
Small PCPs with Low Query Complexity

Prahladh Harsha and Madhu Sudan ?

Laboratory for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139.

{prahladh,madhu}@mit.edu

Abstract. Most known constructions of probabilistically checkable proofs (PCPs)
either blow up the proof size by a large polynomial, or have a high (though con-
stant) query complexity. In this paper we give a transformation with slightly-
super-cubic blowup in proof size, with a low query complexity. Specifically, the
verifier probes the proof in 16 bits and rejects every proof of a false assertion
with probability arbitrarily close to 1

2
, while accepting corrects proofs of theo-

rems with probability one. The proof is obtained by revisiting known construc-
tions and improving numerous components therein. In the process we abstract a
number of new modules that may be of use in other PCP constructions.

1 Introduction

Probabilistically checkable proofs (PCP) have played a major role in proving the hard-
ness of approximation of various combinatorial optimization problems. Constructions
of PCPs have been the subject of active research in the last ten years. In the last decade,
there have been several “efficient” construction of PCPs which in turn have resulted in
tighter inapproximability results. Arora et al. [1] showed that it is possible to transform
any proof into a probabilistically checkable one of polynomial size, such that it is ver-
ifiable with a constant number of queries. Valid proofs are accepted with probability
one (this parameter is termed the completeness of the proof), while any purported proof
of an invalid assertion is rejected with probability 1/2 (this parameter is the soundness
of the proof). Neither the proof size, nor the query complexity is explicitly described
there; however the latter is estimated to be around 106.

Subsequently much success has been achieved in improving the parameters of PCPs,
constructing highly efficient proof systems either in terms of their size or their query
complexity. The best result in terms of the former is a result of Polishchuk and Spiel-
man [12]. They show how any proof can be transformed into a probabilistically check-
able proof with only a mild blowup in the proof size, of n1+ε for arbitrarily small ε > 0
and that is checkable with only a constant number of queries. This number of queries
however is of the order of O(1/ε2), with the constant hidden by the big-Oh being some
multiple of the query complexity of [1]. On the other hand, Håstad [10] has constructed
PCPs for arbitrary NP statements where the query complexity is a mere three bits (for
completeness almost 1 and soundness 1/2). However the blowup in the proof size of
Håstad’s PCPs has an exponent proportional to the query complexity of the PCP of [1].

? Supported in part by a Sloan Foundation Fellowship and NSF Career Award CCR-9875511.

Thus neither of these “nearly-optimal” results provides simultaneous optimality of the
two parameters. It is reasonable to wonder if this inefficiency in the combination of the
two parameters is inherent; and our paper is motivated by this question.

We examine the size and query complexity of PCPs jointly and obtain a construction
with reasonable performance in both parameters. The only previous work that mentions
the joint size vs. query complexity of PCPs is a work of Friedl and Sudan [8], who
indicate that NP has PCPs with nearly quadratic size complexity and in which the ver-
ifier queries the proof for 165 bits. The main technical ingredient in their proof was
an improved analysis of the “low-degree test”. Subsequent to this work, the analysis
of low-degree tests has been substantially improved. Raz and Safra [13] and Arora and
Sudan [3] have given highly efficient analysis of different low-degree tests. Further-
more, techniques available for “proof composition” have improved, as also have the
construction for terminal “inner verifiers”. In particular, the work of Håstad [9, 10], has
significantly strengthened the ability to analyze inner verifiers used at the final compo-
sition step of PCP constructions.

In view of these improvements, it is natural to expect the performance of PCP con-
structions to improve. Our work confirms this expectation. However, our work exposes
an enormous number of complications in the natural path of improvement. We resolve
most of these, with little loss in performance and thereby obtain the following result:
Satisfiability has a PCP verifier that makes at most 16 oracle queries to a proof of size
at most n3+o(1), where n is the size of the instance of satisfiability. Satisfiable instances
have proofs that are accepted with probability one, while unsatisfiable instances are
accepted with probability arbitrarily close to 1/2. (See Main Theorem 1.)

We also raise several technical questions whose positive resolution may lead to a
PCP of nearly quadratic size and query complexity of 6. Surprisingly, no non-trivial
limitations are known on the joint size + query complexity of PCPs. In particular, it is
open as to whether nearly linear sized PCPs with query complexity of 3 exist for NP
statements.

2 Overview

We first recall the standard definition of the class PCPc,s[r, q].

Definition 1. For functions r, q : ZZ+ → ZZ+, a probabilistic oracle machine (or ver-
ifier) V is (r, q)-restricted if on input x of length n, the verifier tosses at most r(n) ran-
dom coins and queries an oracle π for at most q(n) bits. A language L ∈ PCPc,s[r, q]
if there exists an (r, q)-restricted verifier V that satisfies the following properties on
input x.

Completeness If x ∈ L then there exists π such that V on oracle access to π accepts
with probability at least c.

Soundness If x 6∈ L then for every oracle π, the verifier V accepts with probability
strictly less than s.

While our principal interest is in the size of a PCP and not in the randomness, it is well-
known that the size of a probabilistically checkable proof (or more precisely, the number

of distinct queries to the oracle π) is at most 2r(n)+q(n). Thus the size is implicitly
governed by the randomness and query complexity of a PCP. The main result of this
paper is the following.

Main Theorem 1. For every ε, µ > 0, SAT ∈ PCP1, 12+µ [(3 + ε) log n, 16] .

Remark: Actually the constants ε and µ above can be replaced by some o(1) functions;
but we don’t derive them explicitly.

It follows from the parameters that the associated proof is of size at most O(n3+ε).
Cook [6] showed that any language in NTIME(t(n)) could be reduced to SAT in
O(t(n) log t(n)) time such that instances of size n are mapped to Boolean formulae
of size at most O(t(n) log t(n)). Combining this with the Main Theorem 1, we have
that every language in NP has a PCP with at most a slightly super-cubic blowup in
proof size and a query complexity as low as 16 bits.

2.1 MIP and Recursive Proof Composition
As pointed out earlier, the parameters we seek are such that no existing proof system
achieves them. Hence we work our way through the PCP construction of Arora et al. [1]
and make every step as efficient as possible. The key ingredient in their construction (as
well as most subsequent constructions) is the notion of recursive composition of proofs,
a paradigm introduced by Arora and Safra [2]. The paradigm of recursive composition
is best described in terms of multi-prover interactive proof systems (MIPs).

Definition 2. For integer p, and functions r, a : ZZ+ → ZZ+, an MIP verifier V is
(p, r, a)-restricted if it interacts with p mutually-non-interacting provers π1, . . . , πp in
the following restricted manner. On input x of length n, V picks a random r(n)-bit
string R and generates p queries q1, . . . , qp and a circuit C of size at most a(n). The
verifier then issues query qi to prover πi. The provers respond with answers a1, . . . , ap
each of length at most a(n) and the verifier accepts x iff C(a1, . . . , ap) = true. A
language L belongs to MIPc,s[p, r, a] if there exists a (p, r, a)-restricted MIP verifier
V such that on input x:

Completeness If x ∈ L then there exist π1, . . . , πp such that V accepts with probability
at least c.

Soundness If x 6∈ L then for every π1, . . . , πp, V accepts with probability less than s.

It is easy to see that MIPc,s[p, r, a] is a subclass of PCPc,s[r, pa] and thus it is ben-
eficial to show that SAT is contained in MIP with nice parameters. However, much
stronger benefits are obtained if the containment has a small number of provers, even if
the answer size complexity (a) is not very small. This is because the verifier’s actions
can usually be simulated by a much more efficient verification procedure, one with
much smaller answer size complexity, at the cost of a few more provers. Results of this
nature are termed proof composition lemmas; and the efficient simulators of the MIP
verification procedure are usually called “inner verification procedures”.

The next three lemmas divide the task of proving Main Theorem 1 into smaller
subtasks. The first gives a starting MIP for satisfiability, with 3 provers, but poly-
logarithmic answer size. We next give the composition lemma that is used in the in-
termediate stages. The final lemma gives our terminal composition lemma – the one
that reduces answer sizes from some slowly growing function to a constant.

Lemma 2. For every ε, µ > 0, SAT ∈ MIP1,µ[3, (3 + ε) log n, poly log n].

Lemma 2 is proven in Sect. 3. This lemma is critical to bounding the proof size. This
lemma follows the proof of a similar one (the “parallelization” step) in [1]; however
various aspects are improved. We show how to incorporate advances made by Pol-
ishchuk and Spielman [12], and how to take advantage of the low-degree test of Raz
and Safra [13]. Most importantly, we show how to save a quadratic blowup in this
phase that would be incurred by a direct use of the parallelization step in [1].

The first composition lemma we use is an off-the-shelf product due to [3]. Similar
lemmas are implicit in the works of Bellare et al. [5] and Raz and Safra [13].

Lemma 3 ([3]). For every ε > 0 and p < ∞, there exist constants c1, c2, c3 such that
for every r, a : ZZ+ → ZZ+,

MIP1,ε[p, r, a] ⊆ MIP1,ε1/(2p+2) [p+ 3, r + c1 log a, c2(log a)c3] .

The next lemma shows how to truncate the recursion. This lemma is proved in Sect. 4
using a “Fourier-analysis” based proof, as in [9, 10]. This is the first time that this style
of analysis has been applied to MIPs with more than 2 provers. All previous analyses
seem to have focused on composition with canonical 2-prover proof systems at the outer
level. Our analysis reveals surprising complications and forces us to use a large number
(seven) of extra bits to effect the truncation.

Lemma 4. For every ε > 0 and p < ∞, there exists a γ > 0 such that for every
r, a : ZZ+ → ZZ+,

MIP1,γ [p, r, a] ⊆ PCP1, 12+ε[r +O (2pa) , p+ 7] .

Proof (of Main Theorem 1). The proof is straightforward given the above lemmas. We
first apply Lemma 2 to get a 3-prover MIP for SAT, then apply Lemma 3 twice to get a 6-
and then a 9-prover MIP for SAT. The answer size in the final stage is poly log log log n.
Applying Lemma 4 at this stage we obtain a 16-query PCP for SAT; and the total ran-
domness in all stages remains (3 + ε) log n. ut

Organization of the paper: In Section 3, we prove Lemma 2. For this purpose, we
present the Polynomial Constraint Satisfaction problem in Section 3.2 and discuss its
hardness. We then discuss the Low degree Test in Section 3.3. Most aspects of the
proofs in Section 3 are drawn from previous works of [1, 3, 12, 13]. Hence, we abstract
the main results in this section and leave the detailed proofs to the full version of the
paper1 In Section 4, we present the proof of Lemma 4. In section 5 we suggest possible
approaches for improvements in the joint size-query complexity of PCPs.

3 A Randomness Efficient MIP for SAT

In this section, we use the term “length-preserving reductions”, to refer to reductions
in which the length of the target instance of the reduction is nearly-linear (O(n1+ε) for
arbitrarily small ε) in the length of the source instance.

1 A full version of this paper can be found at ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2000/TR00-061/index.html.

To prove membership in SAT, we first transform SAT into an algebraic problem.
This transformation comes in two phases. First we transform it to an algebraic problem
(that we call AP for lack of a better name) in which the constraints can be enumerated
compactly. Then we transform it to a promise problem on polynomials, called Polyno-
mial Constraint Satisfaction (PCS), with a large associated gap. We then show how to
provide an MIP verifier for the PCS problem.

Though most of these results are implicit in the literature, we find that abstract-
ing them cleanly significantly improves the exposition of PCPs. The first problem,
AP, could be proved to be NP-hard almost immediately, if one did not require length-
preserving reductions. We show how the results of Polishchuk and Spielman [12] imply
a length preserving reduction from SAT to this problem. We then reduce this problem
to PCS. This step mimics the sum-check protocol of Lund et al. [11]. The technical im-
portance of this intermediate step is the fact that it does not refer to “low-degree” tests
in its analysis. Low-degree tests are primitives used to test if the function described
by a given oracle is close to some (unknown) multivariate polynomial of low-degree.
Low-degree tests have played a central role in the constructions of PCPs. Here we sep-
arate (to a large extent) their role from other algebraic manipulations used to obtain
PCPs/MIPs for SAT .

In the final step, we show how to translate the use of state-of-the-art low-degree
tests, in particular the test of Raz and Safra [13], in conjunction with the hardness of
PCS to obtain a 3-prover MIP for SAT. This part follows a proof of Arora et al. [1]
(their parallelization step); however a direct implementation would involve 6 log n ran-
domness, or an n6 blow up in the size of the proof. Part of this is a cubic blow up due
to the use of the low-degree test and we are unable to get around this part. Direct use of
the parallelization also results in a quadratic blowup of the resulting proof. We save on
this by creating a variant of the parallelization step of [1] that uses higher dimensional
varieties instead of 1-dimensional ones.

3.1 A Compactly Described Algebraic NP-hard Problem

Definition 3. For functions m,h : ZZ+ → ZZ+, the problem APm,h has as its in-
stances (1n, H, T, ψ, ρ1, . . . , ρ6) where: H is a field of size h(n), ψ : H7 → H is a
constant degree polynomial, T is an arbitrary function from Hm to H and the ρi’s are
linear maps from Hm to Hm, for m = m(n). (T is specified by a table of values, and
ρi’s by m ×m matrices.) (1n, H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h if there exists an assign-
ment A : Hm → H such that for every x ∈ Hm, ψ(T (x), A(ρ1(x)), . . . , A(ρ6(x))) =
0.

The above problem is just a simple variant of standard constraint satisfaction problems,
the only difference being that its variables and constraints are now indexed by elements
of Hm. The only algebra in the above problem is in the fact that the functions ρi,
which dictate which variables participate in which constraint, are linear functions. The
following statement, abstracted from [12], gives the desired hardness of AP.

Lemma 5. There exists a constant c such that for any pair of functions m,h : ZZ+ →
ZZ+ satisfying h(n)m(n)−c ≥ n and h(n)m(n) = O(n1+o(1)), SAT reduces to APm,h
under length preserving reductions.

We note that Szegedy [16] has given an alternate abstraction of the result of [12] which
focuses on some different aspects and does not suffice for our purposes.

3.2 Polynomial Constraint Satisfaction

We next present an instance of an algebraic constraint satisfaction problem. This dif-
fers from the previous one in that its constraints are “wider”, the relationship between
constraints and variables that appear in it is arbitrary (and not linear), and the hardness
is not established for arbitrary assignment functions, but only for low-degree functions.
All the above changes only make the problem harder, so we ought to gain something
– and we gain in the gap of the hardness. The problem is shown to be hard even if the
goal is only to separate satisfiable instances from instances in which only ε fraction of
the constraints are satisfiable. We define this gap version of the problem first.

Definition 4. For ε : ZZ+ → IR+, and m, b, q : ZZ+ → ZZ+ the promise problem
GapPCSε,m,b,q has as instances (1n, d, k, s, IF;C1, . . . , Ct), where d, k, s ≤ b(n) are

integers and IF is a field of size q(n) and Cj = (Aj ;x
(j)
1 , . . . , x

(j)
k) is an algebraic con-

straint, given by an algebraic circuit Aj of size s on k inputs and x(j)
1 , . . . , x

(j)
k ∈ IFm,

for m = m(n). (1n, d, k, s, IF;C1, . . . , Ct) is a YES instance if there exists a polyno-
mial p : IFm → IF of degree at most d such that for every j ∈ {1, . . . , t}, the constraint
Cj is satisfied by p, i.e., Aj(p(x

(j)
1), . . . , p(x(j)

k)) = 0. (1n, d, k, s, IF;C1, . . . , Ct) is a
NO instance if for every polynomial p : IFm → IF of degree at most d it is the case that
at most ε(n) · t of the constraints Cj are satisfied.

Lemma 6. There exist constants c1, c2 such that for every choice of functions ε,m, b, q
satisfying (b(n)/m(n))m(n)−c1 ≥ n, q(n)m(n) = O

(
n1+o(n)

)
, q(n) ≥ c2b(n)/ε(n),

SAT reduces to GapPCSε,m,b,q under length preserving reductions.

(The problem APm,h is used as an intermediate problem in the reduction. However we
don’t mention this in the lemma, since the choice of parameters m,h may confuse the
statement further.) The proof of this lemma is inspired by the sum-check protocol of
Lund et al. [11] while the specific steps in our proof follow the proof in Sudan [15].

3.3 Low-Degree Tests

Using GapPCS it is easy to produce a simple probabilistically checkable proof for SAT.
Given an instance of SAT, reduce it to an instance I of GapPCS ; and provide as proof
the polynomial p : IFm → IF as a table of values. To verify correctness a verifier first
“checks” that p is close to some polynomial and then verifies that a random constraint
Cj is satisfied by p. Low-degree tests are procedures designed to address the first part
of this verification step – i.e., to verify that an arbitrary function f : IFm → IF is close
to some (unknown) polynomial p of degree d.

Low-degree tests have been a subject of much research in the context of program
checking and PCPs. For our purposes, we need tests that have very low probability of
error. Two such tests with analyses are known, one due to Raz and Safra [13] and an-
other due to Rubinfeld and Sudan [14] (with low-error analysis by Arora and Sudan [3])

For our purposes the test of Raz and Safra is more efficient. We describe their results
first and then compare its utility with the result in [3].

A plane in IFm is a collection of points parametrized by two variables. Specifically,
given a, b, c ∈ IFm the plane ℘a,b,c = {℘a,b,c(t1, t2) = a + t1b + t2c|t1, t2 ∈ IF}.
Several parameterizations are possible for a given plane. We assume some canonical
one is fixed for every plane, and thus the plane is equivalent to the set of points it
contains. The low-degree test uses the fact that for any polynomial p : IFm → IF of
degree d, the function p℘ : IF2 → IF given by p℘(t1, t2) = p(℘(t1, t2)) is a bivariate
polynomial of degree d. The verifier tests this property for a function f by picking a
random plane through IFm and verifying that there exists a bivariate polynomial that
has good agreement with f restricted to this plane. The verifier expects an auxiliary
oracle fplanes that gives such a bivariate polynomial for every plane. This motivates the
test below.

Low-Degree Test (Plane-Point Test)
Input: A function f : IFm → IF and an oracle fplanes, which for each plane in IFm

gives a bivariate degree d polynomial.
1. Choose a random point in the space x ∈R IFm.
2. Choose a random plane ℘ passing through x in IFm.
3. Query fplanes on ℘ to obtain the polynomial h℘. Query f on x.
4. Accept iff the value of the polynomial h℘ at x agrees with f(x).

It is clear that if f is a degree d polynomial, then there exists an oracle fplanes such that
the above test accepts with probability 1. It is non-trivial to prove any converse and Raz
and Safra give a strikingly strong converse. (see Theorem 7)

First some more notation. Let LDTf,fplanes(x, ℘) denote the outcome of the above
test on oracle access to f and fplanes. Let f, g : IFm → IF have agreement δ if
Prx∈IFm [f(x) = g(x)] = δ.

Theorem 7. There exist constants c0, c1 such that for every positive realδ, integersm, d
and field IF satisfying |IF| ≥ c0d(m/δ)c1 , the following holds: Fix f : IFm → IF and
fplanes. Let {P1, . . . , Pl} be the set of all m-variate polynomials of degree d that have
agreement at least δ/2 with the function f : IFm → IF. Then

Pr
x,℘

[f(x) 6∈ {P1(x), . . . , Pl(x)} and LDTf,fplanes(x, ℘) = accept] ≤ δ.

Remarks:
1. The actual theorem statement of Raz and Safra differs in a few aspects. The main dif-
ference being that the exact bound on the agreement probability described is different;
and the fact that the claim may only say that if the low-degree test passes with probabil-
ity greater than δ, then there exists some polynomial that agrees with f in some fraction
of the points. The full version of this paper will include a proof of the above theorem
from the statement of Raz and Safra.
2. The cubic blowup in our proof size occurs from the oracle fplanes which has size
cubic in the size of the oracle f . A possible way to make the proof shorter would be to
use an oracle for f restricted only to lines. (i.e., an analogous line-point test to the above
test) The analysis of [3] does apply to such a test. However they require the field size

to be (at least) a fourth power of the degree; and this results in a blowup in the proof to
(at least) an eighth power. Note that the above theorem only needs a linear relationship
between the degree and the field size.

3.4 Putting Them Together

As pointed out earlier a simple PCP for GapPCS can be constructed based on the low-
degree test above. A proof would be an oracle f representing the polynomial and the
auxiliary oracle fplanes. The verifier performs a low-degree test on f and then picks a
random constraint Cj and verifies that Cj is satisfied by the assignment f . But the naive
implementation would make k queries to the oracle f and this is too many queries. The
same problem was faced by Arora et al. [1] who solved it by running a curve through the
k points and then asking a new oracle fcurves to return the value of f restricted to this
curve. This solution cuts down the number of queries to 3, but the analysis of correctness
works only if |IF| ≥ kd. In our case, this would impose an additional quadratic blowup
in the proof size and we would like to avoid this. We do so by picking r-dimensional
varieties (algebraic surfaces) that pass through the given k points. This cuts down the
degree to rk1/r. However some additional complications arise: The variety needs to
pass through many random points, but not at the expense of too much randomness. We
deal with these issues below.

A variety V : IFr → IFm is a collection of m functions, V = 〈V1, . . . ,Vm〉, Vi :
IFr → IF. A variety is of degree D if all the functions V1, . . . ,Vm are polynomials of
degree D. For a variety V and function f : IFm → IF, the restriction of f to V is the
function f |V : IFr → IF given by f |V(a1, . . . , ar) = f(V(a1, . . . , ar)). Note that the
restriction of a degree d polynomial p : IFm → IF to an r-dimensional variety V of
degree D is an r-variate polynomial of degree Dd.

Let S ⊆ IF be of cardinality k1/r. Let z1, . . . , zk be some canonical ordering of
the points in Sr. Let V(0)

S,x1,...,xk
: IFr → IFm denote a canonical variety of degree

r|S| that satisfies V(0)
S,x1,...,xk

(zi) = xi for every i ∈ {1, . . . , k}. Let ZS : IFr → IF
be the function given by ZS(y1, . . . , yr) =

∏r
i=1

∏
a∈S(yi − a); i.e. ZS(zi) = 0.

Let α = 〈α1, . . . , αm〉 ∈ IFm. Let V(1)
S,α be the variety 〈α1ZS , . . . , αmZS〉. We will

let VS,α,x1,...,xk be the variety V(0)
S,x1,...,xk

+ V(1)
S,α. Note that if α is chosen at random,

VS,α,x1,...,xk(zi) = xi for zi ∈ Sr and VS,α,x1,...,xk(z) is distributed uniformly over
IFm if z ∈ (IF − S)r. These varieties will replace the role of the curves of [1]. We
note that Dinur et al. also use higher dimensional varieties in the proof of PCP-related
theorems [7]. Their use of varieties is for purposes quite different from ours.

We are now ready to describe the MIP verifier for GapPCSε,m,b,q . (Henceforth, we
shall assume that t, the number of constraints in GapPCSε,m,b,q instance is at most
q2m. In fact, for our reduction from SAT (Lemma 6), t is exactly equal to qm.)

MIP Verifierf,fplanes,fvarieties(1n, d, k, s, IF;C1, . . . , Ct).
Notation: r is a parameter to be specified. Let S ⊆ IF be such that |S| = k1/r.
1. Pick a, b, c ∈ IFm and z ∈ (IF− S)r at random.
2. Let ℘ = ℘a,b,c. Use b, c to compute j ∈ {1, . . . , t} at random (i.e., j is fixed

given b, c, but is distributed uniformly when b and c are random.) Compute α
such that V(z) = a for V = V

S,α,x
(j)
1 ,...,x

(j)
k

.

3. Query f(a), fplanes(℘) and fvarieties(V).
Let g = fplanes(℘) and h = fvarieties(V).

4. Accept if all the conditions below are true:
(a) g and f agree at a.
(b) h and f agree at a.
(c) Aj accepts the inputs h(z1), . . . , h(zk).

Complexity: Clearly the verifier V makes exactly 3 queries. Also, exactly 3m log q +
r log q random bits are used by the verifier. The answer sizes are at most O((drk1/r +
r)r log q) bits.

Now to prove the correctness of the verifier. Clearly, if the input instance is a YES
instance then there exists a polynomial P of degree d that satisfies all the constraints
of the input instance. Choosing f = P and constructing fplanes and fvarieties to be
restrictions of P to the respective planes and varieties, we notice that the MIP verifier
accepts with probability one. We now bound the soundness of the verifier.

Claim 8. Let δ be any constant that satisfies the conditions of Theorem 7 and δ ≥
4
√

d
q where q = |IF|. Then the soundness of the MIP Verifier is at most δ + 4ε/δ +

4rk
1
r d/δ(q − k 1

r).

Proof. Let P1, . . . , Pl be all the polynomials of degree d that have agreement at least
δ/2 with f . (Note l ≤ 4/δ since δ/2 ≥ 2

√
d/q) Now suppose, the MIP Verifier had

accepted a NO instance. Then one of the following events must have taken place.
Event 1: f(a) /∈ {P1(a), . . . , Pl(a)} and LDTf,fplanes(a, ℘) = accept.
We have from Theorem 7, that Event 1 could have happened with probability at most δ.
Event 2: There exists an i ∈ {1, . . . , l}, such that constraint Cj is satisfiable with
respect to polynomial Pi. (i.e., Aj(Pi(x

(j)
1), . . . , Pi(x

(j)
k)) = 0).

As the input instance is a NO instance of GapPCSε,m,b,q , this events happens with
probability at most lε ≤ 4ε/δ.
Event 3: For all i ∈ {1, . . . , p} , Pi|V 6= h, but the value of h at a is contained in
{P1(a), . . . , Pl(a)} .
To bound the probability of this event happening, we reinterpret the randomness of the
MIP verifier. First pick b, c, α ∈ IFm . From this we generate the constraint Cj and this
defines the variety V = V

S,α,x
(j)
1 ,...,x

(j)
k

. Now we pick z ∈ (IF − S)r at random and

this defines a = V(z). We can bound the probability of the event in consideration after
we have chosen V , as purely a function of the random variable z as follows. Fix any
i and V such that Pi|V 6= h . Note that the value of h at a equals h(z) (by definition.
of a, z and V). Further Pi(a) = Pi|V(z). But z is chosen at random from (IF − S)r.
By the Schwartz-Zippel lemma, the probability of agreement on this domain is at most
rk1/rd/(|IF| − |S|). Using the union bound over the i’s we get that this event happens
with probability at most lrk1/rd/(|IF| − |S|) ≤ 4rk

1
r d/δ(q − k 1

r).
We thus have that the probability of the verifier accepting a NO instance is at most

δ + 4ε/δ + 4rk
1
r d/δ(q − k 1

r). ut

We can now complete the construction of a 3-prover MIP for SAT and give the proof
of Lemma 2.

Proof (of Lemma 2). Choose δ = µ
3 . Let c0, c1 be the constants that appear in The-

orem 7. Choose ε′ = ε/2 where ε is the soundness of the MIP, we wish to prove.
Choose ε = min{δµ/12, ε′/3(9+c1)}. Let n be the size of the SAT instance. Letm =
ε log n/ log log n, b = (log n)3+

1
ε and q = (log n)9+c1+

1
ε . Note that this choice of pa-

rameters satisfies the requirements of Lemma 6. Hence, SAT reduces to GapPCSε,m,b,q
under length preserving reductions. Combining this reduction with the MIP verifier
for GapPCS, we have a MIP verifier for SAT. Also δ satisfies the requirements of
Claim 8. Thus, this MIP verifier has soundness as given by Claim 8. Setting r = 1

ε , we
have that for sufficiently large n, 4rk

1
r d/δ(q − k

1
r) ≤ 8rk

1
r d/qδ ≤ µ/3. Hence,

the soundness of the MIP verifier is at most δ + 4ε/δ + µ/3 ≤ µ. The random-
ness used is exactly 3m log q + r log q which with the present choice of parameters
is (3 + ε′) log n+ poly log n ≤ (3 + ε) log n. The answer sizes are clearly poly log n.
Thus, SAT ∈ MIP1, 12+µ[(3 + ε) log n, poly log n]. ut

4 Constant Query Inner Verifier for MIPs

In this section, we truncate the recursion by constructing a constant query “inner veri-
fier” for a p-prover interactive proof system. An inner verifier is a subroutine designed
to simplify the task of an MIP verifier. Say an MIP verifier Vout, on input x and ran-
dom string R, generated queries q1, . . . , qp and a linear sized circuit C. In the standard
protocol the verifier would send query qi to prover Πi and receive some answer ai.
The verifier accepts if C(a1, . . . , ap) = true. An inner verifier reduces the answer size
complexity of this protocol by accessing oracles A1, . . . , Ap, which are supposedly en-
codings of the responses a1, . . . , ap, and an auxiliary oracle B, and probabilistically
verifying that the Ai’s really correspond to some commitment to strings a1, . . . , ap that
satisfy the circuit C. The hope is to get the inner verifier to do all this with very few
queries to the oracles A1, . . . , Ap and B and we do so with one (bit) query each to the
Ai’s and seven queries to B. For encoding the responses a1, . . . , ap, we use the long
code of Bellare et al. [4]. We then adapt the techniques of Håstad [9, 10] to develop and
analyze a protocol for the inner verifier.

Let A = {+1,−1}a and B = {(a1, . . . , ap)|C(a1, . . . , ap) = −1}. Let πi be the
projection function πi : B → A which maps (a1, . . . , ap) to ai. By abuse of notation,
for β ⊆ B, let πi(β) denote {πi(x)|x ∈ β}. Queries to the oracle Ai will be functions
f : A → {+1,−1}. Queries to the oracle B will be functions g : B → {+1,−1}. The
inner verifier expects the oracles to provide the long codes of the strings a1, . . . , ap,
i.e., Ai(f) = f(ai) and B(g) = g(a1, . . . , ap). Of course, we can not assume these
properties; they need to be verified explicitly by the inner verifier. We will assume
however that the tables are “folded”, i.e., Ai(f) = −Ai(−f) and B(g) = −B(−g) for
every i, f, g. (This is implemented by issuing only one of the queries f or −f for every
f and inferring the other value, if needed by complementing it.) We are now ready to
specify the inner verifier.

Vinner
A1,...,Ap,B(A,B, π1, . . . , πp).

1. For each each i ∈ {1, . . . , p}, choose fi : A → {+1,−1} at random.
2. Choose f, g1, g2, h1, h2 : B → {+1,−1} at random and independently.

3. Let g = f (g1 ∧ g2) (Πfi ◦ πi)) and h = f (h1 ∧ h2) (Πfi ◦ πi)).
4. Read the following bits from the oracles A1, . . . , Ap, B

yi = Ai(fi) , for each i ∈ {1, . . . , p}.
w = B(f).
u1 = B(g1); u2 = B(g2); v1 = B(h1); v2 = B(h2)
z1 = B(g); z2 = B(h)

5. Accept iff w
∏p
i=1 yi = (u1 ∧ u2)z1 = (v1 ∧ v2)z2

It is clear that if a1, . . . , ap are such that C(a1, . . . , ap) = −1 and for every i and
f , Ai(f) = f(ai) and for every g, B(g) = g(a1, . . . , ap), then the inner verifier ac-
cepts with probability one. The following lemma gives a soundness condition for the
inner verifier, by showing that if the acceptance probability of the inner verifier is suf-
ficiently high then the oracles A1, . . . , Ap are non-trivially close to the encoding of
strings a1, . . . , ap that satisfy C(a1, . . . , ap) = −1. The proof uses, by now standard,
Fourier analysis.

Note that the oracle Ai can be viewed as a function mapping the set of functions
{A → {+1,−1}} to the reals. Let the inner product of two oraclesA andA′ be defined
as 〈A,A′〉 = 2−|A|

∑
f A(f)A′(f). For α ⊆ A, let χα(f) =

∏
a∈α f(a). Then the

χα’s give an orthonormal basis for the space of oracles A. This allows us to express
A(·) =

∑
α Âαχα(·), where Âα = 〈A,χα〉 are the Fourier coefficients of A. In what

follows, we let Âi,α denote the αth Fourier coefficient of the table Ai. Similarly one
can define a basis for the space of oracles B and the Fourier coefficients of any one
oracle.

Our next claim lays out the precise soundness condition in terms of the Fourier
coefficients of the oracles A1, . . . , Ap.

Claim 9. For every ε > 0, there exists a δ > 0 such that if Vinner
A1,...,Ap,B(A,B,

π1, . . . , πp) accepts with probability at least 1
2 + ε, then there exist a1, . . . , ap ∈ A

such that C(a1, . . . , ap) = −1 and |Âi,{ai}| ≥ δ for every i ∈ {1, . . . , p}.
There is a natural way to compose a p-prover MIP verifier Vout with an inner verifier
such as Vinner above so as to preserve perfect completeness. The number of queries
issued by the composed verifier is exactly that of the inner verifier. The randomness
is the sum of the randomness. The analysis of the soundness of such a verifier is also
standard and in particular shows that if the composed verifier accepts with probability
1
2 +2ε, then there exist proversΠ1, . . . ,Πp such that Vout accepts them with probability
at least ε · δ2p, where δ is from Claim 9 above. Thus we get a proof of Lemma 4.

5 Scope for Further Improvements

The following are a few approaches which would further reduce the size-query com-
plexity in the construction of PCPs described in this paper.

1. An improved low-error analysis of the low-degree test of Rubinfeld and Sudan [14]
in the case when the field size is linear in the degree of the polynomial. (It is to be
noted that the current best analysis [3] requires the field size to be at least a fourth
power of the degree.) Such an analysis would reduce the proof blowup to nearly
quadratic.

2. It is known that for every ε, δ > 0, MIP1,ε[1, 0, n] ⊆ PCP1−δ, 12
[c log n, 3] from

the results of Håstad [10]. Traditionally, results of this nature have led to the con-
struction of inner verifiers for p-prover MIPs and thus showing that for every δ > 0
and p there exists ε > 0 and c such that

MIP1,ε[p, r, a] ⊆ PCP1−δ, 12
[r + c log a, p+ 3] .

Proving a result of this nature would reduce the query complexity of the small PCPs
constructed in this paper to 6.

References
1. ARORA, S., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. Proof verification

and the hardness of approximation problems. Journal of the ACM 45, 3 (May 1998), 501–555.
2. ARORA, S., AND SAFRA, S. Probabilistic checking of proofs: A new characterization of NP.

Journal of the ACM 45, 1 (Jan. 1998), 70–122.
3. ARORA, S., AND SUDAN, M. Improved low degree testing and its applications. In Proc. 29th

ACM Symp. on Theory of Computing (El Paso, Texas, 4–6 May 1997), pp. 485–495.
4. BELLARE, M., GOLDREICH, O., AND SUDAN, M. Free bits, PCPs, and

nonapproximability—towards tight results. SIAM Journal of Computing 27, 3 (June
1998), 804–915.

5. BELLARE, M., GOLDWASSER, S., LUND, C., AND RUSSELL, A. Efficient probabilistically
checkable proofs and applications to approximation. In Proc. 25th ACM Symp. on Theory of
Computing (San Diego, California, 16–18 May 1993), pp. 294–304.

6. COOK, S. A. Short propositional formulas represent nondeterministic computations. Infor-
mation Processing Letters 26, 5 (11 Jan. 1988), 269–270.

7. DINUR, I., FISCHER, E., KINDLER, G., RAZ, R., AND SAFRA, S. PCP characterizations of
NP: Towards a polynomially-small error-probability. In Proc. 31th ACM Symp. on Theory of
Computing (Atlanta, Georgia, 1–4 May 1999), pp. 29–40.

8. FRIEDL, K., AND SUDAN, M. Some improvements to total degree tests. In Proc. 3rd Israel
Symposium on Theoretical and Computing Systems (1995).

9. HÅSTAD, J. Clique is hard to approximate within n1−ε. In Proc. 37nd IEEE Symp. on
Foundations of Comp. Science (Burlington, Vermont, 14–16 Oct. 1996), pp. 627–636.

10. HÅSTAD, J. Some optimal inapproximability results. In Proc. 29th ACM Symp. on Theory
of Computing (El Paso, Texas, 4–6 May 1997), pp. 1–10.

11. LUND, C., FORTNOW, L., KARLOFF, H., AND NISAN, N. Algebraic methods for inter-
active proof systems. In Proc. 31st IEEE Symp. on Foundations of Comp. Science (St. Louis,
Missouri, 22–24 Oct. 1990), pp. 2–10.

12. POLISHCHUK, A., AND SPIELMAN, D. A. Nearly-linear size holographic proofs. In Proc.
26th ACM Symp. on Theory of Computing (Montréal, Québec, Canada, 23–25 May 1994),
pp. 194–203.

13. RAZ, R., AND SAFRA, S. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of
Computing (El Paso, Texas, 4–6 May 1997), pp. 475–484.

14. RUBINFELD, R., AND SUDAN, M. Robust characterizations of polynomials with applica-
tions to program testing. SIAM Journal of Computing 25, 2 (Apr. 1996), 252–271.

15. SUDAN, M. Efficient Checking of Polynomials and Proofs and the Hardness of Approxima-
tion Problems. PhD thesis, University of California, Berkeley, Oct. 1992.

16. SZEGEDY, M. Many-valued logics and holographic proofs. In Automata, Languages and
Programming, 26st International Colloquium (Prague, Czech Republic, 11–15 July 1999),
J. Wiedermann, P. van Emde Boas, and M. Nielsen, Eds., vol. 1644 of Lecture Notes in Com-
puter Science, Springer-Verlag, pp. 676–686.

