)∆̂v,f,α

]
− E
v,f

[
sign(∆̂v,f,α − ∆̂v,−f,α)∆̂v,−f,α

])
= 22k−1 E

v,f

[∣∣∆̂v,f,α − ∆̂v,−f,α
∣∣]

where in the first step we used that A(f) = −A(−f), and
the second step follows since the distribution of (g1, g2)
given −f was picked is identical to the distribution of
(h1, h2) given f was picked. 2 (Claim 1)

Proof of Claim 2 (Sketch): The proof follows along the
lines of the proof of Lemma 6.10 in [16]. Recall that p
is picked uniformly at random from {ε1, . . . , εt} where
t =

⌈
γ−1

⌉
, ε1 = γ2 and εj = ε

4/c
j−1 for every j,

1 < j ≤ t. Clearly there exists a j, 1 ≤ j ≤ t such
that E

v,w,f,g1,g2

[
A(f)D(g1)E(g2)|p = εj

]
> ζ. In the

rest of the proof, we fix p to equal this εj . Note that

p = εj ≥ εt ≥ 2−2O(γ−1)
. It turns out to be useful to ex-

press A(f), D(g1) and E(g2) using their Fourier expansion
as A(f) =

∑
α⊆LV Âα`α(f) where `α(f) =

∏
y∈α f(y),

and similarly for D(g1) and E(g2). Now using an anal-
ysis similar to Lemma 6.10 of [16], one can show that
if E
v,w,f,g1,g2

[
A(f)D(g1)E(g2)

]
> ζ, then for all K ≥(

16
pζ

)1/c

,

E
v,w

[∑
β:|β|≤K
α⊆πv,w(β)

Â2
α|D̂βÊβ |

]
>
ζ

4
· ζ

2
=
ζ2

8
. (8)

Since p ≥ 2−2O(γ−1)
, this implies we can pick K =

ζ−O(1)22O(γ−1)
in the above inequality. Note that Con-

dition (8) forces the Fourier spectrum of A,D,E to have

(somewhat) large support on low-weight coefficients (corre-
sponding to small |α|, |β|), and this will enable us to define
“good” labels for vertices in V ∪W and prove the claimed
lower bound on OPT(LC). We now describe a probabilistic
procedure to define labels which satisfies a good fraction of
edges in the instance LC in expectation, and this will clearly
give a lower bound on OPT(LC).

We define `(v) ∈ LV for a vertex v ∈ V as follows.
Let A = Av and pick a set α ⊆ LV with probability Â2

α.
By Parseval’s identity this is a valid probability distribution.
Then pick an element a ∈ α at random and set `(v) =
a. An important point here is that Â∅ = 0 since A(f) =
−A(−f) for all f ∈ LV [16], and thus we never get “stuck”
by picking α = ∅.

Next, we define `(w) ∈ LW for w ∈ W as follows. Let
D = Dw and E = Ew. Pick a set β ⊆ LW with prob-
ability proportional to |D̂βÊβ |. Note that

∑
β |D̂βÊβ | ≤(∑

β D̂
2
β

)1/2(∑
β Ê

2
β

)1/2

= 1 by Cauchy-Schwartz, so

that a set β is picked with probability at least |D̂βÊβ |. If
β = ∅, set `(w) to be some fixed element b0 ∈ LW , else set
`(w) equal to a random element of β.

Let Xv,w be a random variable which takes on value 1
when the edge (v, w) ∈ E is satisfied by the above random-
ized experiment, i.e., Xv,w = 1 if `(v) = πv,w(`(w)), and
equals 0 otherwise. The expected fraction of satisfied edges
is E
v,w

[
Xv,w

]
is at least

E
v,w

[∑
α,β

α∩πv,w(β)6=∅

Â2
α|D̂βÊβ |

1
|α|

1
|β|

]

≥ E
v,w

[∑
β:|β|≤K
α⊆πv,w(β)

Â2
α|D̂βÊβ |

1
K2

]
>

ζ2

8K2

using Equation (8). The first step above is valid since
Â∅ = 0 and thus any term with non-zero Âα with α ⊆
πv,w(β) also satisfies α ∩ πv,w(β) 6= ∅. Recalling that we

picked K = ζ−O(1)22O(γ−1)
, we have also OPT(LC) >

ζO(1)2−2O(γ−1)
(with slightly larger constant in the O-

notation), and the claim follows. 2 (Claim
2)

5 Concluding Remarks
We gave a 4-query PCP verifier for languages in NP

with o(1) covering soundness and whose acceptance pred-
icate was (x 6= y) ∨ (z 6= w). In order to obtain our
hardness result for hypergraph coloring, we needed to tailor
the acceptance predicate of the PCP to correspond exactly
to the one for hypergraph coloring (i.e., NAE(x, y, z, w)),
and then analyze the covering soundness of the resulting
PCP. This is necessary to obtain hardness results for mini-
mization problems using this approach. Gadgets, which are

useful in transforming PCPs in the usual setting, are use-
less here. Indeed, say we “implement” a constraint f using
several other constraints σ1, . . . , σs, and two proofs Π1 and
Π2 suffice to satisfy all the σi. The constraints σ1 and σ2

for example might be satisfied by two different proofs, and
thus one cannot conclude that one of Π1 and Π2 indeed sat-
isfies the original constraint f . Thus the standard approach
of reduction between various constraint families completely
breaks down. As a concrete example, suppose we reduce
NAE(x, y, z, w) into 4-SAT clauses (x ∨ y ∨ z ∨ w) and
(x̄∨ ȳ ∨ z̄ ∨ w̄). We know, by our main result Theorem 4.4,
that the NAE constraints (of even an instance that is satis-
fiable by a single assignment) are NP-hard to satisfy using
any constant number of assignments, where as any 4-SAT
instance is trivially satisfiable using just two assignments,
namely any assignment and its complement!

References

[1] N. Alon, P. Kelsen, S. Mahajan and H. Ramesh. Coloring
2-colorable hypergraphs with a sublinear number of colors.
Nordic Journal of Computing, 3 (1996), pp. 425-439.

[2] S. Arora and C. Lund. Hardness of Approximations. In
Approximation Algorithms for NP-hard Problems, (Dorit
Hochbaum, ed.), PWS, 1996.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof verification and hardness of approximation problems.
Journal of the ACM, 45(3):501–555, 1998. Preliminary ver-
sion in Proceedings of FOCS’92.

[4] S. Arora and S. Safra. Probabilistic checking of proofs: A
new characterization of NP. Journal of the ACM, 45(1):70–
122, 1998. Preliminary version in Proceedings of FOCS’92.

[5] J. Beck. On 3-chromatic hypergraphs. Discrete Mathematics,
24 (1978), pp. 127-137.

[6] J. Beck. An algorithmic approach to the Lovász Local
Lemma. Random Structures and Algorithms, 2 (1991), pp.
343-365.

[7] M. Bellare, O. Goldreich and M. Sudan. Free bits, PCP’s and
non-approximability – towards tight results. SIAM Journal
on Computing, 27(3):804-915, 1998. Preliminary version in
Proc. of FOCS’95.

[8] H. Chen and A. Frieze. Coloring bipartite hypergraphs. Proc.
of 5th IPCO, 1996, pp. 345-358.

[9] P. Erdös. On a combinatorial problem I. Nordisk Mat. Tid-
skrift, 11 (1963), pp. 5-10.

[10] U. Feige and J. Kilian. Zero-knowledge and the chromatic
number. In Proceedings of the 11th Annual Conference on
Computational Complexity, 1996.

[11] M. Goemans and D. Williamson. Improved approxima-
tion algorithms for maximum cut and satisfiability prob-
lems using semidefinite programming. Journal of the ACM,
42:1115-1145, 1995.

[12] V. Guruswami. Query-efficient Checking of Proofs and Im-
proved PCP Characterizations of NP. S.M Thesis, MIT, May
1999.

[13] V. Guruswami. The Approximability of set splitting prob-
lems and satisfiability problems with no mixed clauses. Proc.
of the 3rd Workshop on Approximation Algorithms for Com-
binatorial Optimization Problems (APPROX 2000), to ap-
pear.

[14] V. Guruswami and S. Khanna. On the hardness of 4-coloring
a 3-colorable graph. Proc. of Complexity 2000, pp. 188-197.

[15] V. Guruswami, D. Lewin, M. Sudan and L. Trevisan. A tight
characterization of NP with 3 query PCPs. ECCC Techni-
cal Report TR98-034, 1998. Preliminary Version in Proc. of
FOCS’98.

[16] J. Håstad. Some optimal inapproximability results. Technical
Report TR97-37, Electronic Colloquium on Computational
Complexity, 1997. Preliminary version in Proc. of STOC’97.

[17] D. R. Karger, R. Motwani and M. Sudan. Approximate graph
coloring using semidefinite programming. Journal of the
ACM, 45 (1998), pp. 246-265.

[18] S. Khanna, N. Linial and S. Safra. On the hardness of ap-
proximating the chromatic number. In Proceedings of the
2nd Israel Symposium on Theory and Computing Systems,
ISTCS, pp. 250-260, IEEE Computer Society Press, 1993.

[19] M. Krivelevich and B. Sudakov. Approximate coloring of
uniform hypergraphs. Proc. of European Symposium on Al-
gorithms, 1998.

[20] L. Lovász. Coverings and colorings of hypergraphs. Proc.
4th Southeastern Conf. on Combinatorics, Graph Theory,
and Computing, pp. 3-12, Utilitas Mathematica Publishing,
Winnipeg, 1973.

[21] C. Lund and M. Yannakakis. On the hardness of approxi-
mating minimization problems. Journal of the ACM, 41:960-
981, 1994.

[22] C. McDiarmid. A random recoloring method for graphs and
hypergraphs. Combinatorics, Probability and Computing, 2
(1993), pp. 363-365.

[23] C. McDiarmid. Hypergraph coloring and the Lovász Local
Lemma. Discrete Mathematics, 167/168 (1997), pp. 481-
486.

[24] J. Radhakrishnan and A. Srinivasan. Improved bounds
and algorithms for hypergraph two-coloring. Proc. of 39th

FOCS, (1998), pp. 684-693.

[25] R. Raz. A parallel repetition theorem. SIAM Journal on
Computing, 27(3):763–803, 1998. Preliminary version in
Proc. of STOC’95.

[26] J. H. Spencer. Coloring n-sets red and blue. J. Combinatorial
Theory, Series A, 30 (1981), pp. 112-113.

