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Abstract. Over the past five years a number of algorithms decoding
some well-studied error-correcting codes far beyond their “error-correcting
radii” have been developed. These algorithms, usually termed as list-
decoding algorithms, originated with a list-decoder for Reed-Solomon
codes [36, 17], and were soon extended to decoders for Algebraic Ge-
ometry codes [33, 17] and as also some number-theoretic codes [12, 6,
16]. In addition to their enhanced decoding capability, these algorithms
enjoy the benefit of being conceptually simple, fairly general [16], and
are capable of exploiting soft-decision information in algebraic decoding
[24]. This article surveys these algorithms and highlights some of these
features.

1 Introduction

List-decoding was introduced in the late fifties by Elias [7] and Wozencraft [38].
Under this model, a decoder is allowed to output a list of possible codewords that
a corrupted received word may correspond to. Decoding is considered successful
if the transmitted word is included in this list of received words.

While the initial model was introduced to refine the study of probabilistic
channels, it has slowly developed into a tool for improving our understanding of
error-correction even in adversarial models of error. Strong combinatorial results
are known that bound the “list-decoding radius” of an error-correcting code as a
function of its rate and its distance (See [5, 8, 40] for some of the earlier results,
and [13, 15, 21] for some recent progress.) However till the late 90’s no non-trivial
algorithms were developed to perform efficient list-decoding. In [36], the author
gave an algorithm to list-decode Reed-Solomon codes. This was shortly followed
up by an algorithm by Shokrollahi and Wasserman [33] to decode algebraic-
geometry codes. Subsequently the algorithms have been extended to decode
many families of codes. Furthermore the efficiency of the original algorithms has
been vastly improved and many applications have been found for this concept.

? Parts of this work were supported by NSF Grant CCR 9875511, NSF Grant CCR
9912342, and an Alfred P. Sloan Foundation Fellowship.



In this paper we describe the basic ideas behind the decoding algorithms. Our
focus is mostly on the simplicity of these algorithms and not so much on their
performance or uses.

2 Reed-Solomon Decoding

Let Fq denote a field of size q and let Fkd[x] denote the vector space of polynomial
of degree at most k over Fq. Recall that the Generalized Reed Solomon code of
dimension k, is specified by distinct x1, . . . , xn ∈ Fq and consists of the evalu-
ations of all polynomials p of degree at most k at the points x1, . . . , xn. More
formally, letting x = 〈x1, . . . , xn〉 and letting p(x) denote 〈p(x1), . . . , p(xn)〉, we
get that the associated code RSq,k,x is given by

RSq,k,x = {p(x)|p ∈ Fkq [x]}.

Viewed from this perspective (as opposed to the dual perspective, where
the codewords of the Reed Solomon codes are coefficients of polynomials), the
Reed Solomon decoding problem is really a ”curve-fitting” problem: Given n-
dimensional vectors x and y, find all polynomial p ∈ Fkq [x] such that∆(p(x),y) ≤
e. for some error parameter e. (Here and later ∆(·, ·) denotes the Hamming dis-
tance.)

Traditional algorithms, starting with those of Peterson [30] attempt to ”ex-
plain” y as a function of x. This part becomes explicit in the work of Welch &
Berlekamp [37, 3] (see, in particular, the exposition in [35, Appendix A]) where
y is interpolated as a rational function of x, and this leads to the efficient de-
coding. (Specifically a rational function a(x)/b(x) can be computed such that
for all i ∈ {1, . . . , n},. a(xi) = yi ∗ b(xi).)

Rational functions, however, are limited in their ability to explain data with
large amounts of error. To motivate this point, let us consider the following
simple (and contrived) channel: The input and output alphabet of the channel
are Fq. The channel behavior is as follows: On input a symbol α ∈ Fq, the
channel outputs α with probability 1

2 and ωα with probability 1
2 , for some fixed

ω ∈ Fq. Now this is a channel that makes an error with probability 1
2 , but

still the information it outputs is very closely correlated with the input (and its
capacity, in the sense of Shannon, is very close to 1). However if we transmit
a Reed Solomon codeword on this channel, the typical output vector y does
not admit a simple description as a rational function of x, and thus traditional
decoding algorithms fail.

However it is clear that the output of the channel is explain by some nice
algebraic relations: Specifically, there exists a polynomial p (of degree at most
k) such that for every i, yi = p(xi) or yi = ω · p(xi). The ”Or” of two Boolean
conditions also has a simple algebraic representation: we simply have that the
polynomial Q(x, y) = (y − p(x)) · (y − ω · p(x)) is zero on every given (xi, yi).
Furthermore such a polynomial Q(x, y) can be found by simple interpolation
(which amounts to solving a linear system), and the candidate polynomial p(x)
can be determined as a root of the polynomial Q(x, y). (Notice that the factoring



will find two polynomials p1 and p2 and, if ω2 6= 1, the true candidate is p1 iff it
satisfies p2 = ωp1.)

The above example illustrates the power of using algebraic curves (over ratio-
nal functions) in decoding Reed-Solomon codes. The idea of using such functions
was proposed by Ar et al. [1] who showed that if, by some fortunate occurrence,
the vectors x and y could be explained by some nice algebraic relation, then
decomposing the algebraic curve (i.e., factoring) could tell if there exist large
subsets of the data that satisfy non-trivial algebraic correlation. However they
could not show general conditions under which the vectors x and y could be
explained by a nice algebraic curve, and this prevented them from obtaining a
general decoding algorithm for Reed Solomon codes.

The complementing result took a few years to emerge, and did so finally in
[36], where a simple counting argument is used to show that any pair of vectors
x and y has a ”nice” algebraic curve explaining it. The x- and y-degree of the
curve can be chosen as desired, subject to the condition that the support has at
least n + 1 coefficients. Putting these two pieces together, and choosing x- and
y- degrees appropriately, one obtains the following algorithm and result:

Definition 1. Let (wx, wy)-weighted degree of a monomial xiyj be i ·wx+j ·wy.
The (wx, wy)-weighted degree of a polynomial Q(x, y) is the maximum, over all
monomials with non-zero coefficient in Q, of their (wx, wy)-weighted degree.

Given x,y ∈ Fnq and k.
1. Compute Q 6= 0 with (1, k)-weighted degree at most b

√
2(k − 1)nc satisfying

Q(xi, yi) = 0 for all i ∈ {1, . . . , n} (this is simple interpolation).
2. Factor Q and report all polynomials p ∈ Fkq [x] such that y − p(x) is a factor

of Q and p(xi) = yi for b
√

2knc+ 1 values of i ∈ {1, . . . , n}.

Theorem 1 ([36]). Given vectors x,y ∈ Fnq , a list of all polynomials p ∈ Fkq [x]
satisfying p(xi) = yi for more than

√
2nk values of i ∈ {1, . . . , n} can be found

in time polynomial in n, provided all pairs (xi, yi) are distinct.

The interesting aspect of the above algorithm is that it takes some very el-
ementary algebraic concepts, such as unique factorization, Bezout’s theorem,
and interpolation, and makes algorithmic use of these concepts in developing
a decoding algorithm for an algebraic code. This may also be a good point to
mention some of the significant advances made in the complexity of factoring
multivariate polynomials that were made in the 1980’s. These algorithms, discov-
ered independently by Grigoriev [14], Kaltofen [22], and Lenstra [25], form the
technical foundations of the decoding algorithm above. Modulo these algorithms,
the decoding algorithm and its proof rely only on elementary algebraic concepts.
Exploiting slightly more sophisticated concepts from commutative algebra, leads
to even stronger decoding results that we describe next.

The algorithm of Guruswami and Sudan [17] is best motivated by the follow-
ing weighted curve fitting question: Suppose in addition to vectors x and y, one
is also given a vector of positive integers w where wi determines the “weight”



or confidence associated with a given point (xi, yi). Specifically we would like
to find all polynomials p such that

∑
i|p(xi)=yi

wi ≥ W (for as small a W as
possible).

The only prior algorithm (known to this author) that could take such “re-
liability” consideration into account was the Generalized Minimum Distance
(GMD) decoding algorithm of Forney [10]. This algorithm, in combination with
Theorem 1, can find such a vector provided W = Ω

(√
k
√

lnn
√∑n

i=1 w
2
i

)
. How-

ever, the GMD algorithm is combinatorial, and we would like to look for a more
algebraic solution.

How can one interpret the weights in the algebraic setting? A natural way at
this stage is to find a “fit” for all the data points that corresponds to the weights:
Specifically, find a polynomial Q(x, y) that “passes” through the point (xi, yi) at
least wi times. The notion of a curve passing through a point multiple times is a
well-studied one. Such points are called singularities. Over fields of characteristic
zero, these are algebraically characterized by the fact that the partial derivatives
of the curve (all such, upto the (r−1)th derivatives, if the point must be visited
by the curve r times), vanish at the point. The relevant component of this
observation is that insisting that a curve pass through a point r times is placing(
r
2

)
linear constraints on the coefficients. This fact remains true over finite fields,

though the partial derivatives don’t yield these linear constraints any more.
Using this notion to find curves that fit the points according to the weights, and
then factoring the curves, leads to the following algorithm and result.

Given x,y ∈ Fnq , w ∈ Zn≥0, and k.
1. Compute Q 6= 0 with (1, k)-weighted degree at most b

√
k
∑n
i=1 wi(wi + 1)c

satisfying Q(xi, yi) is a zero of multiplicity wi, for all i ∈ {1, . . . , n}.
2. Factor Q and report all polynomials p ∈ Fkq [x] such that y − p(x) is a factor

of Q and
∑
i|p(xi)=yi

wi is at least b
√
k
∑n
i=1 wi(wi + 1)c+ 1.

Lemma 1 ([17]). Given vectors x,y ∈ Fnq , a list of all polynomials p ∈ Fkq [x]
satisfying

∑
||p(xi)=yi

wi > b
√
k
∑n
i=1 wi(wi + 1)c can be found in time polyno-

mial in n,
∑
i wi, provided all pairs (xi, yi) are distinct.

At first glance it is not clear if this is better than the GMD bound. The GMD
bound is invariant with respect to scaling of the wi’s while the above is not! In
fact, it is this aspect that makes the algorithm above intriguing. Fix vectors
x and y, and consider two possible weight assignments: in the first all weights
are 1, and in the second all weights are 2. On the one hand, the weight vectors
place the same relative weights on all points, so a “good” solution to the first
instance is also a “good” solution to the second instance. On the other hand,
a close examination of the bound in Lemma 1 reveals that in the latter case it
can find some polynomials that the former can not. The first instance finds all
polynomials that agree with the data in

√
2kn points, while the second finds all

polynomials that agree with the data in
√

3
2kn points. Scaling the weights to

larger and larger values, in the limit we find all polynomials that fit the data



over more than
√
kn points. The price we pay is that the running time of the

algorithm grows with the scaling factor. However it is easy to see that a finite
(polynomial in n) weight suffices to decode up to this bound and this leads to
the following theorem:

Theorem 2 ([17]). Given vectors x,y ∈ Fnq , a list of all polynomials p ∈ Fkq [x]
satisfying p(xi) = yi for more than

√
nk values of i ∈ {1, . . . , n} can be found in

time polynomial in n, provided all pairs (xi, yi) are distinct.

Note that while the original motivation was to find a better algorithm for
the ”weighted” decoding problem, the result is a better unweighted decoding
algorithm, that uses the weighted version as an intermediate step. Of course, it
is also possible to state what the algorithm achieves for a general set of weights.
For this part, we will just assume that the weight vector is an artbitrary vector
of non-negative reals, and get the following:

Theorem 3 ([17, 18]). Given vectors x,y ∈ Fnq , a weight vector w ∈ Rn≥0, and
a real number ε > 0, a list of all polynomials p ∈ Fkq [x] satisfying

∑
i|p(xi)=yi

wi >√
k(ε+

∑n
i=1 w

2
i ) can be found in time polynomial in n and 1

ε , provided the pairs
(xi, yi) are all distinct.

This result summarizes the state of knowledge for list-decoding for Reed
Solomon codes, subject to the restriction that the decoding algorithm runs in
polynomial time. However this criterion, that the decoding algorithm runs in
polynomial time, is a very loose one. The practical nature of the problem de-
serves a closer look at the components involved and efficient strategies to im-
plement these components. This problem has been considered in the literature,
with significant success. In particular, it is now known how to implement the
interpolation step in O(n2) time, when the output list size is a constant [29, 31].
Similar running times are also known for the root finding problem (which suffices
for the second step in the algorithms above) [2, 11, 28, 29, 31, 39]. Together these
algorithms lead to the possibility that a good implementation of list-decoding
may actually even be able to compete with the classical Berkelkamp-Massey de-
coding algorithm in terms of efficiency. A practical implementation of such an
algorithm in C++, due to Rasmus Refslund Nielsen, is available from from his
homepage (http://www.student.dtu.dk/~p938546/index.html).

3 Ideal Error-correcting codes and decoding

We now move on to other list-decoding algorithms for other algebraic codes. The
potential for generalizing the decoding algorithms above to codes other than just
the Reed Solomon code, was first shown by Shokrollahi and Wasserman [33]. In
their work, they show how to generalize the algorithm above to decode the more
general family of algebraic-geometry codes. A full description of this family of
codes is out of scope for this article — the reader is encouraged to read the text
of Stichtenoth [34] or the article by Høholdt, van Lint, and Pellikaan [20] for



a description. However we will attempt to describe the flavor of the results by
defining a broad class of codes, that we call “Ideal error-correcting codes”.

One way of viewing Reed Solomon codes, is that they are built over a (nice)
integral domain R = Fq[x], 1 The message space M = Fkq [x] is chosen to be a
subset of the ring R. Additionally the code is specified by a collection of ideals
I1, . . . , In of R. In the case of Reed Solomon codes, these are the ideals generated
by the linear polynomials x−x1, . . . , x−xn. The encoding of a message element
p ∈ R is simply its residue modulo n ideals. Thus, in Reed Solomon encoding,
p 7→ 〈p mod (x − x1), . . . , p mod (x − xn)〉 = p(x) as expected. The following
definition summarizes the family of codes obtained this way.

Definition 2 (Ideal error-correcting codes [16]). An ideal error-correcting
code is specified by a triple (R,M, 〈I1, . . . , In〉), where R is an integral domain,
M ⊆ R, and I1, . . . , In are ideals of R. The code is a subset of (R/I1) × · · · ×
(R/In), given by the set {〈pmod (I1), . . . , pmod (In)〉|p ∈M}.

To quantify the distance properties of such a code, it is useful to impose a
notion of size on elements of the ring R. In the case of Reed Solomon codes
the size of an element is essentially its degree (though for technical reasons,
it is convenient to use qdeg p as a measure of size). The message space usually
consists of all elements of small size. To make this space large one needs to know
that the ring has sufficiently many small elements. Further the size function is
assumed to satisfy some axioms such as size(a+ b) ≤ size(a)+size(b), size(ab) ≤
size(a) · size(b) and so on. Further, if the size of an ideal is defined to be the
size of the smallest non-zero element in it, then size(J1 × J2) should be at least
size(J1)·size(J2). Assuming such, relatively simple axioms it is possible to analyze
the minimum distance of an ideal error-correcting code, once the sizes of the
ideals I1 to In are known. (We will not cover these definitions formally here
- we refer the reader to [16] for a full discussion.) The same axioms guarantee
efficient (list-)decoding as well. In fact, the following simple generalization of the
algorithm from the previous section gives the algorithm for decoding any ideal
error-correcting code. We describe the algorithm informally. Formal specification
will involve a careful setting to various parameters.

Given I y ∈ Rn, w ∈ Zn≥0.
1. Let Ji = Ii + (y − yi).
2. Compute Q ∈ R[y]− {0} of small degree in y, with small coefficients, satis-

fying Q ∈
∏n
i=1 J

wi
i .

3. Factor Q and report all elements p ∈M such that y− p is a factor of Q and
yi ∈ p+ (Ii) for sufficiently many i.

1 For the reader that is rusty with the elements of commutative algebra, let us recall
that an integral domain is a commutative ring R that has no zero divisors (i.e.,
pq = 0 implies p = 0 or q = 0). An ideal I in R is a subset that is closed under
addition, and a ∈ I implies ab ∈ I, for all b ∈ R. The quotient of R over I, denoted
R/I forms an integral domain and this quotient ring is crucial to many definitions
here.



In this setting, the algorithm above may even appear more natural. Note
that the ideals Ji above have the following meaning: y − p belongs to the ideal
Ji if and only if yi ∈ p+ Ii. Thus we want all elements p such that y − p lies in
many of the ideals Ji. To find such an element, we find an element that Q that
lies in all of them, and factor it to find any element that lies in many of them.

Why consider this more complicated scheme? Ideal error-correcting codes not
only include the class of Reed Solomon codes (as already pointed out), but also
all algebraic-geometry codes, and an interesting family of number-theoretic codes
termed Redundant Residue Number System (RRNS) codes. As a consequence of
the generalization above, one gets a structure for decoding all the above family
of codes. Note that we only get a structure, not the algorithm itself. In order to
get actual decoding algorithms, one needs to find algorithms to “Compute Q”
(the interpolation step) as well as to factor over R[y]. Both aspects present their
own complexity, as we will illustrate for the RRNS codes. Furthermore, to get
the best possible decoding algorithm, one needs to select the parameters, and in
particular the weights carefully. We will discuss this more in the next section.

Finally, we point out one important class of codes where the decoding algo-
rithms don’t seem to apply. This is the class of Reed-Muller codes where the
algorithm of Feng and Rao [9] (see, in particular, the desciption in [20]) decodes
up to half the minimum distance. The best known list-decoding algorithm [32]
does better than the above algorithm for some choice of parameters, but does not
even match up to the above algorithm for other choices of parameters. Extend-
ing the list-decoding algorithm given here to apply to the class of Reed-Muller
codes seems to require a generalization beyond the class of ideal codes.

4 Redundant residue number system codes

This is the family of ideal error-correcting codes given byR = Z,M = {0, . . . ,K−
1} for some integer K, and Ii = (pi) for a collection of pairwise prime integers
p1, . . . , pn. In other words a message is a non-negative integer less than K and
its encoding are its residues modulo small integers p1, . . . , pn. If we permute the
indices so that p1 ≤ · · · ≤ pn, and if K ≤

∏k
i=1 pi, then this code has mini-

mum distance at least n − k + 1, Thus it should be correctible to up to n−k
2

errors uniquely, and list-decodable to about n −
√
nk errors. Turns out Man-

delbaum [27] gave a unique decoding algorithm decoding to n−k
2 errors. The

algorithm runs in polynomial time provided the highest and smallest moduli
are relatively close in value. Goldreich et al. [12] gave an algorithm correcting

approximately n−
√

2nk log pn

log p1
errors. Boneh [6] improved this to n−

√
nk log pn

log p1

errors, and finally Guruswami et al. [16] improved this to correct n−
√
n(k + ε)

errors for arbitrarily small ε. They also give a polynomial time unique decoding
algorithm correcting up to n−k

2 errors.
The algorithms of [12, 6, 16] illustrate some of technicalities that surface in

specializing the algorithm of Section 3. For instance, consider the interpolation
step: Even in the simple case when all the wi’s are 1, the case considered in [12],



the algorithm for this part is not obvious. We wish to find a polynomial Q with
small integer coefficients such that Q(yi) = 0 mod (

∏n
i=1 pi). This is a task in

Diophantine approximation and no longer a simple linear system. Fortunately,
it turns out to be a relatively well-studied problem. The set of polynomials
satisfying the condition Q(yi) = 0 mod (

∏n
i=1 pi) form a lattice, and finding

a polynomial with small coefficients is a “shortest vector problem” in integer
lattices and one can use the groundbreaking algorithm of Lenstra, Lenstra, and
Lovasz [26] (LLL) to solve this problem near-optimally. In the case of general
weights [6, 16], the problem remains a short vector problem in a lattice, however
it is not simple to express a basis for this lattice explicitly. In the case of uniform,
but not unit weights, [6] manages to come up with an explicit description based
on some analogies with some problems in cryptography. For the fully general
case, [16] do not describe an explicit basis. Instead they give an algorithm that
computes this basis from the weights. Thus this step of the process can get
quite complicated.in the case of numkber theoretic codes. (In contrast this step
remains reasonably simple in the case of algebraic geometry codes.)

Another aspect of the decoding algorithm highlighted by the number-theoretic
setting is the choice of weights. Even in the simple case where all the input
weights are unit, it is not clear that the best choice of weights is a uniform one.
Indeed, the final choice used by [16] gives large weights to the small moduli and
smaller weights to the larger modulii. In general, this issue — what is the best
choice of weights to the algorithm, and how should they relate to the weights
given as input — is far from clear. For example, a recent paper of Kötter and
Vardy [24] suggests a completely surprising choice of weights in the case of alge-
braic geometry codes. This leads to better bounds for decoding these codes that
the one given in [17]. A more detailed examination of this question has been
carried out by Kötter [23].

Finally, we move on to the second step of the decoding algorithm. In this case
the algorithm that is required is an integer root-finding algorithm for integer
polynomials. This is again a well-studied problem, with known polynomial time
solutions. This step however can get significantly more complicated for other
ideals. E.g., in the case of algebraic-geometry codes, the issue becomes that
of how the codes are specified. For most well-known families of such codes,
the standard specifications do lead to polynomial time solutions [11, 28, 29, 39].
For arbitrary codes, however it is a priori unclear if a natural representation
could lead to a polynomial time decoding algorithm. In fact in the absence
of a complete characterization of all algebraic geometry codes, it is unclear as
to what is a natural representation for all of them. [19] suggest a potential
representation that is reasonably succinct (polynomial sized in the generator
matrix), that allows this and other necessary tasks to be solved in polynomial
time, by using the algorithms of [11] and [29].
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many of our joint works here, to Tom Høholdt for enlightening me on many of
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