
Coding Theory: Tutorial & Survey

Madhu Sudan∗

Abstract

Coding theory has played a central role in the the-
oretical computer science. Computer scientists have
long exploited notions, constructions, theorems and
techniques of coding theory. More recently, theoretical
computer science has also been contributing to the the-
ory of error-correcting codes - in particular in making
progress on some fundamental algorithmic connections.
Here we survey some of the central goals of coding the-
ory and the progress made via algebraic methods. We
stress that this is a very partial view of coding theory
and a lot of promising combinatorial and probabilistic
approaches are not covered by this survey.

1 Introduction, Disclaimers

This is a hastily written article intended to go along
with a 2-hour tutorial whose mandate was to intro-
duce coding theory to theoretical computer scientists.
Limited by my (lack of) knowledge, time, and energy, I
have chosen to focus the survey on some of the classical
algebraic results, and some recent algorithmic progress
in this direction. This article is just a transcription of
my notes. They lack polish, and more relevantly, rigor
in many (most?) places. The hope is that they will
still provide sufficiently many pointers to help the in-
terested reader gain more information about the area.

Coding theory is the umbrella term used to cover
the study of two related, but distinguishable, topics:
The theory of “error correcting codes” and the mathe-
matics behind “reliable communication in the presence
of noise”. The latter term is self-explanatory while the
former could use some elaboration. Error-correcting
codes are collections of sequences of elements from a
finite set (or words over a finite alphabet) with some
nice extremal properties — namely, any two words in

∗MIT Laboratory for Computer Science, 200
Technology Square, Cambridge, MA 02143, USA.
http://theory.lcs.mit.edu/˜madhu. This work was sup-
ported in part by NSF Career Award CCR 9875511, NSF
Award 9912342, and MIT-NTT Award MIT 2001-04.

the collection disagree on many coordinates. Thus the
theory of error-correcting codes could be considered an
area of combinatorial mathematics (with some natural
algorithmic tasks that arise naturally). The theory of
communication in the presence of noise, on the other
hand often leads to information theory and/or statis-
tics. The two aspects of coding theory enjoy a symbi-
otic relationship from the days of their origin.

Coding theory, and the dichotomy within, owes its
origins to two roughly concurrent seminal works by
Hamming [45] and Shannon [80], in the late 1940s.

Hamming was studying devices to store information
and wanted to design simple schemes to protect from
the corruption of a small number of bits. Hamming
realized the explicit need to consider sets of words or
“codewords” where every pair differs in a large num-
ber of coordinates. Hamming extracted the combina-
torial underpinnings of the theory of error-correcting
codes. He defined the notion of distance between two
sequences over finite alphabets - now called the Ham-
ming distance, observed this was a metric and thus
led to interesting properties. This leads to the notion
of distance we work with in coding theory, named the
Hamming distance. Hamming also constructed an ex-
plicit family of codes that acheived non-trivial distance.
We will see these codes shortly. Hamming’s paper was
eventually published in 1950.

Slightly prior to Hamming’s publication, Shannon
(1948) wrote an treatise of monumental impact formal-
izing the mathematics behind the theory of communi-
cation. In this treatise he developed probability and
statistics to formalize a notion of information. He then
applied this notion to study how a sender can commu-
nicate “efficiently” over different media, or more gen-
erally, channels of communication to a receiver. The
channel under consideration were of two distinct types:
Noiseless or Noisy. In the former case, the goal is to
compress information at the senders end so as to, say,
minimize the total number of “symbols” communicated
while allowing the receiver to recover the transmitted
information correctly. The noisy case, which is more
important to the topic of this article, considers a chan-
nel that alters the signal being sent by adding to it a

1

“noise”. The goal in this case is to add some redun-
dancy to the message being sent so that a few erroneous
“symbols” at the receiver’s end still allow the receiver
to recover the sender’s intended message. Shannon’s
work showed, somewhat surprisingly, that the same
underlying notions captured the “rate” at which one
could communicate over either class of channels. Even
more surprisingly, Shannon’s work showed that, con-
trary to popular belief then, that when transmitting
information at a fixed “feasible” rate, longer messages
were more likely to be recovered (completely correctly)
than short ones - so asymptotics actually help! Shan-
non’s methods roughly involved encoding messages us-
ing long random strings, and the theory relied on the
fact that long messages chosen at random (over a fixed
alphabet) tend to be far away from each other. The
distance measure under which these strings tend to be
far away were not focussed on explicitly in Shannon’s
work.

Shannon’s and Hamming’s works were chronologi-
cally and technically deeply intertwined. Technically
these works complement each other perfectly. Ham-
ming focusses on the mathematical properties behing
these combinatorial objects, while Shannon creates the
perfect setting for their application. Hamming fo-
cusses on combinatorial aspects, more based on an
”adversarial” perspective, while Shannon bases his the-
ory on “probabilistic” models (of error, message etc.).
Hamming’s results were highly constructive and he
pays special attention to the small finite cases. Shan-
non’s results were highly non-constructive (and a stel-
lar example of the probabilistic method in action), and
his theory pays speecial attention to the asymptotic,
rather than finite behavior. These complementary in-
fluences leads Berlekamp [11] to characterize Shannon’s
work as “statistical and existential” and Hamming’s
work as “combinatorial and constructive”. (A brief di-
gression: The edited volume by Berlekamp [11] is a
personal favorite of mine, as a source book of ideas,
their history, the mood surrounding the research, as
well as for the refreshingly candid opinions of the ed-
itor on a broad variety of topics. Reading, at least
the editorials, is highly recommended.) It may be
pointed out that the statistical/combinatorial distinc-
tion seems to point to differences in their goals, while
the existential/combinatorial distinction seems to be a
consequence of the state of their knowledge/capability.
Shannon would have probably loved to see his results
being more constructive, but the field was not yet de-
veloped enough to prove such results. (He definitely
lived to see his results being transformed into more con-
structive ones.) Hamming, on the other hand, started
with some constructive results and build the theory

around these - and thus came this distinction. In
the sequel we will refer to the Hamming/Shannon di-
chotomy, but we will use this to refer to the combina-
torial/statistical distinction in their goals.

Moving on to the chronology: While Shannon’s pa-
per appeared first, he borrows one code from Ham-
ming’s construction and cites Hamming for this code.
So he was certainly aware of Hamming’s work. Ham-
ming presumably was also aware by the time of pub-
lication of his work, but does not cite Shannon’s work
explicitly. However he cites a short (2/3rd page) article
by Golay [34], who in turn cites Shannon’s article (so
Hamming was likely aware of Shannon’s work). Both
papers seem to regard the other as far away from their
own work. Shannon’s paper never explicitly refers to
error-correcting codes or even the distance property in
his main technical results — they only occur between
the lines of the proofs of his main results! (He only uses
Hamming’s codes as an example.) Hamming, in turn,
does not mention the applicability of his notion to reli-
able communication. He goes to the extent of enumer-
ating all prior related works - and mentions Golay’s
work [34] as the only prior work on error-correcting
codes.

Both works however, were immediately seen to be
of monumental impact. Initially both works were cited
almost equally often (with a fair number of works that
would cite Hamming’s paper but not Shannon’s). Over
time the distinctions between the two perspectives have
been overwhelmed by the common themes. Further
the asymptotic theory of Shannon started driving the
practice of communication and storage of information.
This, in turn, became the primary motivator for much
research in the theory of error-correcting codes. As
a result, today it is very common to see articles that
ascribe origins of the entire theory to Shannon’s work,
cf. [49, Chapter 1], [96]. (The Handbook on Coding
Theory [49], for instance, introduces Shannon’s work
on the first page and waits for about ten pages before
mentioning Hamming’s work.)

1.1 Basic definitions

We now move on to some of the basic notions of
coding theory. To define codes, messages, and other
such notions, let us follow a message on its path from
the source to the receiver as it goes over a noisy chan-
nel and let us see what are the relevant features that
emerge. (In what follows, emphasization is used to in-
dicate that a phrase is a reserved one, at least in this
article if not all of coding theory. Parenthesized por-
tions of emphasized texts indicate portions that are
typically omitted in usage.)

2

As already mentioned there are three entities in-
volved in this process - the sender, the receiver, and
the noisy channel seperating the two. The goal of the
sender is to communicate one element, or message m,
of a finite set M, the message space, to the receiver.
Both sender and receiver know this space of possible
messages M. This space of messages is “large” - ex-
ponentially larger than the time we hope to spend in
computing or communication at either the sender’s or
receiver’s end.

The noisy channel is capable of communicating arbi-
trarily long sequences of symbols from a finite alphabet
Σ. While both M and Σ are “finite”, Σ should be
thought of as small (the reader may even think of this
as {0, 1} for the initial part of this article), whileM is
thought of as being significantly large. So, e.g., running
times that are polynomial or even exponential in Σ are
reasonable, while running times that are polynomial in
M are typically unreasonable. To send messages over
this channel, the sender and receiver agree upon the
length of the sequences to be transmitted - termed block
length, usually denoted n. Thus the space of words be-
ing transmitted over the channel is Σn, and is referred
to as the ambient space. The sender and receiver agree
also upon the encoding E, an injective map from the
message space to the ambient space (E : M → Σn),
to be used to encode the messages before transmitting.
Thus the sender, to communicate the message m to
the receiver, instead transmits E(m) over the channel.
The image of the encoding function {E(m)|m ∈ M}
is the error-correcting code, or simply code. To enable
easy quantitative comparisons on the performance or
redundancy of the code it is useful to identify the mes-
sage space with a space of sequences from Σ of length
k. This parameter k does not seem to have a well-
defined name in the coding theory literature, so we’ll
start calling it the message length. The ratio k/n then
measures the (message) rate of the code - a fundamen-
tal parameter in coding theory.

Now moving on to the channel, the channel inserts
some noise into the transmitted symbol. Very broadly,
the noise of the channel is just a map from the am-
bient space to itself. To make this definition slightly
more interesting, we ascribe a group structure to the
alphabet Σ with operator +. This endows the am-
bient space Σn also with a group structure naturally
with 〈a1, . . . , an〉+ 〈b1, . . . , bn〉 = 〈a1 +b1, . . . , an+bn〉.
In these terms, we can say that the channel pro-
duces a noise vector, commonly termed error pattern,
η ∈ Σn and that the receiver receives the corruption
y = E(m) + η as the received word. The receiver now
employs some decoding function D : Σn → M. Hope-
fully, D runs efficiently and produces D(y) = m.

The information-theoretic focus of coding theory re-
volves around questions of the form:

Given a distribution P on the error inserted
be the channel (i.e, P : Σn → [0, 1]), what
are the best encoding and decoding functions,
or more formally what is the smallest error
probabability

max
E,D
{Em∈M [Prη∈P [D(E(m) + η) = m]]}?

If the error induced by the channel can be described
uniformly as a function of n, then this enables asymp-
totic studies of the channel. E.g., Shannon studies the
case where the channel distribution was a just an n-
wise Cartesian product of the distribution over indi-
vidual coordinates. In this case he showed that the
channel has a capacity C0 ∈ [0, 1] such that if one
picks a C < C0 and ε > 0, then for every large enough
n there exists an encoding/decoding pair with rate at
least C which acheives an error probability of at most
ε. (Thus, asymptotics help.) He also showed that it
is not feasible to communicate at rates larger than C0.
It is known that the error-probability drops off expo-
nentially with n for every C < C0, but the exact expo-
nent with which this error drops of, is still not known
and is one of the fundamental questions of the exis-
tential aspects of Shannon’s theory. Of course, once
one requires the code and the associated functions to
be efficiently computable, a vast host of open ques-
tions emerge. We will not dwell on these. The texts
of Blahut [14] or Cover and Thomas [18] are possibly
good starting points to read more about this direction
of work. Let us move on to the Hamming notions.

Recall Σ is a group - let zero be the identity element
of this group.: The (Hamming) weight of an sequence
η ∈ Σn, denoted wt(η), is the number of non-zero sym-
bols in the sequence. The usage of the letter η is sugges-
tive in that this notion is supposed to be applied to the
error pattern. It is reasonable to expect (from the noisy
channel) that the noise should affect relatively small
number of symbols of the transmitted word and thus
error patterns are restricted in their Hamming weight.
The (Hamming) distance between two sequences x and
y, denoted ∆(x,y), is simply the Hamming weight of
x − y. Hamming defined this notion (explicitly) and
noticed that it is a metric and thus other metric con-
cepts could be brought into play here. For example,
the notion of a Hamming ball of radius r around a se-
quence y is the set {x ∈ Σn|∆(y,x) ≤ r} will be of
interest to us.

Hamming introduced the notion of error-correcting
and error-detecting codes and used these to motivate
the concept of the (minimum) distance of a code. A

3

code C ⊆ Σn corrects e errors if for every sequence y
in the ambient space it is the case that there is at most
one codeword in C in the Hamming ball of radius e
around y. (Thus if a transmission is corrupted by an
error pattern of weight at most e then error-recovery is
feasible, at least, if we ignore computational efficiency
issues.) Using the metric properties this is equivalent
to saying that the Hamming balls of radius e around
the codewords are non-overlapping. Similarly, a code
C detects e errors if no error pattern of weight at most
e maps a codeword into another one. Thus the test,
“Is the received vector a codeword?” is guaranteed to
detect any occurence of up to e errors. Finally, the
minimum distance of a code C, denoted ∆(C), is the
minimum Hamming distance between any pair of dis-
tinct codewords in it, i.e.,

∆(C) = min
x,y∈C,x6=y

{∆(x,y)} .

The metric properties lead to the immediate observa-
tions: For every integer e, C is an e-error-correcting
code if and only if it is a (2e)-error-detecting code if and
only if it has a minimum distance of at least 2e+1. The
minimum distance of a code is another fundamental pa-
rameter associated with a code, and it makes sense to
study this as a fraction of the length of the code. This
quantity d/n is usually referred to as a distance rate
of a code. Since rate is already a reserved word, this
phrasing can lead to awkwardness — and we avoid it
by referring to this quantity as the relative distance.

The fundamental questions of coding theory as aris-
ing from the Hamming theory is based on the construc-
tion of codes with good rate and good relative distance.
E.g. the most elementary question is:

Given an alphabet Σ of size q, and integers n
and k, what is the largest minimum distance
d that a code C ⊆ Σn of message length k can
have?

(Note that the actual alphabet Σ itself does not really
play a role in this question, once its size is fixed. So
q will be an important parameter in the questions be-
low, but not Σ.) The question raised above remains
wide open for small q. When q ≥ n, this question
has satisfactory answers. Even getting with a constant
(absolute) distance, while maintaining a rate close to
1, is non-trivial. Getting codes of distance 1 is triv-
ial (the identity function does this)! Hamming points
out that appending the parity of all bits gives a code
of minimum distance 2 over the binary alphabet. His
main result is a family of codes of minimum distance
3 that are now named the Hamming codes. Hamming
also gives codes of distance 4 as part of a general re-
sult showing how to go from a code of odd minimum

distance to a code of even minimum distance (by in-
creasing the block length by 1).

The question raised above remains open even in an
asymptotic sense. In this setting we look at families of
codes C = {Ci|i ∈ Z+}, with Ci having block length ni,
where the ni’s form an increasing sequence. The rate
of the family is the infimum of the rates of the codes
in the family. The relative distance the family is the
infimum of the relative distances of the codes in the
family. The asymptotic version of the question asks:

Given an alphabet Σ of size q and rate R,
what is the largest relative distance δ for
which there exists an infinite family of codes
of rate ≥ R and minimum distance ≥ δ?

A family of codes is said to be asymptotically good if
both its rate and minimum distance are greater than
zero. While early results showed asymptotically good
codes do exist (see below), explicit constructions of
such families of codes took significantly longer. Study
has since turned to the explicit relation between R and
δ above and is the core question driving much of the
Hamming-based theory.

Before going on to describing some of the early re-
sults of coding theory, we mention one broad subclass
of codes that are essentially most of what is investi-
gated. These are the class of linear codes. In these
codes, one associates the alphabet Σ with some finite
field of size q. Sequences of length n over Σ can now be
thought of as n-dimensional vectors. If a code forms a
linear subspace of the ambient space, then the code is
said to be linear. While there are no theorems indicat-
ing linear codes should be as good (asymptotically) as
general codes - this has been the empirical observation
so far. Since these codes bring together a host of nice
properties with them, study of these codes has been
significantly more popular than the general case. For
example, Hamming suggested the notion of a system-
atic code - codes whose coordinates can be split into
k message symbols and n − k check symbols. Ham-
ming noted that every linear code can be made sys-
tematic without loss of performance. Linear codes are
special in that such a code C can be described suc-
cintly by giving a generator matrix G ∈ Σk×n such
that C = {xG|x ∈ Σk}.

1.2 Rest of this article

The results of coding theory can be classified into
one the following three broad categories (obviously
with plenty of scope for further subdivisions): (1) Con-
structions/Existence results for codes (2) Limitations
of codes (non-existence results). (3) Efficient Algo-
rithms (for encoding and decoding). A fourth category

4

which can be added, but whose contents would vary
widely depending on the audience is (4) Applications
of codes to other areas. In this article we start by
describing the limits to the performance first (a non-
standard choice), and using this to motivate some of
the algebraic constructions. We then move on to the
task of decoding. Notable omissions from this article
are the non-algebraic constructions, and the work on
the side of highly efficient encoding. Applications of
codes to theoretical computer science abound (cf. [90,
Lecture 9]) and new ones continue to emerge at a reg-
ular rate (see the thesis of Guruswami [40] for many
recent connections). However we will not describe any
here.

2 Bounds and constructions for codes

2.1 The random linear code

Perhaps the most classical “code” is the random
code and the random linear code. Hints that the ran-
dom code are likely to be quite good in performance
were implicit in the work of Shannon, but he does
not make this part explicit. Gilbert [33] was the first
to make this explicit. Later Varshamov showed that
the bounds actually hold even for random linear codes
making the search space significantly smaller - singly
exponential instead of being doubly exponential in the
code parameters. Finally, Wozencraft reduced the com-
plexity even further for codes of rate 1/2 (extensions
of the technique works for codes of rate 1/l for any in-
teger l), making the complexity of searching for such a
code simply exponential (2O(n) instead of 2n

O(1)
).

To describe the construction and performance of
these codes, let us introduce some notation. Let
Vq(n, r) denote the volume of the Hamming ball of
radius r in Σn, where |Σ| = q. Gilbert’s bound is
based on the following greedy process. Pick K = qk

random sequences greedily as follows: Having picked
v1, . . . , vi, pick vi+1 so that it does not lie within a
distance of d from any of v1, . . . , vi. When does such
a vector vi+1 exist? Note that each of the vectors
vj rules out Vq(n, d) vectors from Σn. But this only
rules out i · Vq(n, d) vectors in all from Σn. Thus if
(K − 1) · Vq(n, d) < qn then the greedy process can
always make progress. Varshamov picks the generator
matrix of the linear code in a similar greedy process. It
is a simple exercise show that this process also acheives
the same bound. Wozencraft’s construction (personal
communication in [65, Section 2.5]) is quite different,
but acheives the same bounds for rate 1/2 codes is as
follows. Let n = 2k and associate Σk with a finite
field Fqk of size qk. For every member α ∈ Fqk , let

the code Cα be given by {(x, αx)|x ∈ Fqk}. (Note that
the messages are now being viewed as elements of Fqk

while the encodings are two elements of the same field.)
Wozencraft shows that one of the codes Cα also achieves
the same performance as guaranteed by the results of
Gilbert and Varshamov. (Wozencraft’s ensemble is ac-
tually a wider class of constructions, of which the above
is one specific example. This is the example given ex-
plicitly in Justesen [51].)

To understand the bound (qk · Vq(n, d) ≤ qn) in
slightly clearer light, let us simplify it slightly. For
0 < δ < 1, let

Hq(δ) = δ logq

(
q − 1
δ

)
+ (1− δ) logq

(
1

1− δ

)
.

Then Vq(n, δn) is well approximated by qHq(δ)n. The
results of Gilbert, Varshamov (and Wozencraft) show
that for every choice of n and δ, their sample space
contains a code of length n, minimum distance δn, and
message length n − logq(Vq(n, δn)) ≈ n(1 − Hq(δ)).
Thus asymptotically one can obtain codes of relative
distance δ of rate 1 − Hq(δ). This result bound is
usually termed the Gilbert-Varshamov bound, which
states that there exist codes of rate R and relative dis-
tance δ satisfying

R ≥ 1−Hq(δ) (Gilbert-Varshamov Bound)

(This bound is syntactically similar to Shannon’s
bound for the capacity of the “q-ary symmetric chan-
nel” of error rate δ. Such a channel acts on the co-
ordinates of the transmitted word independently, and
preserves every coordinate with probaliltiy 1 − δ and
flips it to a random different symbol with probability
δ/(q − 1). The Shannon capacity of such a channel is
1−Hq(δ). This is not a coincidence!)

2.2 Non-existence results for codes

Given a choice of n, k, d and q, does a q-ary code
of length n, message length k and minimum distance
d exist? We already know that if n > k+?d, then
such a code does exist as proven by the probabilistic
method. The main question driving much of this sec-
tion is whether the performance of the random code can
be beaten in an asymptotic sense, and if not — how
can we prove this? In other words, what techniques can
we use to prove that certain choices of code parameters
are impossible to acheive. (These are the sort of results
that us computer scientists are used to calling “lower
bounds”, except in the coding context these are really
upper bounds on the rate (as a function of the relative
distance).)

5

We will start by describing some simple ideas used
to prove these upper bounds and then give pointers to
state of the art results.

We will start with a simple bound due to Singleton
(cf. [63]) Suppose C is a code of length n and message
length k. Project C down to any k− 1 coordinates. By
the pigeonhole principle two codewords must project
to the same string. Thus these codewords differed in
at most n − k + 1 coordinates. This proves that the
minimum distance of the code d satisfies:

d ≤ n− k + 1 (Singleton bound)

The bound seems naive - yet it is tight in that some
codes achieve it! Codes that match the Singleton
bound are called Maximum Distance Separable (MDS)
codes and we will see an example in the next section.

The Singleton bound is independent of the alpha-
bet size q. Indeed the codes that acheive this use large
values of q. In the following we will get bounds that
improve if q is small. We start with a bound from Ham-
ming’s original paper. (Note that in the very first pa-
per, Hamming had formalized codes to the extent that
he could prove negative results!) This bound is based
on the following simple observation. If we consider a
code of minimum distance d, then Hamming balls of ra-
dius d/2 around the codewords are disjoint. Since there
are at least qk such balls, we get qkVq(n, d/2) ≤ qn.
Written asymptotically, we see that if a code of rate R
has relative distance δ, then:

R ≤ 1−Hq(δ/2) (Hamming Bound)

Once again, there do exist codes that meet the Ham-
ming bound (the exact version, not the asymptotic ver-
sion). such codes are called perfect. However they
don’t exist for all choices of parameters.

In fact, while the Hamming bound is quite good as
δ → 0, it deteriorates considerably for larger δ and ends
up proving obviously weak bounds for large δ. In par-
ticular, the random codes only get a relative distance of
1− 1

q in the best of cases, while the Hamming bound al-
lows a distance of twice this quantity, which is clearly
impossible (since the relative distance should not be
greater than one!). This bound was improved upon by
Elias (unpublished, but reported later in [81]) and in-
dependently by Bassalygo [7], building upon proofs of
Plotkin [74] and Johnson [50] respectively. The princi-
pal idea behind these bounds is the following. We know
that no Hamming ball in Σn of radius d/2 includes two
codewords from a code of distance d. We can do slightly
better: It is possible to show that any Hamming ball of
radius rdef= q−1

q

(
n−

√
n(n− qd

q−1)
)

has more than qn

codewords. This quantity r is between d/2 and d, and

tends to d as d/n→ 1− 1
q . Thus if we take the qk balls

of radius r around the codewords, we are overcount-
ing the points of the ambient space only by a factor of
at most qn. Thus we get qkVq(n, r) ≤ qnqn. Asymp-
totically this shows that if a q-ary code of rate R and
relative distance δ exists then:

R ≤ 1−Hq

((
1− 1

q

)
·
(

1−
√

1− q

q − 1
δ

))
(Elias-Bassalygo Bound)

The Elias-Bassalygo bounds already give decent
asymptotic bounds on the rate to relative distance
performance of codes. (In particular, they meet the
Gilbert-Varshamov bound at the two ends, i.e., R = 0
and R = 1.) In the interim region they are bounded
away from each other, but it is hard to get a qual-
itative sense of the difference in this regime. How-
ever a closer look at the two endpoints does reveal a
qualitative difference. For instance, if we fix an abso-
lute distance d and ask what is the limit of n − k as
n, k →∞, then the Hamming/Elias-Bassalygo bounds
require n−k ≥ d/2 logq n while the Gilbert-Varshamov
bound acheives n − k ≤ d logq n - so these bounds are
only off by a factor of 2 (in some sense), but it turns
out the non-existence result bound is the right one (and
the Gilbert-Varshamov bound is not!).

On the other hand, at the other end, if we con-
sider codes of relative minimum distance 1 − 1

q − ε
and ask what is the largest rate they can acheive: The
Elias-Bassalygo bound shows that R ≤ O(ε), while the
Gilbert-Varshamov bound only acheives R ≥ Ω(ε2).
So here again the two bounds are qualitatively off
from each other. In this case, it turns out the Elias-
Bassalygo bound is the one that is too weak. A better
bound does exist in the literature — termed the lin-
ear programming bound. This bound was introduced
by Delsarte [19] who showed that a certain linear pro-
gram on n variables with O(n) inequalities could be
used to give an upper bound on the message length of
a code code of minimum distance d. (This linear pro-
gram was in turn inspired by a series of identities due to
MacWilliams [62] which establish some quantitative re-
lationships between a linear code and its “dual”.) Go-
ing from the linear program to an asymptotic bound on
the performance of a code turns out to be highly non-
trivial. Such an analysis (not known to be tight) was
given by McEliece, Rudemich, Rumsey and Welch [68]
which shows, in our example, that a code of minimum
distance 1− 1

q −ε has rate at most O(ε2 log 1
ε) and thus

the Gilbert-Varshamov bound is almost tight at this
extreme. A complete description of the analysis lead-
ing to the [68] bound can be found in the text of van
Lint [59]. Levenshtein [57]’s article on this subject is a

6

source of more information.

2.3 Codes

We will introduce various codes to the reader in ap-
proximately the historical order, also constrasting them
with various bounds acheived so far. All codes of this
section are linear unless otherwise noted. The asso-
ciated alphabet will be Fq, the field of cardinality q.
All vectors will be row vectors (standard convention of
coding theory.) Almost all beat the Gilbert-Varshamov
bound at some point or the other.

Hamming codes. These are linear codes obtained as
follows. For any integer l, consider the ql× l matrix H ′

whose rows include all l-dimensional vectors over Fq.
Delete the row corresponding to the all zeroes vector
from H ′. Next delete scalar multiples from H ′: I.e., if
vi = αvj for some α ∈ Fq, then delete one of the rows
vi or vj arbitrarily. Continue this process till H ′ has no
scalar multiples left. This leaves us with a n× l matrix,
let us call it H, with n = ql−1

q−1 . The Hamming code of
length n is the collection of vectors {x ∈ Fnq |xH = 0}.
Note that this forms a linear subspace of Fnq . The mes-
sage length equals n − l ≈ n − logq n. It can be es-
tablished fairly easily that the minimum distance of
this code is at least 3 (after some reasoning this cor-
responds to establishing that no two rows of H are
linearly dependent). The Hamming codes are perfect
in that they meet the Hamming bound exactly. The
earlier mentioned paper of Golay mentions two other
codes (one binary and one ternary) which meets the
Hamming bound. After a significant amount of work,
van Lint [58] and Tietavainen [94], eastablished that
these were the only perfect codes!

(Generalized) Reed Solomon codes. These
codes, due to Reed and Solomon [76], are defined
for q ≥ n. Let α1, . . . , αn be n distinct elements of
Fq. The Reed Solomon code of message length k,
with parameters α1, . . . , αn is defined as follows: As-
sociate with a message m = 〈m0, . . . ,mk−1〉 a poly-
nomial M(x) =

∑k−1
j=0 mjx

j . The encoding of m
is the evaluation of M at the n given points i.e.,
E(m) = 〈M(α1), . . . ,M(αn)〉. By construction, the
Reed Solomon codes have message length k and block
length n. Their minimum distance is n − k + 1 which
is an immediate consequence of the fact that two de-
gree k−1 polynomials can agree at no more than k−1
points. Thus the Reed Solomon codes give a simple
class of codes that meet the Singleton bound. Such
codes are called Maximum Distance Seperable (MDS)
codes. These are essentially the only such codes that
are known.

BCH and alternant codes. These codes are named
after their co-discoverers. Hocquenghem [47] and Bose
and Chaudhari [17] proposed these binary codes es-
sentially around the same time as the Reed-Solomon
codes were proposed. We won’t describe the codes ex-
plicitly here, but instead describe a slightly more gen-
eral class of codes called alternant codes. Essentially
these codes can be obtained from Reed Solomon codes
as we describe next. For n-dimensional vectors x and
y (over some field F), let x ∗ y be the coordinate wise
product of x and y. Pick a finite field F2l such that
2l ≥ n and α1, . . . , αn distinct from F2l and let C1
be the Reed Solomon code of dimension k over this
field. Now, pick a vector v = 〈v1, . . . , vn〉 with the
vi ∈ F2l \ {0}. Consider the code C2 = {v ∗ c|c ∈ C1}.
Note that C2 has the same message length and distance
C1. Now take the intersection of C2 with Fn2 (i.e., take
only the binary vectors from this code). Often it is
possible to make non-trivial choices of vectors α and v
so that the resulting code has large dimension. BCH
codes are one such family of codes. The BCH codes
yield codes of block length n, minimum distance d and
dimension k = n − ((d − 1)/2) log2 n and thus asymp-
totically match the Hamming/Elias-Bassalygo bounds.
described above. (In particular, these codes generalize
the Hamming codes.)

Reed-Muller codes. These codes are named after
Muller [69], its discoverer, and Reed [75] who gave a
decoding algorithm for these codes. Appropriately gen-
eralized, these codes are based on evaluations of mul-
tivariate polynomials. Consider a l-variate domaing
over a q-ary field. Consider the space of all polyno-
mials of degree at most m over this field, subject to
the condition that no variable takes on a degree of q
or more. If m < q, then this is a vector space of di-
mension

(
m+l
m

)
. For m ≥ q, the dimension of this space

does not have a closed form, but can be easily lower
bounded by at least

(
l
m

)
. We identify this space with

the vector space of messages and let their encodings
be their evaluations at all points in the space. Thus
we get n = ql. The relative distance of these codes
is at least 1 − m

q if m < q, and at least q−m
′

where
m′ = dm/qe for m ≥ q. (The first part follows from
the familiar Schwartz-Zippel lemma in theoretical com-
puter science. Of course, the Reed-Muller codes pre-
date this lemma by 25 years.) The parameter m above
(degree) is referred to as the order of the Reed-Muller
code.

Hadamard codes. Reed-Muller codes of order one
are special in coding theory since they form a sub-
class of the “Hadamard” codes or simplex codes. Bi-
nary Hadamard codes are obtained from integer n× n

7

matrices H with entries from {+1,−1} that are self-
orthogonal (i.e., HTH = nI). The rows of this matrix
(interpreted as binary vectors) make a binary code (not
necessarily linear) in which every pair of codewords dif-
fer from each other in half the places. Codes over a
q-ary alphabet with a relative distance of 1 − 1/q are
what we term as Hadamard codes.

Algebraic-geometry codes. No description of alge-
braic coding theory is complete without mention of the
famed “algebraic-geometry codes” or the “geometric-
goppa codes”. These codes may be thought of as codes
obtained by starting with Reed-Muller codes of some
order and then removing a large number of coordi-
nates (or projecting onto a small number of coordi-
nates). This process may identify many codewords. A
very careful choice of the coordinates onto which one
projects, based on deep insights offered by algebraic
geometry, lead to codes over q-ary alphabets of dimen-
sion k and block length n, with minimum distance be-
ing at least n − k − n√

q−1 , when q is a square. The
most interesting aspect of these codes is that over con-
stant sized alphabets, these codes can beat the Gilbert-
Varshamov bound with a rate and minimum distance
bounded away from 1. (Note that all other codes of
this section also beat the random codes - however they
either require a large alphabet (Reed Solomon codes)
or they do better only for rate being 1 − o(1) (Ham-
ming codes, BCH codes), or they do better only for
rate being o(1) (Hadamard codes).

Concatenated codes. Concatenated codes don’t re-
fer to any fixed family of codes, but rather to codes
obtained by a certain mechanism for combining two
families of codes. This construction and some immedi-
ate applications are extremely useful and so we describe
these in this section. Suppose we have two codes: C1
of length n1, dimension k1 and distance d1, and C2
of length n2, dimension k2 and distance d2. Suppose
further that the alphabet of the second code is q and
the alphabet of the first code is carefully chosen to be
qk2 . We call the first code the outer code and the sec-
ond one the inner code. Thus the two codes are not
in a symmetric relationship. In particular the number
of codewords of the inner code correspond exactly to
the number of letters in the outer alphabet. Then this
gives a new way to encode messages of the outer code.
First encode it using the outer code. Then encode each
letter of the ensuing codeword in the outer alphabet us-
ing the encoding provided by the inner code. It is easy
to prove that this leads to a q-ary code of length n1n2

with message length k1k2 of minimum distance at least
d1d2.

This process was proposed by Forney [27], who

noted that if one used Reed Solomon codes as the outer
code and searched for the best possible inner code (in
polynomial time), then one gets a code with very good
error-correcting properties. In particular for appropri-
ate choice of parameters one get asymptotically good
codes that are constructible in polynomial time — the
first such construction! Forney did not mention such
a result (of the Hamming type) explicitly. Instead he
cast his results in the Shannon model (correcting ran-
dom errors) and in this setting Forney’s results were
even more impressive. He gave a decoding algorithm
for concatenated codes by a natural combination of the
inner and outer decoding - and using this got an algo-
rithmic version of Shannon’s theorem - where both the
encoder and decoder worked in polynomial time and of-
fered exponentially small probability of error! In some
senses Forney closed two of the most significant open
questions in coding theory - one in the Shannon style
and one in the Hamming style, using a very elementary
but deeply insightful idea.

These ideas were built upon further by Justesen who
suggested the use of n1 different inner codes, one for
each coordinate of the outer code. He noticed that it
sufficed if most of the inner codes exhibited good dis-
tance. He then applied this idea with the Wozencraft
ensemble as the n1 inner codes to get a fully explicit
(logspace constructible?) family of codes that were
asymptotically good. More recently Katsman, Tsfas-
man and Vladuts [53] concatenated algebraic geometry
codes with Hadamard codes to get binary codes of rate
O(ε3) of relative distance 1

2 − ε giving the best codes
at such high relative distance.

Brief history of developments. The above codes
were mentioned in roughly chronological order, but
with a few inversions. Here we clarify the exact order
and some interim history. Hamming had already intro-
duced linear-algebra (at least over F2) in the context
of coding theory. Slepian [85] was the first to system-
atically explore the role of linear algebra in coding and
thus introduce linear error-correcting codes as a field
of their own.

The first truly “algebraic” codes were the Reed-
Muller codes - and this is where field multiplication
seems to have been used in a strong form. The Reed-
Solomon and BCH codes were all developed around the
same time. The description of BCH codes was not like
the description here and it was not known/felt to be
related to RS codes in any way. BCH codes were an
immediate hit, since they worked over the binary alpha-
bet and generalized Hamming codes in the right way.
Peterson analyzed these codes and gave a polynomial
decoding algorithm - a highly non-trivial achievement.
Later Gorenstein and Zierler [38] extended the BCH

8

codes to non-binary alphabets and also extended the
decoding algorithm to these codes. They also noticed
that Reed-Solomon codes exhibited an interesting dual-
ity property (under appropriate choice and ordering of
the αi’s) and this allowed them to be treated as a sub-
family of BCH codes. Since then the study of RS codes
and description has been merged into that of the BCH
codes in the common texts (a pity, in my opinion). RS
codes do not seem to have enjoyed the same attention
as combinatorial objects because of their large alpha-
bet. Forney’s work changed some of this by finding use
for codes over large alphabets. Also for some storage
media it made sense to view the channel as naturally
offering a large alphabet. People also noticed that large
alphabets provide a natural way to cope with bursty
error patterns. So Reed-Solomon codes eventually be-
came quite popular and got widely deployed - more so
than any other algebraic code family (perhaps exclud-
ing the parity code!).

We move on to the algebraic geometry codes. These
codes were an “invention” of V.D. Goppa [37] — who
suggested this route way before it was clear that these
codes could offer any interesting possibilities. It took
a significant amount of time and effort before the full
potential of this idea was realized. The full potential
was realized in the work of Tsfasman, Vladuts, and
Zink [95] which builds upon some deep work in alge-
braic number theory. Proofs of the properties of these
codes is being simplified significantly nowadays, with
the works of Garcia and Stichtenoth [30] being major
steps in this direction. For the time being, the best
references are [87, 48].

Non algebraic codes.
As already mentioned we won’t be covering such

codes. Yet we should mention that there is an ex-
tremely elegant body of work based on binary codes
whose parity check matrices are of “low-density” (i.e.,
have a small number of non-zero entries). These codes,
called Low Density Parity Check codes (LDPC codes),
were innovated by Gallager [28] who showed that a ran-
dom matrix with this property produced codes that
were asymptotically good, and allowed for efficient (lin-
ear time) decoding for a constant fraction of errors.
This result completely belies the intuition that sug-
gests that for a code to be decodable efficiently it must
also be constructible efficiently. Subsequent work by
Tanner [92] started to make a lot of these construc-
tions explicit. Finally the works of Sipser and Spielman
[84] and Spielman [86] culminated in explicitly con-
structible linear time encodable and decodable codes
in this family whose constructions were fully explicit.
LDPC codes remain an active area of study today with
the works of Luby et al. [61, 60] and Richardson et al.

[77, 78] showing the potential that these codes have for
acheiving Shannon capacity of various channels even at
small values of the block length. The work of Barg and
Zemor [6] shows how these codes lead to linear time
decodable codes that achieve Shannon capacity!

3 Decoding algorithms

3.1 Algorithmic Tasks

There are three essential algorithmic tasks associ-
ated with error-correcting codes: (1) Construction of
the code; (2) Encoding and (3) Decoding. The first of
these tasks was implicitly dealt with in the previous
section. For linear codes, the task of encoding takes
only O(n2) time, once the code is specified by its gen-
erator matrix. So this part is not too hard. Faster
algorithms can, should, and have been sought - but we
will not dwell on this part here. A somewhat harder
task - with naive algorithms running in exponential
time - is the task of correcting errors, or decoding.

The decoding problem is not entirely trivial to for-
mulate. Numerous variants of this problem exist in
the literature. The first question raised by these prob-
lems is: How should the code be specified? If it is
part of the input, almost immediately hardness results
crop up. The first such results were due to Berlekamp,
McEliece and van Tilborg [13]. Subsequently many
variants have been shown to remain hard — e.g., ap-
proximation [2, 20], to within error bounded by dis-
tance [23], fixed number of errors [21]. (See also the
survey by Barg [5].) In this section we will not deal
with such problems, but focus on this problem for fixed
classes of (algebraic) codes.

Even after we fix the code (family) to be decoded,
the decoding problem is not completely fixed. The
literature includes a multitude of decoding problems:
Maximum likelihood decoding (MLD), Nearest code-
word problem (NCP), Bounded Distance Decoding
(BDD), Unambiguous decoding, List decoding etc. Ev-
ery pair of these problems differ from each other (some-
times very slightly). Here we attempt to fix these
terms. In all problems the input is a vector r from the
ambient space Σn. In all cases the output is a (possibly
empty) set of messages m (or equivalently, a codeword
c). The main question is what is expected of c. The
following criteria distinguish the above problems:

MLD Here we are given a distribution D on the error
patterns and we wish to output a single codeword
c that maximizes the probability of r− c.

NCP Here we wish to output a single codeword c that
is closest to r in Hamming distance. (Note that

9

this is essentially the MLD problem when the dis-
tribution on error is that of the q-ary symmetric
channel - i.e., error is i.i.d. on coordinates, with
the error on any coordinate being equally likely to
be any non-zero symbol).

List decoding Here again an error bound e is fixed
and the goal is to output the set of all codewords
within Hamming distance e from the received vec-
tor.

Bounded Distance Decoding Here along with the
code an error bound e is fixed and one is expected
to output a single vector c within Hamming dis-
tance e from r if one exists or an empty set other-
wise.

Unambiguous decoding This is the Bounded Dis-
tance Decoding problem with e set to (d − 1)/2
where d is the minimum distance of the code C.

Informally, the problems roughly decrease in complex-
ity as one goes down the list (though of course this
depends on the choice of the error parameter e in the
3rd and 4th problems above). The classically studied
problem is that of unambiguous decoding. This is the
problem that Peterson [73] solved in polynomial time
for BCH codes, and the problem that led to the famed
Berlekamp-Massey algorithm. We will discuss such an
algorithm in the following section. Attempting to solve
either the bounded distance decoding problem, or the
potentially harder list decoding problem for larger er-
ror values was not really pursued actively till recently.
Recently the author, and several others have found list
decoding algorithms for a varied family of codes, that
solve the problem for e larger than d/2. We will dis-
cuss later. The MLD or NCP problem have not re-
ally been solved exactly in any non-trivial cases. (Two
trivial cases are the Hamming code, where it is possi-
ble to enumerate all error-patterns in polynomial time,
and the Hadamard code where it is possible to enumer-
ate all codewords in polynomial time.) But reasonably
good approximations to this problem can be solved ef-
ficiently, as was shown by Forney [27]. We will discuss
some of this later.

3.2 Unambiguous decoding for algebraic codes

Unambiguous decoding algorithms for almost all al-
gebraically (or number-theoretically) defined codes in-
cluding BCH, Reed-Solomon, Reed-Muller, Algebraic-
Geometry codes are now known. Furthermore these
algorithms have been unified to the extent that a sin-
gle decoding algorithm, abstracted appropriately, ac-
tually works for all these cases. Such an algorithm is

described in [48, Section 6]. Here we will be slightly less
ambitious and describe an algorithm that works for all
code families above except the Reed-Muller case. We
will describe the algorithm in general and show how
it applies to the Reed Solomon case. This algorithm
is essentially from the thesis of Duursma [24] and is
attributed to Duursma, Kötter [54] and Pellikaan [72].

Recall that x∗y denotes the coordinatewise product
of x and y. For sets of vectors A and B, let A ∗ B =
{x ∗ y|x ∈ A,y ∈ B}.

Definition 1 A pair of linear codes A,B are said to
be a t-error-correcting pair for a linear code C of block
length n over Σ if (1) A ∗ C ⊆ B, (2) dimension of A
is at least t + 1, (3) the minimum distance of A is at
least n −∆(C) + 1, and (4) the minimum distance of
B is at least t+ 1.

The above definition is almost entirely consisting of
basic notions from linear codes, except for the first con-
dition which involves “higher algebra” (and sets it up
so that quadratic constraints may be made to look lin-
ear).

Theorem 2 For t ≤ n, let A,B,C be linear codes over
F of block length n, such that (A,B) form a t-error
correcting pair for C. Then, given generator matrices
for A,B,C and a “received word” r ∈ Fn, a codeword
c ∈ C that differs from r in at most t locations can be
found in O(n3) time.

Proof: The algorithm for finding the codeword c works
in two steps: (Step 1) Find a,b satisfying:

a ∈ A− {0},b ∈ B and a ∗ r = b (1)

(Step 2) Let Idef= {i : ai 6= 0}. Find c ∈ C s.t. ci = ri
for every i ∈ I, if such a c exists, and output it.

Let GA, GB and GC be the generating matrices of
A, B and C respectively. Let kA, kB , kC denote their
dimensions. Then Step 1 above amounts to finding vec-
tors xA ∈ FkA and xB ∈ FkB such that (GA · xA)iri =
(GB · xB)i. This amounts to solving a linear system
with n equations and kA+kB ≤ 2n unknowns and can
certainly be solved using O(n3) field operations. Sim-
ilarly, Step 2 amounts to finding xC ∈ FkC such that
(GC · xC)i = ri for i ∈ I. Again these form at most n
linear equations in rC ≤ n unknowns and can be solved
in O(n3) time. This yields the claim about the running
time.

The correctness is proved by three claims. (We enu-
merate the claims below but omit the details of the
proof. The reader is referred to [36] for full details.)

10

We first claim that if r is in fact close to some code-
word c, then a pair satisfying Equation (1) must exist
— a claim that follows from a rank argument (the linear
system is homogenous and has greater rank than num-
ber of constraints). Next, we claim that for any pair
a,b satisfying Equation (1), every codeword c that is
close to r will satisfy the conditions required in Step
2. This claim follows from the fact that A ∗ C ⊆ B
and B has large minimum distance. Finally, we claim
that for any pair a,b, there is at most one solution to
Step 2. This step follows from the fact that C has large
minimum distance. This completes the proof that c is
the unique answer output by our algorithm.

The above paradigm for decoding unifies most of the
known (unique) decoding algorithms. For example, the
Welch-Berlekamp algorithm [98, 12] (as described in
[32]) can be obtained as a special case of the above. To
decode a Reed-Solomon code C of dimension k (with
the message space being all polynomials of degree less
than k), we use as the code A the Reed Solomon code
consisting of all polynomials of degree at most bn−k2 c.
We note that A∗C is contained in the space B of poly-
nomials of degree at most bn+k

2 c. Note that A,B now
satisfy all conditions required of a t-error correcting
pair for t = bn−k2 c and thus give a t-error correcting
algorithm.

3.2.1 Decoding concatenated codes

In this section we describe an extremely elegant poly-
nomial time algorithm for decoding concatenated codes
under fairly minimal assumptions about the codes in-
volved in concatenation. Specifically, the assumptions
are that the alphabet size of the outer code is polyno-
mially bounded in the block length of the concatenated
code, and that the outer code has a polynomial time
“errors and erasures decoding” algorithm. The latter
assumption needs some clarification and we will get to
this shortly.

First, let us recall the notion of concatenation. If
C1 is a code of block length n1, message length k1 and
minimum distance d1 over an alphabet of size qk2 ; and
C2 is a code of block length n2, message length k2 and
minimum distance d2 over an alphabet of size q; then
C = C1 ◦ C2, the concatenation of C1 and C2 is a code of
block length n = n1n2, message length k = k1k2 and
minimum distance d = d1d2 over an alphabet of size q.
This code is obtained by encoding a message (coming
from a space of size (qk2)k1) first using the encoding
function associated with C1, and then encoding each
coordinate of the resulting word using the encoding
function associated with C2.

Going on to the decoding problem: Let us use Σ to

denote the q-ary alphabet of C2 and C, and Γ to denote
the qk2 -ary alphabet of C1 (as also the message space of
C2). Let E1 and E2 denote the encoding functions used
by C1 and C2. We receive a vector r = 〈r1, . . . , rn1〉,
where ri are elements of Σn2 . A natural algorithm to
decode r is the following two-stage process. (1) First,
for each i ∈ {1, . . . , n1}, compute yi ∈ Γ that minimizes
the Hamming distance between ri and yi. (2) Let y =
〈y1, . . . , yn〉 ∈ Γn1 , Compute the nearest codeword c ∈
C1 to y and output c.

Let us first examine the computational complexity
of the above algorithm: (1) The first step runs in time
polynomial in Γ by a brute force implementation - and
this is not an unreasonable running time. (2) The sec-
ond step is a decoding step of the code C1. So if we
assume that the outer code has a small alphabet and
a fast, say, unambiguous decoding algorithm, then the
above algorithm runs efficiently. Now let use examine
the question of how many errors does the above algo-
rithm correct? Say the transmitted word is m and let
E1(m) = 〈z1, . . . , zn1〉. For the second stage to output
E1(m), we need to ensure that yi 6= zi for less than
d1/2 values of i. In turn this forces us to make sure
that on at most d1/2 of the blocks we have a Hamming
distance of more than d2/2 between E2(zi) and ri. All
in all, this quick calculation reveals that the algorithm
can correct essentially d1d2/4 = d/4 errors. This is
a reasonable achievement under minimal assumptions,
but does not yet achieve the goal of unambiguous de-
coding (which would like to correct d/2 errors).

We now describe the elegant Generalized Mini-
mum Distance decoding algorithm of Forney [27] which
accomplishes unambiguous decoding under slightly
stronger assumptions. Forney considers the following
issue. When decoding the inner codes on the various
coordinates, one gets more information than just the
fact that the outer symbol could have been yi in the
ith coordinate. We actually get some reliability infor-
mation telling us that if yi is the symbol, then a certain
number of errors must have occured, and if it is not,
then a (larger) number of errors must have occured.
What if we simply throw out the coordinates where
in either case a large number of errors have occured?
This should help the outer decoding process in princi-
ple. Forney makes this assumption precise by using the
notion of an error and erasure decoding algorithm - an
algorithm for which symbols are allowed to be erased
and such an erasure only accounts for half an error.
This notion is formalized below.

Definition 3 For a code C1 ⊆ Γn1 , of minimum dis-
tance d1, we say that an algorithm A is an unambigu-
ous error and erasure decoding algorithm if it takes as
input y ∈ (Γ ∪ {?})n1 , (where ? is a special symbol

11

not in Γ) and outputs a codeword c ∈ C1 such that
2t+ s < d1, where sdef= |{i|yi =?}| and tdef= |{i|ci 6= yi}|,
if such a codeword exists.

Forney’s algorithm using such an unambiguous de-
coder is now the following (on input r ∈ Σn1n2).

Stage 1 For i ∈ {1, . . . , n1} do: Let yi be the message
of Γ minimizing ei

def= ∆(E2(yi), ri).

Stage 2 For τ ∈ {0, . . . , n2} do: Let y′i = yi if ei ≤
τ and let y′i =? otherwise. Use an unambiguous
error and erasure decoder to decode y′. If the
received codeword is close enough to r in Hamming
distance, then output c, else continue.

Forney analyzes the algorithm and shows, somewhat
surprisingly that it decodes upto half the minimum dis-
tance of the concatenated code. We conclude by ob-
serving that the algebraic decoding algorithm of the
previous section naturally provides an unambiguous er-
rors and erasures decoding algorithm, and so this as-
sumption is a very reasonable one.

Before moving on, we make a small aside. For-
ney [27] actually used the algorithms above (the naive
one, or the more sophisticated GMD) to actually
achieve Shannon capacity of say the binary symmet-
ric channel with polynomial time algorithms. This is
a significantly stronger result than the unambiguous
decoder given above since it needs to correct about
twice as many errors as the number guaranteed above.
However in this case the errors are random. How does
he take advantage of this fact? Forney notices that
when errors occur at random wiTh say probability p,
then most of the inner blocks have at most the (p+ ε)-
fraction of errors. So the inner decoding actually gets
rid of most errors. Hence the outer code, and decoder
only need to correct a small number of errors — not
proportional to p, but rather a function of ε. So one
does not lose much in the outer decoding, even though
the outer decoding algorithm (and the loss in perfor-
mance due to the fact that it corrects only half as many
errors as the outer distance) do not adversely affect the
overall performance. Careful formalization of this intu-
ition and analysis lead him to the algorithmic version
of Shannon’s coding theorem. (As should be evident,
Forney’s thesis [27] is another personal favorite - again
reading this monumental work is highly recommended.
Some of the sketchy arguments above are also described
in more details in my notes on my webpage [90].)

3.3 List decoding

We now move beyond the scope of unambiguous de-
coding. The main motivation of this part is to just solve

the bounded distance decoding problem for e > d/2,
where d is the minimum distance of the code we are
given. However, thus far, we have only found algo-
rithms that solve this problem by enumerating all code-
words lying within a Hamming ball of radius e around
the received vector, and thus solving the seemingly
harder list-decoding problem.

The notion of list-decoding was introduced by
Elias [25] and Wozencraft [99] who considered this as
a weak form of recovery from errors, in the Shannon
model. In this weak form, error recovery was consid-
ered successful if the decoding algorithm output a small
set of codewords that included the transmitted mes-
sage. This notion led to tighter analysis of notions such
as error-probability and the error-exponent of a chan-
nel etc. It may also be noted that the Elias-Bassalygo
upper bound (on the rate of a code given its minimum
distance) revolves around the combinatorial notion of
list-decoding. Thus list-decoding was evidently a useful
notion in both the Shannon-based and the Hamming-
based theories of error-correcting codes.

However, till recently no non-trivial algorithmic re-
sults were achieved in this direction. A work of Gol-
dreich and Levin [35] re-exposed the importance of
this concept to theoretical computer science (they ex-
ploited this notion to get hardcore predicates for one-
way functions). They also construct a very non-trivial
list-decoder for a Hadamard code - unfortunately this
result is non-trivial only in a non-standard model of
computation. We won’t get further into a description
of their result. The first result for list-decoding in the
standard models is due to this author [88]. This work
built upon previous work of work of Ar, Lipton, Ru-
binfeld and Sudan [1] to get a list-decoding algorithm
for Reed-Solomon codes. Since this algorithm was dis-
covered, it has been extended to many classes of codes,
improved significantly in terms of efficiency and the
number of errors it corrects, and used to design list-
decoding algorithms for other families of codes. Below
we describe this algorithm and some of the subsequent
work.

3.3.1 List-decoding of Reed Solomon codes

The problem we are interested in is the following:
Given vectors α,y ∈ Fnq find all polynomials of de-
gree less than k that agree with the point pairs (αi, yi)
for many values of i. The unambiguous decoding al-
gorithm for this problem could be explained in terms
of the following idea: Suppose the polynomial being
encoded is M . First construct an algebraic explana-
tion for the error points, by constructing a polyno-
mial E(x) such that E(αi) = 0 if there is an error

12

at location i. Next notice that for every coordinate
i, the following condition holds: yi = M(αi) “or”
E(αi) = 0. The logical “or” can be arithmetized using
simple multiplication, and we get for every coordinate
i, E(αi) · (yi − M(αi)) = 0. Thus the unambiguous
decoding algorithm actually finds an algebraic relation
in the (x, y)-plane which is satisfied by all the points
(αi, yi), and then factors the algebraic relation to ex-
tract the polynomial M .

The algorithm of [1, 88] implements this idea and
works in two phases: (1) Find a non-zero bivariate
polynomial Q(x, y) of small total degree such that
Q(αi, yi) = 0 for all i ∈ {1, . . . , n}. (2) Factor the poly-
nomial Q(x, y) into irreducible polynomials and report
every polynomial M of degree less than k such that
y − M(x) is a factor of Q(x, y) and yi = M(αi) for
sufficiently many coordinates i ∈ {1, . . . , n}.

The first thing to notice about the above algorithm
is that once the parameters are fixed, it can be imple-
mented in polynomial time. The first step just amounts
to finding a non-trivial solution to a system of ho-
mogenous linear equations. The second step is non-
trivial, but fortunately solved due to the (independent)
works of Grigoriev [39], Kaltofen [52], and Lenstra [56]
who gave polynomial time algorithms to factor multi-
variate polynomials. (Of course, the seminal work of
Berlekamp [10] lies at the core of all these results.)

Now we think about correctness. Ar et al. [1] use a
standard result from algebra (Bezout’s theorem in the
plane) to note that that if Q is a polynomial of total de-
gree D and M has degree k and Q(a, b) = a−M(b) = 0
for more than Dk pairs (a, b), then y −M(x) must di-
vide (and hence be an irreducible factor of) Q(x, y).
So the question reduces to the following: How small
can we make the degree of Q? Turns out we can as-
sume D is at most 2

√
n, as pointed out in [88]. This

is seen easily via a counting argument: A bivariate
polynomial of total degree 2

√
n has more than n coef-

ficients, while the conditions Q(αi, yi) = 0 only give n
homogenous linear constraints. Thus a non-trivial solu-
tion does exist to this linear system. Putting the above
together, we find the algorithm described above gives
a Reed-Solomon decoding algorithm that can recover
the polynomial M provided the number of agreements
(non-error locations) is at least 2k

√
n!

Is this an improvement? Not necessarily! In fact for
some choice of code parameters the above algorithm,
as analyzed above, is even worse than the unambiguous
decoding algorithm. But that is just because we have
been sloppy in our analysis. If we are careful and pick
the right set of coefficients of Q to be non-zero, then at
the very least we don’t do worse that the unambiguous
decoding algorithm (in particular if interpreted prop-

erly this algorithm is a strict generalization of to the
Welch-Berlekamp algorithm). But for other choices
of code parameters this algorithm does significantly
better. To see such a choice consider a case where
k = n1/3. In such a case, the number of errors the algo-
rithm can decode from is n−O(n5/6) = n−o(n), while
the unambiguous decoder could not allow more than
n/2 error. So in this kind of a scenario, this algorithm
can recover from errors, even when the amount of error
is far larger than the true information. A careful anal-
ysis in [89] shows that this list-decoding algorithm can
do better than the unambiguous decoding algorithms
provided k < n/3. Even better results are known from
subsequent work and we describe some of these in the
sequel.

3.3.2 Further results in list-decoding

List-decoding in algebraic settings. Since the
discovery of the list-decoding algorithm for the Reed
Solomon codes, list-decoding algorithms for a num-
ber of other families of codes have been discov-
ered. Many of these work in the spirit of the al-
gorithm described above. The first such algorithm
was for algebraic-geometry codes due to Shokrollahi
and Wasserman [82]. Later Goldreich, Ron, and Su-
dan [36] gave an algorithm decoding a number theo-
retic analog of the Reed Solomon code that they call
the Chinese Remainder Theorem (CRT) code, (These
codes are studied in the coding theory literature un-
der the name Redundant Residue Number System
(RRNS) codes [64].) Finally, Guruswami, Sahai, and
Sudan [44] showed how to unify the above codes and al-
gorithms using an “ideal-theoretic framework” and how
the above-mentioned algorithms could be expressed as
special cases of this ideal-theoretic algorithm. (Un-
fortunately, we are not yet aware of any interesting
ideal-theoretic codes other than the ones already men-
tioned!)

New paradigms for list-decoding. The above re-
sults show how to adapt a paradigm for a decoding
algorithm to work for different classes of codes. A
second strain of results show how to use the Reed-
Solomon decoding algorithm can be used as a sub-
routine to construct list-decoding algorithms for other
families of codes. These results are highly non-trivial
in that the resulting algorithms (and sometimes also
the codes) are very distinct from the algorithm de-
scribed above and potentially generate new paradigms
in decoding algorithms. One such result, due to Arora
and Sudan [3] with improvements by Sudan, Trevisan
and Vadhan [91], produces a list-decoding algorithm
for Reed-Muller codes. This result is a culmination of a

13

long series of works on the “random self-reducibility” of
multivariate polynomials [8, 31, 32, 26]. These results
are typically stated and studied in very different con-
texts — however, they are essentially just randomized
decoding algorithms for Reed-Muller codes, whose effi-
ciency can be highlighted even further if one looks into
the non-standard models of computing used in these
papers. A second such result is a new and exciting
construction of codes based on “extractors”, due to Ta-
Shma and Zuckerman [93], whose constructions lead to
new codes with interesting “soft-decision decoding” ca-
pabilities. Unfortunately, we won’t be able to discuss
the terms “extractors”, or “soft-decision decoding” in
this article, so we won’t dwell on this result. Neverthe-
less this result gives one of only four distinctive flavors
of list-decoding algorithms, and thus is important for
future study. Finally, Guruswami and Indyk [41] con-
struct several families codes with efficient list-decoding
algorithms. An example of the many results given there
is a binary code of positive rate which is list-decodable
upto nearly 1/2 fraction of errors in nearly linear time.
Formally, for every β, ε > 0, they show there exists
an R > 0 and an infinite family of codes of rate R
which is list-decodable to within 1/2− ε fraction of er-
rors in time O(n1+β). (Previously it was known how to
achieve such error-correction capability in polynomial
time [91, 43].)

Improvements to error-correction capabil-
ity. As noted above, the decoding algorithm for the
Reed Solomon codes only improved upon the error-
correction capability for codes of rate less than 1/3.
(The case of other codes gets even worse!) Focussing
on this aspect, Guruswami and Sudan [42], proposed
an extension to the Reed-Solomon decoding algorithm
that overcame this limitation. This algorithm has the
feature that it can decode Reed Solomon codes for
the largest error bound e for which it is known that
a ball of radius e has only polynomially many radius
(see the discussion leading to the Elias-Bassalygo
bound). Thus any improvements to this algorithm
would require new combinatorial insights about Reed
Solomon codes. [42] give similar results also for
algebraic geometry codes where the best results are
due to Kötter and Vardy [55]. Similar improvements
were also obtained for the case of CRT codes by
Boneh [16] and Guruswami, Sahai, and Sudan [44].

Improving the running time. Most of the decod-
ing algorithms described above (with the exception of
the result by Guruswami and Indyk [41]) run in poly-
nomial time but not a particularly small polynomial!
Fortunately, a fair amount of effort has been expended
in the coding theory literature on making these running

times more respectable. For instance, [70, 79] show how
to solve the interpolation problem defined in the first
stage of the list-decoding algorithm for Reed Solomon
codes (as well as the variant that comes up in the case
of algebraic geometry codes) in O(n2) time, when the
output list size is a constant. Similar running times
are also known for the root finding problem (which
suffices for the second step in the algorithms above)
[4, 29, 67, 70, 79, 100]. Together these algorithms fur-
ther enhance the practical potential for list-decoding
(at least they turn the focus away from algorithmic
issues and move them towards combinatorial ones).

The wealth of results revolving around list-decoding
is growing even as we write this article, shedding fur-
ther light on its combinatorial significance, algorithmic
capability, and use in theoretical computer science. A
good starting point for further reading on this topic
may be the thesis of Guruswami [40].

4 Conclusions

In summary we have hope to have introduced coding
theory to a wide audience and convinced them that this
field contains a wealth of results, while also offering the
potential for new research problems. In particular some
central algorithmic questions of coding theory, both in
the Shannon sense and in the Hamming sense are open
today, and theoretical computer scientists can (and
are) contributing. Readers seeking further material are
encouraged to check out the website of the author [90].
More stable sources of information include the classical
text of MacWilliams and Sloane [63], the concise text
of van Lint on algebraic coding theory [59], the out-of-
print, but highly recommended, book by Blahut [15]
which is an excellent source for some of the algorith-
mic works, and the highly detailed (and not-so-handy)
handbook of coding theory [49].

Acknowledgments

Many thanks to Venkatesan Guruswami for many
conversations, and pointers to the early history.

References

[1] Sigal Ar, Richard Lipton, Ronitt Rubinfeld, and
Madhu Sudan. Reconstructing algebraic functions
from mixed data. SIAM Journal on Computing,
28(2):488–511, 1999.

[2] Sanjeev Arora, Laszlo Babai, Jacques Stern and
Elizabeth Z. Sweedyk. The hardness of ap-

14

proximating problems defined by linear con-
straints. Journal of Computer and System Sci-
ences, 54(2):317–331, April 1997.

[3] Sanjeev Arora and Madhu Sudan. Improved low-
degree testing and its applications. Proceedings
of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, pages 485–495, 1997.

[4] Daniel Augot and Lancelot Pecquet. A Hensel
lifting to replace factorization in list decod-
ing of algebraic-geometric and Reed-Solomon
codes. IEEE Transactions on Information The-
ory, 46:2605–2613, November 2000.

[5] Alexander Barg. Complexity issues in coding the-
ory. In [49, Chapter 7].

[6] Alexander Barg and Gillés Zémor. Linear-time de-
codable, capacity achieving binary codes with ex-
ponentially falling error probability. IEEE Trans-
actions on Information Theory, 2001.

[7] L. A. Bassalygo. New upper bounds for error cor-
recting codes. Problems of Information Transmis-
sion, 1(1):32–35, 1965.

[8] D. Beaver and J. Feigenbaum. Hiding instances in
multioracle queries. Proceedings of the 7th Sympo-
sium on Theoretical Aspects of Computer Science,
Lectures Notes in Computer Science v. 415, pp.
37–48, February 1990.

[9] Elwyn R. Berlekamp. Algebraic Coding Theory.
McGraw Hill, New York, 1968.

[10] Elwyn R. Berlekamp. Factoring polynomials over
large finite fields. Mathematics of Computations,
24:713–735, 1970.

[11] Elwyn R. Berlekamp. Key papers in the develop-
ment of coding theory. IEEE Press, New York,
1974.

[12] Elwyn R. Berlekamp. Bounded distance +1 soft-
decision Reed-Solomon decoding. IEEE Transac-
tions on Information Theory, 42(3):704–720, 1996.

[13] Elwyn R. Berlekamp, Robert J. McEliece, and
Henk C. A. van Tilborg. On the inherent in-
tractability of certain coding problems (Cor-
resp.). IEEE Transactions on Information Theory,
24(3):384–386, May 1978.

[14] Richard E. Blahut. Principles and Practice of
Information Theory. Addison-Wesley, Reading,
Massachusetts, 1987.

[15] Richard E. Blahut. Theory and Practice of Error
Control Codes. Addison-Wesley, Reading, Mas-
sachusetts, 1983.

[16] Dan Boneh. Finding smooth integers in short in-
tervals using CRT decoding. Proceedings of the
32nd Annual ACM Symposium on Theory of Com-
puting, pages 265–272, 2000.

[17] R. C. Bose and D. K. Ray-Chaudhuri. On a class
of error correcting binary group codes. Informa-
tion and Control, 3:68–79, 1960.

[18] T.M. Cover and Joy A. Thomas. Elements of In-
formation Theory. Wiley Publishing, New York,
1991.

[19] Ph. Delsarte. An algebraic approach to the asso-
ciation schemes of coding theory. Philips Research
Reports, Suppl. 10, 1973.

[20] Irit Dinur, Guy Kindler, and Shmuel Safra.
Approximating-CVP to within almost-polynomial
factors is NP-hard. Proceedings of the 39th An-
nual IEEE Symposium on Foundations of Com-
puter Science, 1998.

[21] Rod G. Downey, Michael R. Fellows, Alexander
Vardy, and Geoff Whittle. The parametrized com-
plexity of some fundamental problems in coding
theory. SIAM Journal on Computing 29(2):545–
570, 1999.

[22] Ilya I. Dumer. Two algorithms for the decoding of
linear codes. Problems of Information Transmis-
sion, 25(1):24–32, 1989.

[23] Ilya Dumer, Daniele Micciancio, and Madhu Su-
dan. Hardness of approximating the minimum dis-
tance of a linear code. Proceedings of the 40th An-
nual Symposium on Foundations of Computer Sci-
ence, pages 475-484, New York City, New York,
17-19 October, 1999.

[24] Iwan M. Duursma. Decoding codes from curves
and cyclic codes. Ph.D. Thesis, Eindhoven, 1993.

[25] Peter Elias. List decoding for noisy channels.
Technical Report 335, Research Laboratory of
Electronics, MIT, 1957.

[26] Uriel Feige and Carsten Lund. On the hardness
of computing the permanent of random matrices.
Computational Complexity, 6(2):101–132, 1997.

[27] G. David Forney. Concatenated Codes. MIT Press,
Cambridge, MA, 1966.

15

[28] Robert G. Gallager. Low Density Parity Check
Codes. MIT Press, Cambridge, Massachusetts,
1963.

[29] Shuhong Gao and M. Amin Shokrollahi. Com-
puting roots of polynomials over function fields of
curves. Coding Theory and Cryptography: From
Enigma and Geheimschreiber to Quantum Theory
(D. Joyner, Ed.), Springer, pages 214–228, 2000.

[30] Arnaldo Garcia and Henning Stichtenoth. A tower
of Artin-Schreier extensions of function fields at-
taining the Drinfeld-Vlădut bound. Inventiones
Mathematicae, 121:211–222, 1995.

[31] Peter Gemmell, Richard Lipton, Ronitt Rubin-
feld, Madhu Sudan, and Avi Wigderson. Self-
testing/correcting for polynomials and for approx-
imate functions. Proceedings of the Twenty Third
Annual ACM Symposium on Theory of Comput-
ing, pages 32-42, New Orleans, Louisiana, 6-8 May
1991.

[32] Peter Gemmell and Madhu Sudan. Highly resilient
correctors for multivariate polynomials. Informa-
tion Processing Letters, 43(4):169–174, 1992.

[33] E. N. Gilbert. A comparison of signalling alpha-
bets. Bell System Technical Journal, 31:504–522,
May 1952.

[34] Marcel J. E. Golay. Notes on digital coding. Pro-
ceedings of the IRE, v. 37, page 657, June 1949.

[35] Oded Goldreich and Leonid Levin. A hard-core
predicate for all one-way functions. Proceedings of
the 21st Annual ACM Symposium on Theory of
Computing, pages 25–32, May 1989.

[36] Oded Goldreich, Dana Ron, and Madhu Su-
dan. Chinese remaindering with errors.
IEEE Transactions on Information Theory,
46(5):1330–1338, July 2000. (Fuller version
available as TR98-062 (Revision 4), Electronic
Colloquium on Computational Complexity
http://www.eccc.uni-trier.de/eccc.)

[37] V. D. Goppa. Codes on algebraic curves. Soviet
Math. Doklady, 24:170–172, 1981.

[38] Daniel Gorenstein and Neal Zierler. A class of
error-correcting codes in pm symbols. Journal of
Society of Industrial and Applied Mathematics,
9:207–214, June 1961.

[39] Dima Grigoriev. Factorization of polynomials
over a finite field and the solution of systems

of algebraic equations. Translated from Za-
piski Nauchnykh Seminarov Lenningradskogo Ot-
deleniya Matematicheskogo Instituta im. V. A.
Steklova AN SSSR, 137:20–79, 1984.

[40] Venkatesan Guruswami. List decoding of Error-
correcting codes. Ph.D. Thesis. Massachusetts In-
stitute of Technology, 2001.

[41] Venkatesan Guruswami and Piotr Indyk.
Expander-based constructions of efficiently
decodable codes. Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science,
to appear, October 2001.

[42] Venkatesan Guruswami and Madhu Sudan. Im-
proved decoding of Reed-Solomon and algebraic-
geometric codes. IEEE Transactions on Informa-
tion Theory, 45:1757–1767, 1999.

[43] Venkatesan Guruswami and Madhu Sudan. List
decoding algorithms for certain concatenated
codes. Proceedings of the 32nd Annual ACM Sym-
posium on Theory of Computing, pages 181–190,
2000.

[44] Venkatesan Guruswami, Amit Sahai, and Madhu
Sudan. Soft-decision decoding of Chinese Remain-
der codes. Proceedings of the 41st IEEE Sympo-
sium on Foundations of Computer Science, pages
159–168, 2000.

[45] Richard W. Hamming. Error Detecting and Error
Correcting Codes. Bell System Technical Journal,
29:147–160, April 1950.

[46] H. J. Helgert. Alternant codes. Information and
Control, 26:369–380, 1974.

[47] A. Hocquenghem. Codes correcteurs d’erreurs.
Chiffres (Paris), 2:147–156, 1959.

[48] Tom Høholdt, Jacobus H. van Lint, Ruud Pel-
likaan. Algebraic geometry codes. In [49].

[49] C. Huffman and V. Pless. Handbook of Coding
Theory, volumes 1 & 2. Elsevier Sciences, 1998.

[50] S. M. Johnson. A new upper bound for error-
correcting codes. IEEE Transactions on Informa-
tion Theory, 8:203–207, 1962.

[51] Jørn Justesen. A class of constructive asymptoti-
cally good algebraic codes. IEEE Transactions on
Information Theory, 18:652–656, 1972.

16

[52] Erich Kaltofen. Polynomial-time reductions from
multivariate to bi- and univariate integral polyno-
mial factorization. SIAM Journal on Computing,
14(2):469–489, 1985.

[53] G. L. Katsman, Michael Tsfasman, and Serge
Vlădut. Modular curves and codes with a poly-
nomial construction. IEEE Transactions on In-
formation Theory, 30:353–355, 1984.

[54] Ralf Kötter. A unified description of an error
locating procedure for linear codes. Proceedings
of Algebraic and Combinatorial Coding Theory,
Voneshta Voda, Bulgaria, 1992.

[55] Ralf Kötter and Alexander Vardy. Algebraic soft-
decision decoding of Reed-Solomon codes. Pro-
ceedings of the 38th Annual Allerton Confer-
ence on Communication, Control and Computing,
pages 625–635, October 2000.

[56] Arjen K. Lenstra. Factoring multivariate polyno-
mials over finite fields. Journal of Computer and
System Sciences, 30(2):235–248, April 1985.

[57] V. I. Levenshtein. Universal bounds for codes and
designs. [49, Chapter 6], 1998.

[58] Jacobus H. van Lint. Nonexistence theorems for
perfect error-correcting codes. Proceedings of the
Symposium on Computers in Algebra and Number
Theory, New York, 1970, pages 89–95, G. Birkhoff
and M. Hall Jr. (Eds), SIAM-AMS Proceedings
vol IV, American Mathematical Society, Provi-
dence, RI, 1971.

[59] Jacobus H. van Lint. Introduction to Coding The-
ory. Graduate Texts in Mathematics 86, (Third
Edition) Springer-Verlag, Berlin, 1999.

[60] M. Luby, M. Mitzenmacher, M. A. Shokrollahi and
D. Spielman. Analysis of low density codes and im-
proved designs using irregular graphs. STOC 1998.

[61] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D.
Spielman, and V. Stemann. Practical loss-resilient
codes. Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, pages
150–159, 1997.

[62] Jessie MacWilliams. A theorem on the distribu-
tion of weights in a systematic code. Bell Systems
Technical Journal, 42:79–94, January 1963.

[63] F. J. MacWilliams and Neil J. A. Sloane. The The-
ory of Error-Correcting Codes. Elsevier/North-
Holland, Amsterdam, 1981.

[64] D. M. Mandelbaum. On a class of arithmetic codes
and a decoding algorithm. IEEE Transactions on
Information Theory, 21:85–88, 1976.

[65] J. L. Massey. Threshold decoding. MIT Press,
Cambridge, 1963.

[66] J. L. Massey. Shift-register synthesis and BCH de-
coding. IEEE Transactions on Information The-
ory, 15:122–127, 1969.

[67] R. Matsumoto. On the second step in the
Guruswami-Sudan list decoding algorithm for ag-
codes. Technical Report of IEICE, pages 65–70,
1999.

[68] Robert J. McEliece, E. R. Rodemich, H. C. Rum-
sey, and L. R. Welch. New upper bounds on
the rate of a code via the Delsarte-Macwilliams
inequalities. IEEE Transactions on Information
Theory, 23:157–166, 1977.

[69] D. E. Muller. Application of Boolean algebra to
switching circuit design and to error detection.
IRE Transactions on Electronic Computation, vol.
EC-3, pp 6–12, Sept. 1954.

[70] Rasmus R. Nielsen and Tom Høholdt. Decoding
Hermitian codes with Sudan’s algorithm. Proceed-
ings of AAECC-13, LNCS 1719, pages 260–270,
1999.

[71] Vadim Olshevsky and M. Amin Shokrollahi. A
displacement structure approach to efficient list
decoding of algebraic geometric codes. Proccedings
of the 31st Annual ACM Symposium on Theory of
Computing, 1999.

[72] Ruud Pellikaan. On decoding linear codes by error
correcting pairs. Eindhoven University of Technol-
ogy, preprint, 1988.

[73] W. W. Peterson. Encoding and error-correction
procedures for Bose-Chaudhuri codes. IRE Trans-
actions on Information Theory, 6:459–470, 1960.

[74] M. Plotkin. Binary codes with specified minimum
distance. IRE Transactions on Information The-
ory, IT-6:445–450, 1960.

[75] Irving S. Reed. A class of multiple-error-correcting
codes and the decoding scheme. IRE Transactions
on Information Theory, vol. PGIT-4, pp. 38–49,
September 1954.

[76] I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. J. SIAM, 8:300–304, 1960.

17

[77] Tom Richardson and Rudiger Urbanke. The ca-
pacity of low-density parity-check codes under
message-passing decoding. IEEE Transactions on
Information Theory, March 2001.

[78] Tom Richardson, Amin Shokrollahi and Rudiger
Urbanke. Design of capacity-approaching irregu-
lar low-density parity-check codes. IEEE Trans-
actions on Information Theory, March 2001.

[79] Ronny Roth and Gitit Ruckenstein. Efficient de-
coding of Reed-Solomon codes beyond half the
minimum distance. IEEE Transactions on Infor-
mation Theory, 46(1):246–257, January 2000.

[80] Claude E. Shannon. A mathematical theory of
communication. Bell System Technical Journal,
27:379–423, 623–656, 1948.

[81] Claude E. Shannon, Robert G. Gallager, and El-
wyn R. Berlekamp. Lower bounds to error proba-
bility for coding on discrete memoryless channels.
Information and Control, 10:65–103 (Part I), 522–
552 (Part II), 1967.

[82] M. Amin Shokrollahi and Hal Wasserman. List de-
coding of algebraic-geometric codes. IEEE Trans-
actions on Information Theory, 45(2):432–437,
1999.

[83] V. M. Sidelnikov. Decoding Reed-Solomon codes
beyond (d − 1)/2 and zeros of multivariate poly-
nomials. Problems of Information Transmission,
30(1):44–59, 1994.

[84] Michael Sipser and Daniel Spielman. Expander
codes. IEEE Transactions on Information Theory,
42(6):1710–1722, 1996.

[85] David Slepian. A class of binary signalling alpha-
bets. Bell System Technical Journal, 35:203–234,
January 1956.

[86] Daniel Spielman. Linear-time encodable and de-
codable error-correcting codes. IEEE Transac-
tions on Information Theory, 42(6):1723–1732,
1996.

[87] Henning Stichtenoth. Algebraic Function Fields
and Codes. Springer-Verlag, Berlin, 1993.

[88] Madhu Sudan. Decoding of Reed-Solomon codes
beyond the error-correction bound. Journal of
Complexity, 13(1):180–193, 1997.

[89] Madhu Sudan. Decoding of Reed-Solomon codes
beyond the error-correction diameter. Proceedings
of the 35th Annual Allerton Conference on Com-
munication, Control and Computing, 1997.

[90] Madhu Sudan. A Crash Course in
Coding Theory. Slides available from
http://theory.lcs.mit.edu/˜madhu, Novem-
ber 2000.

[91] Madhu Sudan, Luca Trevisan, and Salil Vad-
han. Pseudorandom generators without the XOR
lemma. Journal of Computer and System Sci-
ences, 62(2): 236–266, March 2001.

[92] R. Michael Tanner. A recursive approach to low
complexity codes. IEEE Transactions on Informa-
tion Theory, 27:533–547, September 1981.

[93] Amnon Ta-Shma and David Zuckerman. Extrac-
tor Codes. Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing, pages 193–
199, July 2001.

[94] Aimo Tietavainen. On the nonexistence of perfect
codes over finite fields. SIAM Journal of Applied
Mathematics, 24(1):88-96, January 1973.

[95] Michael A. Tsfasman, Serge G. Vlădut, and
Thomas Zink. Modular curves, Shimura curves,
and codes better than the Varshamov-Gilbert
bound. Math. Nachrichten, 109:21–28, 1982.

[96] Alexander Vardy. Algorithmic complexity in cod-
ing theory and the minimum distance problem.
STOC, pages 92-109, 1997.

[97] R. R. Varshamov. Estimate of the number of sig-
nals in error correcting codes. Dokl. Akad. Nauk
SSSR, 117:739–741, 1957.

[98] Lloyd Welch and Elwyn R. Berlekamp. Error cor-
rection of algebraic block codes. US Patent Num-
ber 4,633,470, December 1986.

[99] J. M. Wozencraft. List Decoding. Quarterly
Progress Report, Research Laboratory of Electron-
ics, MIT, 48:90–95, 1958.

[100] Xin-Wen Wu and P. H. Siegel. Efficient list de-
coding of algebraic geometric codes beyond the
error correction bound. Proceedings of the Inter-
national Symposium on Information Theory, June
2000.

18

