
Locally Testable Codes and PCPs of Almost-Linear Length∗

Oded Goldreich† Madhu Sudan‡

Abstract

Locally testable codes are error-correcting codes that
admit very efficient codeword tests. Specifically, using a
constant number of (random) queries, non-codewords are
rejected with probability proportional to their distance from
the code.

Locally testable codes are believed to be the combinato-
rial core of PCPs. However, the relation is less immediate
than commonly believed. Nevertheless, we show that cer-
tain PCP systems can be modified to yield locally testable
codes. On the other hand, we adapt techniques we develop
for the construction of the latter to yield new PCPs. Our
main results are locally testable codes and PCPs of almost-
linear length. Specifically, we present:

• Locally testable (linear) codes in which k informa-
tion bits are encoded by a codeword of length approx-
imately k · exp(

√
log k). This improves over previ-

ous results that either yield codewords of exponential
length or obtained almost quadratic length codewords
for sufficiently large non-binary alphabet.

• PCP systems of almost-linear length for SAT. The
length of the proof is approximately n · exp(

√
log n)

and verification in performed by a constant number
(i.e., 19) of queries, as opposed to previous results
that used proof length n1+O(1/q) for verification by q
queries.

The novel techniques in use include a random projection of
certain codewords and PCP-oracles, an adaptation of PCP
constructions to obtain “linear PCP-oracles” for proving
conjunctions of linear conditions, and a direct construction
of locally testable (linear) codes of sub-exponential length.

∗Extended Abstract. For further details, see [14].
†Department of Computer Science, Weizmann Institute of Science, Re-

hovot, ISRAEL. oded@wisdom.weizmann.ac.il. Supported by the
MINERVA Foundation, Germany.
‡Laboratory for Computer Science, Massachusetts Institute of Tech-

nology, Cambridge, MA 02139. madhu@mit.edu. Supported in part
by NSF Awards CCR 9875511, CCR 9912342, and MIT-NTT Award MIT
2001-04.

1 Introduction

We study the existence of (good) error-correcting codes
that admit very efficient codeword tests. Specifically, we re-
quire the testing procedure to use only a constant number of
(random) queries, and reject non-codewords with probabil-
ity proportional to their distance from the code. Such codes
may be thought of as a combinatorial counterparts of the
complexity theoretic notion of probabilistically checkable
proofs (PCPs). They were formally introduced by Friedl
and Sudan [11]. Here we initiate a systematic study of this
notion.

Some examples: Codeword testing is meaningful only
for good codes. In particular, it is easy to test trivial codes
(e.g., for codes containing all possible strings of certain
length or, on the other extreme, for codes containing a sin-
gle codewords (or very few codewords)). One non-trivial
code allowing efficient testing is the Hadamard code: the
codewords are linear functions, and so codeword testing
amounts to linearity testing [7].

The drawback of the Hadamard code is that k bits of in-
formation are encoded using a codeword of length 2k. (The
k information bits represent the k coefficients of a linear
function {0, 1}k → {0, 1}, and bits in the codeword corre-
spond to all possible evaluation points.)

The question addressed in this work is whether one can
hope for a better relation between the number of infor-
mation bits, k, and the length of the codeword, denoted
n. Specifically, can n be polynomial or even linear in k?
For (sufficiently large) non-binary alphabet, Friedl and Su-
dan [11] showed that n can be almost quadratic in k. We
show that n may be almost-linear in k (i.e., n = k1+o(1)),
even for the binary alphabet.

1.1 Relation to PCP

It is a common belief, among PCP enthusiasts, that the
PCP Theorem [1, 2] already provides codes as we desire.
Consider the mapping of standard witnesses for, say SAT, to
PCP-oracles. When applied to an instance of SAT that is a
tautology, the map typically induces a good error-correcting
code mapping k information bits to codewords of length

poly(k) (or almost linear in k, when using [18]). The com-
mon belief is that the PCP verifier also yields a codeword
test. However, this is not quite true: It is only guaranteed
that each passing oracle can be “decoded” to a correspond-
ing NP-witness, but this does not mean that a passing oracle
is (close to) a valid codeword (because the “decoding” pro-
cedure is actually stronger than is standard in coding the-
ory), or that only codewords pass the test with probability
one. For example, part of the PCP oracle is supposed to
encode an m-variate polynomial of individual degree d, yet
the PCP verifier will also accept the encoding of any m-
variate polynomial of total degreem ·d (and the “decoding”
procedure will work in this case too).

Still, we show that many known PCP constructions can
be modified to yield good codes with efficient codeword
tests. We stress that these modifications are non-trivial and
furthermore are unnatural in the context of PCP. Yet, they
yield coding results of the type we seek (e.g., see Theo-
rem 2.1).

On the other hand, a technique that emerges naturally in
the context of our study of efficient codeword tests yields
improved results on the length of efficient PCP proofs.
Specifically, we obtain constant-query PCP systems that uti-
lize oracles that are shorter than known before (see Theo-
rem 2.3).

1.2 Relation to Locally Decodable Codes

The problem of designing efficient codeword tests seems
easier than the question of designing efficient decoding pro-
cedures that allow to recover any desired information bit by
reading only a constant number of bits in the codeword. Our
results confirm this intuition:
• We show the existence of almost-linear (i.e., n =
k1+o(1)) length (binary) codes supporting codeword
tests with a constant number of queries. In contrast,
it was shown that locally decodable codes cannot have
almost-linear length [17].1

• For large alphabet, we show almost-linear length
coordinate-linear codes in which testing requires only
two queries. In contrast, it was shown that coordinate-
linear codes with two query recovery require exponen-
tial length [13].

2 Formal Setting

Throughout this work, all oracle machines (i.e., code-
word testers and PCP verifiers) are non-adaptive; that is,
they determine their queries based solely on their input and
random choices. This is in contrast to adaptive orcale ma-
chines that may determine their queries based on answers
obtained to prior queries. Since our focus is on positive re-
sults, this makes our results only stronger.

1If q queries are used for recovery then n = Ω(k1+(1/(q−1))).

2.1 Codes

We consider codes mapping a sequence of k input sym-
bols into a sequence of n ≥ k symbols over the same al-
phabet, denoted Σ, which may but need not be the binary
alphabet. Such a generic code is denoted by C : Σk →
Σn. Throughout this paper, the integers k and n are to
be thought of as parameters, and Σ may depend on them.
Thus, we actually discuss infinite families of codes (which
are associated with infinite sets of possible k’s), and when-
ever we say that some quantity of the code is a constant we
mean that this quantity is constant for the entire family (of
codes). Typically, we seek to have Σ as small as possible,
desire that |Σ| be a constant (i.e., does not depend on k),
and are most content when Σ = {0, 1} (i.e., a binary code).

Distance between n-symbol sequences over Σ is defined
in the natural manner; that is, for u, v ∈ Σn, the distance
∆(u, v) is defined as the number of locations on which u
and v differ (i.e., ∆(u, v) def= |{i : ui 6= vi}|, where
u = u1 · · ·un ∈ Σn and v = v1 · · · vn ∈ Σn). The dis-
tance of a code C : Σk → Σn is the minimum distance
between its codewords; that is, mina6=b{∆(C(a), C(b))}.
Throughout this work, we focus on codes of “large dis-
tance”; specifically, codes C : Σk → Σn of distance Ω(n).

The distance of w ∈ Σn from a code C : Σk → Σn

is the minimum distance between w and the codewords;
that is, mina{∆(w, C(a))}. An interesting case is of non-
codewords that are “relatively far from the code”, which
may mean that their distance from the code is greater than
(say) half the distance of the code.

By a codeword test (for the code C : Σk → Σn) we
mean a randomized (non-adaptive) oracle machine (called
tester) that given oracle access to w ∈ Σn (viewed as a
function w : {1, ..., n} → Σ) satisfies the following two
conditions:2

• Accepting codewords: For any a ∈ Σk, given oracle
access to w = C(a), the tester accepts with probability
1.
• Rejection of non-codeword: For every w ∈ Σn that

is at distance εn from C, given oracle access to w,
the tester rejects with probability Ω(ε) − o(1). (The
o(1) term can be avoided if we consider only non-
codewords that are at distance more than ε0n from the
code, for some constant ε0 > 0.)3

2Both the following conditions may be meaningfully relaxed. For ex-
ample, the tester may be allowed to err with small probability in case it
is given oracle access to a codeword, and the rejection condition may be
restricted to non-codewords that are relatively far from the code. Since
our results are positive, it make sense for us to use the stronger definition
provided below.

3Following this alternative (i.e., of considering only non-codewords
that are very far from the code), we may use an alternative formulation
(which is more standard in the “property testing” literature; cf. [20, 12]).
Specifically, we may require that every non-codeword that is at least ε0n-
far from the code be rejected with probability at least 1/2.

We say that the code C : Σk → Σn is locally testable
if it has a codeword test that makes a constant number of
queries. Our main result regarding codes is

Theorem 2.1 For every c > 0.5 and infinitely many k’s,
there exist locally testable codes with binary alphabet such
that n = exp((log k)c) · k = k1+o(1). Furthermore, these
codes are linear and have distance Ω(n).

Theorem 2.1 (as well as Part 2 of Theorem 2.2) vastly im-
proves over the Hadamard code (in which n = 2k), which
is the only locally testable binary code previously known.
Theorem 2.1 is proven by combining Part 1 of the follow-
ing Theorem 2.2 with non-standard modifications of stan-
dard PCP constructions. Due to space limitations, the proof
of this theorem is omitted from this extended abstract, and
can be found in the full version of this paper [14]. Instead
we give here a simpler construction that gives the following,
weaker but self-contained, result.
Theorem 2.2 1. For every c > 0.5 and infinitely many

k’s, there exist locally testable codes with non-binary
alphabet Σ such that n = exp((log k)c) · k = k1+o(1)

and log |Σ| = exp((log k)c) = ko(1). Furthermore,
the tester makes two queries.

2. For every c > 1 and infinitely many k’s, there exist
locally testable codes binary alphabet such that n <
kc.

In both cases, the codes are linear in a suitable sense
and have distance Ω(n).

Part 1 improves over the work of Friedl and Sudan [11],
which only yields n = k2+o(1). The set of k’s for which
such codes exist is reasonable dense; in both cases, if k is
in the set then the next integer in the set is smaller than
k1+o(1).

We comment that (good) binary codes cannot be tested
using two queries (cf. [6]). In contrast it can be shown that
locally testable codes over small alphabets can be modified
such that the tester only uses randomness that is logarithmic
in the codeword and only makes three queries. We stress
that the stated modification increases the length of the code-
words by a constant factor. (See our technical report [14] for
a proof.)

2.2 PCP

A probabilistic checkable proof (PCP) system for a
set L is a probabilistic polynomial-time (non-adaptive) or-
acle machine (called verifier), denoted V , satisfying
• Completeness: For every x ∈ L there exists an ora-

cle πx so that V , on input x and access to oracle πx,
always accepts x.
• Soundness: For every x 6∈ L and every oracle π, ma-

chine V , on input x and access to oracle π, rejects x
with probability at least 1

2 .

As usual, we focus on PCP systems with logarithmic ran-
domness complexity and constant query complexity. This
means that, without loss of generality, the length of the or-
acle is polynomial in the length of the input. However, we
aim at PCP systems that utilize oracles that are of almost-
linear length. Our main result regarding such PCP systems
is

Theorem 2.3 For every c > 0.5, there exists an almost-
linear time randomized reduction of SAT to a promise prob-
lem that has a 19-query PCP system that utilizes oracles of
length exp((log n)c) ·n = n1+o(1), where n is the length of
the input. Furthermore, the reduction maps k-bit inputs to
n-bit inputs such that n = exp((log k)c) · k = k1+o(1).

This should be compared to the PCP system for SAT of Pol-
ishchuk and Spielman [18] that when utilizing oracles of
length n1+ε makes O(1/ε) queries. In contrast, our PCP
system utilizing oracles of length n1+o(1) while making 19
queries.

3 Direct Constructions of Codes

In this section, we prove Theorem 2.2. Although we
do not use any variant of the PCP Theorem, our construc-
tions are somewhat related to known PCP constructions in
the sense that we use codes (and analysis) that appear (at
least implicitly) in the latter. Specifically, we will use re-
sults regarding low-degree tests that were proven for de-
riving the PCP Theorem [1, 2]. We stress that we neither
use the (complex) parallelization procedure (of [1, 2]) nor
the full power of the proof composition paradigm (of [2],
which is more complex than the classical notion of concate-
nated codes [10] used below).

3.1 The Basic Code (FS-Code)

Our starting point is a code proposed by Friedl and Su-
dan [11] based on a low-degree test due to Rubinfeld and
Sudan [20].

Let F be a finite field, and m, d be integer parameters
such that (typically) m ≤ d < |F |. Denote by Pm,d the
set of m-variate polynomials of total degree d over F . We
represent each p ∈ Pm,d by the list of its

(
m+d
d

)
coeffi-

cients; that is, |Pm,d| = |F |(
m+d

d). (For m ≤ d, we use
|Pm,d| < |F |(2d/m)m

.)
Denote by Lm the set of lines over Fm, where each

line is define by two points a, b ∈ Fm; that is, for a =
(a1, ..., am) and b = (b1, ..., bm), the line `a,b consists of

the set of |F | points {`a,b(t)
def= ((a1 + tb1), ..., (am +

tbm)) : t ∈ F}.
We consider the code C : Pm,d → Σ|Lm|, where Σ =

F d+1; that is, C assigns each p ∈ Pm,d a (|Lm|-long) se-
quence of Σ-values, where each Σ-value corresponds to a

different element of Lm. The element associated with ` ∈
Lm in the (|Lm|-long) sequence C(p), denoted C(p)`, is the
univariate polynomial that represents the values of the poly-
nomial p : Fm → F on the line `; that is, for `a,b ∈ Lm,
the univariate polynomial C(p)`a,b

can be formally written

as qa,b(z)
def= p(`a,b(z)) = p((a1 + b1z), ..., (am + bmz)).

Since the polynomial p has total degree d, so does the uni-
variate polynomial qa,b.

To evaluate the basic parameters of the code C, let use
consider it as mapping Σk → Σn, where indeed n =
|Lm| = |F |2m and k = log |Pm,d|/log |Σ|. Note that

k =
log |Pm,d|

log |Σ|
=

(
m+d
d

)
log |F |

(d+ 1) log |F |
=

(
m+d
m

)
d+ 1

(1)

which, for m � d, is approximated by (d/m)m/d ≈
(d/m)m. Using |F | = poly(d), we have n = |F |2m =
poly(dm), and so k is polynomially related to n (provided,
say, m <

√
d). Note that the code has large distance (since

the different C(p)’s tend to disagree on most lines).

The Codeword Test: The test consists of selecting two
random lines that share a random point, and checking that
the univariate polynomials associated with these lines yield
the same value for the shared point. That is, to check
whether w ∈ Σ|Lm| is a codeword, we select a random
point r ∈ Fm, and two random lines `′, `′′ going through
r (i.e., `′(t′) = r and `′′(t′′) = r for some t′, t′′ ∈ F),
obtain the answer polynomials q′ and q′′ (i.e., q′ = w`′

and q′′ = w`′′) and check whether they agree on the shared
point (i.e., whether q′(t′) = q′′(t′′)). This test is essen-
tially the one analyzed in [1], where it is shown that (for
|F | = poly(d)) if the oracle is ε-far from the code then this
is detected with probability Ω(ε).

3.2 Random Truncation of the FS-Code

Our aim is to tighten the relation between k and n. Recall
that the gap between them is due to two sources; firstly, the
analysis in [1] required a field F that is polynomially bigger
than the degree d. This problem can be eliminated using the
better analysis of [18], which only requires |F | = Ω(d)
(see [11]). The second problem is that n is quadratic in
|F |m, whereas k = o(dm) = o(|F |m). Thus, to obtain n
almost-linear in k, we must use a different code.

We will use a random projection (or “truncation”) of the
FS-code on approximately |F |m of the coordinates. Let
Rm ⊂ Lm be a random subset of O(|F |m log |F |) lines.
We consider the code CRm : Pm,d → Σ|Rm|, where the el-
ement associated with `a,b ∈ Rm ⊂ Lm in the sequence
CRm(p) is the univariate polynomial that represents the val-
ues of the polynomial p : Fm → F on the line `a,b. When
Rm is (unimportant or) understood from the context, we
shorthand CRm by C.

To evaluate the basic parameters of the code C, let use
consider it as mapping Σk → Σn, where n = |Rm| =
O(|F |m log |F |) (and as before k = log |Pm,d|/log |Σ|).
Thus, for m � d, we have k ≈ dm−1/mm and, for
|F | = O(d), we have n = O(|F |m log |F |) = O(d)m.
We highlight two possible settings of the parameters:

1. Using d = mm, we get k ≈ mm2−2m and n =
mm2+o(m), which yields n ≈ exp(

√
log k) · k and

log |Σ| = log |F |d+1 ≈ d log d ≈ exp(
√

log k).
2. Letting d = me for constant e > 1, we get k ≈
m(e−1)m and n ≈ mem, which yields n ≈ ke/(e−1)

and log |Σ| ≈ d log d ≈ (log k)e.

The Codeword Test: The original codeword test can be
extended to the current setting. Specifically, the new test
consists of selecting two random lines in Rm that share
a random point, and checking that the univariate polyno-
mials associated with these lines yield the same value for
the shared point. (We stress that we first select uniformly
a point r ∈ Fm, and next select two lines in Rm that
pass through r.) We prove that this codeword test for the
randomly-truncated code CRm works as well as the code-
word test for the basic FS-code.

Lemma 3.1 Let |F | = Ω(d) and |F | < exp(mm). Then,
for 1−o(1) fraction of the possible choices ofRm of size n,
the following holds for every w ∈ Σn: if the distance of w
from the code CRm is εn then the probability that the above
codeword test rejects is Ω(ε)− o(1).

Proof sketch: First we reduce the analysis of the above
codeword test (which compares the value given to two in-
tersecting lines) to an analysis of a point-vs-line test that
compares the value of a suitable function f : Fm → F on
a random point with the value induced by (the polynomial
associated with) a random line passing through this point.
Fixing any Rm and any w ∈ Σn, we construct a random
function f : Fm → F by selecting uniformly, for each
r ∈ Fm, a line ` in Rm that passes through r and setting
f(r) accordingly (i.e., f(r) = w`(t) where r = `(t)). We
note that the probability that the original intersecting-lines
test accepts w equals the probability that the point-vs-line
test accepts w along with the resulting random f , because
the (random) value f(r) (obtained from f) may be viewed
as obtained from a (second) random line that passes through
r. Thus, it suffices to analyze the point-vs-line test as ap-
plied to w and the corresponding random f . This will be
done in two stages: In the first stage we relate the distance
of w from the code C = CRm to the distance of f from
the set Pm,d, and in the second stage we relate the rejection
probability of w and f to the distance of f from Pm,d.
First stage: We will show that for every p ∈ Pm,d, the
(fractional) distance of f from p approximates the (frac-
tional) distance of w from C(p). For simplicity, we first

assume that Rm covers all points uniformly (i.e., each point
in Fm resides in exactly |F | · |Rm|/|Fm| lines of Rm).
Let p ∈ Pm,d and denote by εn the distance of w from
C(p); that is, w` 6= C(p) (= p(`)) on an ε fraction of the
`’s in Rm. For each ` ∈ Rm for which w` 6= C(p) it is
the case that w` disagrees with p on almost all (i.e., all but
d) points that reside on the line ` (because both w`(·) and
p(`(·)) are low-degree polynomials that determine the cor-
responding values). Since f(r) is defined according to a
random line ` ∈ Rm that passes through r, it holds that
the expected (fractional) disagreement of a random f with
p is at least (1 − (d/|F |)) · ε. Furthermore, since f is de-
fine independently on each point of Fm, with probability at
least 1 − exp(ε|F |m), a random f disagrees with p on at
least a ε/2 fraction of the points. Using the union bound
(for all p ∈ Pm,d) and |Pm,d| < |F |(2d/m)m � 2ε|F |

m

(for
ε > 2−m), with very high probability, the distance of a ran-
dom f from every p ∈ Pm,d (i.e., f ’s distance from Pm,d)
approximates (up-to an additive term of (ε/2) − o(1)) the
distance of w from the corresponding C(p). We conclude
that the expected distance of a random f from the set Pm,d
approximates the distance of w from the code C.

Recall that, in the above analysis, we have assumed that
Rm covers all points uniformly (i.e., each point resides on
the same number of lines in Rm). In general, this is not
the case. Yet, with very high probability, a random set Rm
cover almost all points in an almost uniform manner. This
“almost uniformity” suffices for extending the above anal-
ysis. Thus, for almost all Rm’s, the distance of w from the
code CRm is well-approximated by the distance of a corre-
sponding random function f from the set Pm,d.

Second stage: We turn to analyze the performance of the
point-vs-line test applied to any w ∈ Σn and a correspond-
ing random f : Fm → F (constructed as above). Follow-
ing [20, 1, 2, 18], we observe that for each possible function
f : Fm → F there exists an optimal strategy of answering
all possible line-queries (such that the acceptance probabil-
ity of the line-vs-point test is maximized). Specifically, for
a fixed function f , and each line `, the optimal way to an-
swer the line-query ` is given by the degree d univariate
polynomial that agrees with the value of f on the maxi-
mum number of points of `. Thus, the optimal acceptance
probability of the line-vs-point test on f depends only on f
(and not on w, which may not be optimal for f). Further-
more, this probability is the average of quantities (i.e., the
agreement of f with the best univariate polynomial) that f
associates with each of the possible lines. Let us denote by
D`(f) the fractional disagreement of f restricted to ` with
the best univariate polynomial. Then, by the relevant results
in [1, 2, 18], the average of D`(f) taken over all lines (i.e.,
over Lm) is linearly related to the distance of f from Pm,d.
Clearly, the rejection probability of our test (i.e., the line-vs-
point test for lines uniformly selected in Rm, when applied

to w and f as above) is lower-bounded by the average of
the D`(f)’s over the lines in Rm (rather than over the set
of all lines, Lm). Now, for each fixed f , with probability
1− exp(−|Rm|), the average of the D`(f)’s (taken over all
lines) is approximated (up-to some constant) by the aver-
age taken over a random set Rm. Taking the union bound
over all |F ||F |m functions f ’s we conclude that, for almost
all Rm, the point-vs-line test rejects each f with probabil-
ity that is linearly related to the distance of f from Pm,d
(because exp(−|Rm|) · |F ||F |

m

= o(1)).
By the first stage, for almost all Rm’s, the distance of

each w is related to the expected distance of a correspond-
ing random f from Pm,d, whereas by the second stage (for
almost allRm’s) each w and the corresponding random f is
rejected by the point-vs-line with probability that is linearly
related to the distance of f from Pm,d. Combining these
two facts, the lemma follows.

F -linearity: The (modified as well as the original) code
C is F -linear; that is, the individual F -elements in the
codeword sequence are linear combinations (over F) of
the F -elements in the information being encoded. Equiv-
alently, for every α′, α′′ ∈ F and every p′, p′′ ∈ Pm,d,
it holds that C(α′p′ + α′′p′′)` = α′C(p′)` + α′′C(p′′)`,
for every line (Σ-coordinate) `. This is the case because
C(α′p′ + α′′p′′)` equals the univariate polynomial (in z)
given by (α′p′ + α′′p′′)(`(z)) = α′p′(`(z)) + α′′p′′(`(z)),
which in turn equals α′C(p′)` + α′′C(p′′)`.

Using the first parameter-setting (i.e., d = mm), we es-
tablish Part 1 of Theorem 2.2.

3.3 Decreasing the alphabet size

The above construction uses quite a big alphabet (i.e.,
Σ = F d+1). Our aim in this subsection is to maintain the
above performance while using a smaller alphabet (i.e., F
rather than F d+1). This is achieved by concatenating the
above code (which encodes information by a sequence of
n degree d univariate polynomials over F) with the follow-
ing inner-code that maps F d+1 to Fn

′
, where n′ is sub-

exponential in k′ def= d+ 1.
For a (suitable) constant d′, let k′ = hd

′
and [h] =

{1, ..., h}. As a warm-up, consider the special case of
d′ = 2. In this case, the code C′ maps bilinear forms in xi’s
and yi’s (with coefficients (ci,j)i,j∈[h]) to the values of these
forms under all possible assignments. That is, C′ : Fh

2 →
F |F |

2h

maps the sequence of coefficients (ci,j)i,j∈[h] to
the sequence of values (va1,...,ah,b1,...,bh

)a1,...,ah,b1,...,bh∈F
where va1,...,ah,b1,...,bh

=
∑
i,j∈[h] ci,j · aibj . In gen-

eral (i.e., arbitrary d′ ≥ 1), the inner-code C′ : F k
′ →

Fn
′

maps d′-linear forms in the variables sets {z(1)
i :

i ∈ [h]}, ..., {z(d′)
i : i ∈ [h]} to the values of these

d′-linear forms under all possible assignments to these
d′h variables. That is, C′ maps the sequence of co-
efficients (ci1,...,id′)i1,...,id′∈[h] to the sequence of val-
ues (v

a
(1)
1 ,...,a

(1)
h ,...,a

(d′)
1 ,...,a

(d′)
h

)
a
(1)
1 ,...,a

(1)
h ,...,a

(d′)
1 ,...,a

(d′)
h ∈F

where v
a
(1)
1 ,...,a

(1)
h ,...,a

(d′)
1 ,...,a

(d′)
h

=
∑
i1,...,id′∈[h] ci1,...,id′ ·∏d′

j=1 a
(j)
ij

. Thus, (k′ = hd
′

and) n′ = |F |d′h = exp(d′ ·
(k′)1/d′ log |F |).

Testing the inner-code: A valid codeword is a multi-
linear function (in the variable sets {z(1)

i : i ∈
[h]}, ..., {z(d′)

i : i ∈ [h]}); that is, for each j, a valid
codeword is linear in the variables z(j)

i ’s. Thus, testing
whether a sequence belongs to the inner-code amounts
to d′ linearity checks. Specifically, for each j, we ran-
domly select r = (r(1)

1 , ..., r
(1)
h , ..., r

(d′)
1 , ..., r

(d′)
h) and

s
(j)
1 , ..., s

(j)
h , and compare vr + v

0,...,0,s
(j)
1 ,...,s

(j)
h ,0,...,0

to

v
(t

(1)
1 ,...,t

(1)
h ,...,t

(d′)
1 ,...,t

(d′)
h)

, where t
(j)
i = r

(j)
i + s

(j)
i and

t
(j′)
i = r

(j′)
i for j′ 6= j. To simplify the analysis, we also

let the test employ a total low-degree test (to verify that the
codeword is a multi-variate polynomial of total-degree d′).4

(The total-degree test uses d′ + 2 queries, and so our code-
word test uses 3d′ + d′ + 2 queries.)

Lemma 3.2 If the distance of w′ ∈ Fn′ from C′ is εn′ then
the probability that the codeword test for C′ rejects is Ω(ε).

Testing the concatenated-code: In order to test the
concatenated code, we first test (random instances of)
the inner-code and next use self-correction on the latter
to emulate the testing of the outer-code. Specifically,
for the information q′ (i.e., a univariate polynomial of
degree d = hd

′ − 1 over F) encoded in a letter of the
outer-code, we need to recover from the (inner) encoding
the value q′(t), where t is some element of F (which is
determined by the outer test). However, the value q′(t) =∑
i1,...,id′∈[h] q

′
i1,...,id′

t(i1−1)+(i2−1)h+···+(id′−1)hd′−1

equals the entry of C′(q′) that is associated with the se-
quence (t0, ..., th−1, t0, ..., t(h−1)h, ..., t0, ..., t(h−1)hd′−1

).
Self-correction of the desired entry is performed via
polynomial interpolation, and requires only d′ + 1 queries.
Thus, the concatenated code can be tested by making O(d′)
queries.

Notes: Observe that the inner-code is linear (over F), and
thus so is also the concatenated code. Furthermore, the

4We conjecture that the codeword test operates well also without em-
ploying the total-degree test, but the augmented codeword test is certainly
easier to analyze.

codeword test is a conjunction of (O(d′)) linear tests. Al-
ternatively, we may perform one of these linear tests, se-
lected at random (with equal probability). Regarding the
parameters of the concatenated code, suppose that in the
outer-code we use the setting d = me (for constant e > 1),
and in the inner-code we use d′ = 2e. Then, we obtain
a code that maps F kk

′
to Fnn

′
, where n ≈ ke/(e−1) and

n′ ≈ exp(d1/d′) ≈ exp((log k)e/d
′
) = exp(

√
log k) =

ko(1) (using d ≈ (log k)e). Thus, nn′ ≈ (kk′)e/(e−1) and
|F | = O(d) ≈ (log k)e (as before).

3.4 A Binary Code

The last step is to derive a binary code. This is done
by concatenating the above code with a Hadamard code,
while assuming that F = GF (2k

′′
). The Hadamard code is

used to code elements of F by binary sequences of length
n′′

def= 2k
′′

. See details in our technical report [14]. Part 2
of Theorem 2.2 follows.

4 Nearly linear-sized PCPs

In this section we give a probabilistic construction of
nearly-linear sized PCPs for SAT. More formally, we reduce
SAT probabilistically to a promise problem recognized by a
PCP verifier tossing (1 + o(1)) log n random bits (on inputs
of length n) and queries a proof oracle in a constant number
of bits and has perfect completeness and soundness arbitrar-
ily close to 1

2 . We stress that the constant number of bits is
explicit and small. Specifically, if the o(1) function in the
randomness is allowed to be as large as 1/poly log log n,
then the number of queries can be reduced to 16 bits. The
little o(1) function can be reduced to O(

√
log log n/ log n)

for a small cost in the number of queries, which now goes
up to 19 bits. These improvements are obtained by using
and improving results of Harsha and Sudan [16].

We get our improvements by applying the “random
truncation” method (introduced in Section 3) to certain
constant-prover one-round proof systems, which are crucial
ingredients in the constructions of PCPs. Typically, these
proof systems use provers of very different sizes, and by ap-
plying the “random truncation” method we obtain an equiv-
alent system in which all provers have size roughly equal to
the size of the smallest prover in the original scheme. At
this point, we reduce the randomness complexity to be log-
arithmic in the size of the provers (i.e., and thus logarithmic
in the size of the smallest original prover).

Recall that typical PCP constructions are obtained by the
technique of proof composition introduced by Arora and
Safra [2]. In this technique, an “outer verifier”, typically
a verifier for a constant prover one round proof system, is
composed with an “inner verifier” to get a new PCP verifier.
The new verifier essentially inherits the randomness com-
plexity of the outer verifier and the query complexity of the

inner verifier. Since our goal is to reduce the randomness
complexity of the composed verifier, we achieve this ob-
jective by reducing the randomness complexity of the outer
verifier.

We show how to apply the random truncation to the ver-
ifier of a specific 3-prover one-round proof system used by
Harsha and Sudan [16]. Their verifier is a variant of the
one constructed by Raz and Safra [19] (see also, Arora and
Sudan [3]), which are, in turn, variants of a verifier con-
structed by Arora et al. [1]. All these verifiers share the
common property of working with provers of “imbalanced”
sizes. We manage to reduce the size of the provers to the
size of the smallest one, and consequently reduce the ran-
domness of the verifier to (1 + o(1)) log n (i.e., logarithmic
in the prover size). We stress that this part is not generic but
relies on properties of the proof of soundness in, say, [16],
which are abstracted below. Applying the composition lem-
mas used/developed in [16] to this new verifier gives us our
efficient PCP constructions.

4.1 Improved 3-Prover Proof System for NP

We recall the notion of a constant-prover one-round in-
teractive proof system (MIP).

Definition 4.1 For positive reals c, s, integer p and func-
tions r, a : Z+ → Z+, we say that a language L ∈
MIPc,s[p, r, a] (or, L has a p-prover one-round proof sys-
tem with answer length a) if there exists a probabilis-
tic polynomial-time verifier V interacting with p provers
P1, . . . , Pp such that

Operation: On input x of length n, the verifier tosses r(n)
coins, generates queries q1, . . . , qp to provers
P1, ..., Pp, obtain the corresponding answers
a1, . . . , ap ∈ {0, 1}a(n), and outputs a Boolean
verdict that is a function of x, its randomness and the
answers a1, . . . , ap.

Completeness: If x ∈ L then there exist strategies
P1, . . . , Pp such that V accepts their response with
probability at least c.

Soundness: If x 6∈ L then for every sequence of prover
strategies P1, . . . , Pp, machine V accepts their re-
sponse with probability at most s, which is called the
soundness error.

Harsha and Sudan [16] presented a randomness effi-
cient 3-prover one-round proof system with answer length
poly(log n) and randomness complexity (3 + ε) log2 n,
where ε > 0 is an arbitrary constant and n denotes the
length of the input. Here we reduce the randomness re-
quired by their verifier to (1 + o(1)) log n.

Before going on we introduce a notion that will be useful
in this section — namely, the notion of a length preserving

reduction. For a function ` : Z+ → Z+, a reduction is
`(n)-length preserving if it maps instances of length n to
instances of length at most `(n).

Lemma 4.2 For every ε > 0 and functions m(n),
`(n) satisfying `(n) = Ω(m(n)Ω(m(n))n1+Ω(1/m(n))),
SAT reduces in probabilistic polynomial time, un-
der `(n)-length preserving reductions to a promise
problem Π ∈ MIP1,ε[3, (1 + 1/m(n)) log n +
O(m(n) logm(n)),m(n)O(1)nO(1/m(n))].

Before proving this lemma, let us see some special cases
obtained by setting m(n) = poly(log log n) and m(n) =√

log n, respectively in the above lemma.

Corollary 4.3 For every µ > 0 and every polynomial
p, there exists a promise problem Π ∈ MIP1,µ[3, (1 +
1/p(log log n))·log n, 2poly(log logn)] such that SAT reduces
probabilistically to Π under n1+(1/p(log logn))-length pre-
serving reductions.

Corollary 4.4 For every µ > 0, there exists a promise
problem Π ∈ MIP1,µ[3, (1 + O((log log n)/

√
log n)) ·

log n, 2O(
√

logn log logn)], such SAT reduces probabilisti-
cally to Π under n1+O((log logn)/

√
logn)-length preserving

reductions.

We defer the proof of Lemma 4.2 to Section 4.1.4. Here
we give an overview of the proof steps. We modify the proof
of [16] improving it in two steps. The proof of [16] first
reduces SAT to a parametrized problem they call GapPCS
under `′(n)-length preserving reductions for `′(n) = n1+γ

for any γ > 0. Then they give a 3-prover MIP proof sys-
tem for the reduced instance of GapPCS where the verifier
tosses (3 + γ) log `′(n) random coins.

Our first improvement shows that the reduction of [16]
actually yields a stronger reduction than stated there, in two
ways. First we note that their proof allows for smaller val-
ues of `(n) than stated there, allowing in particular for the
parameters we need. Furthermore, we notice that their re-
sult gives rise to instances from a restricted class, for which
slightly more efficient protocols can be designed. In partic-
ular, we can reduce the size of the smallest prover in their
MIP protocol to roughly `(n) (as opposed to their result
which gives a prover of size `(n)1+γ for arbitrarily small
γ).

The second improvement is more critical to our pur-
poses. Here we improve the randomness complexity of the
MIP verifier of [16], by applying a random truncation. To
get this improvement we need to abstract the verifier of [16].
This is done in Section 4.1.1. We then show how to trans-
form such a verifier into one with (1 + o(1)) log n random-
ness. This transformation comes in three stages, described
in Sections 4.1.2-4.1.4.

4.1.1 Abtracting the verifier of [16]

The verifier of [16] interacts with three provers which we’ll
denote P , P1, and P2. We will letQ,Q1, andQ2 denote the
question space of the provers respectively; and we’ll let A,
A1, and A2 denote the space of answers of the provers re-
spectively. Denote by Vx(r, a, a1, a2), the acceptance predi-
cate of the verifier on input x, where r denotes the verifier’s
coins, and a (resp., a1, a2) the answer of prover f = P
(resp., P1, P2). (Note: The value of Vx is 1 if the verifier
accepts.) We’ll usually drop the subscript x unless needed.
Let us denote by q(r), (resp. q1(r), q2(r)) the verifier’s
query to P (resp., P1, P2) on random string r ∈ Ω, where
Ω denotes the space of verifier’s coins. We note that the
following properties hold for the 3-prover proof system of
[16].

1. The acceptance-predicate decomposes:
V (r, a, a1, a2) = V1(r, a, a1) ∧ V2(r, a, a2), where V1

and V2 are predicates.

2. Sampleability: The verifier only tossesO(log n) coins.
Thus, it is feasible to sample from various specified
subsets of the space of all possible coin outcomes. For
example, given S1 ⊆ Q1, we can uniformly gener-
ate in poly(n)-time a sequence of coins r such that
q1(r) ∈ S1.

3. Uniformity: The verifier’s queries to prover P
(resp. P1, P2) are uniformly distributed over Q (resp.
Q1, Q2).

4. If x is a NO-instance, then for V = Vx, for small ε and
every possible P strategy, there exists a subset Q′ =
Q′P ⊆ Q such that for every P1, P2 the following two
conditions hold:

Pr
r

[q(r) ∈ Q′ ∧ V1(r, f(Q(r)), P1(Q1(r)))] <
ε

2
(2)

Pr
r

[q(r) 6∈ Q′ ∧ V2(r, f(Q(r)), P2(Q2(r)))] <
ε

2
(3)

4.1.2 The 3-prover MIP: Stage I

We start by modifying the verifier of [16] so that its ques-
tions to provers P1 and P2 are “independent” (given the
question to the prover P). That is, we define a new veri-
fier, denoted W , that behaves as follows

• On input x, let V = Vx be the verifier’s predicate and
let V1 and V2 be as given in Property (1).

• Pick q ∈ Q uniformly and pick coins r1 and r2 uni-
formly and independently from the set {r ∈ Ω|q(r) =
q}. [Here we use sampleability with respect to a spe-
cific set of r’s.]

• Make queries q (which indeed equals q(r1) = q(r2)),
q1 = q1(r1) and q2 = q2(r2), to P , P1 and P2, receiv-
ing answers a = P (q), a1 = P1(q1) and a2 = P2(q2).

• Accept if and only if V1(r1, a, a1) ∧ V2(r2, a, a2).

Claim 4.5 W has perfect completeness and soundness at
most ε.

Proof: The completeness is obvious, and so we focus on
the soundness. Fix a NO-instance x and any set of provers
P , P1 and P2. Let Q′ = Q′P be the subset of Q as given by
Property (4) of the MIP. The probability that W accepts is
given by

Pr
q,r1,r2

[EV1(r1) ∧ EV2(r2)] (4)

where EV1(r1) = V1(r1, P (q), P1(q1(r1))) and
EV2(r2) = V2(r2, P (q), P2(q2(r2))). Note that
q = q(r1) = q(r2), where (q and) r1, r2 are selected
as above. Thus, EVi only depends on ri, and the shorthand
above is legitimate. Note that the process of selecting
r1 and r2 in (4) is equivalent to selecting each of them
uniformly (though not independently). We thus upper
bound (4) by

Pr
r1

[q(r1) ∈ Q′ ∧ EV1(r1)] + Pr
r2

[q(r2) 6∈ Q′ ∧ EV2(r2)].

Using Property (4), each term above is bounded by ε/2 and
thus the sum above is upper-bounded by ε.

4.1.3 The 3-prover MIP: Stage II

In the next stage, the crucial one in our construction, we
reduce the size of the provers P1 and P2 by a random trun-
cation. For sets S1 ⊆ Q1 and S2 ⊆ Q2, we define the
(S1, S2)-restricted verifier WS1,S2 as follows:

• On input x, let V = Vx be the verifier’s predicate and
let V1 and V2 be as given in Property (1).

• Pick q ∈ Q uniformly and for i ∈ {1, 2} pick coins
ri’s uniformly and independently from the sets {r ∈
Ω|q(r)=q ∧ qi(r)∈Si}. If either of the sets is empty,
then the verifier simply accepts. [Here, again, we use
sampleability of subsets of the verifier coins.]

• Make queries q = q(r1) = q(r2), q1 = q1(r1) and
q2 = q2(r2), to P , P1 and P2, receiving answers a =
P (q), a1 = P1(q1) and a2 = P2(q2).

• Accept if and only if V1(r1, a, a1) ∧ V2(r2, a, a2).

As usual it is clear that the verifier WS1,S2 has perfect com-
pleteness (for every S1 and S2). We bound the soundness
of this verifier, for most choices of sufficiently large sets S1

and S2:

Lemma 4.6 For randomly chosen sets S1, S2 of size
O(|Q|max{log |A|, log |Q|}), with probability at least 4/5,
the soundness error of the verifier WS1,S2 is at most 6ε.

Proof: We start with some notation: Recall that Ω de-
notes the space of random strings of the verifier V (of Sec-
tion 4.1.1). For i ∈ {1, 2} and a fixed set Si, let Xi de-
note the distribution on Ω induced by picking a random
string r ∈ Ω uniformly, conditioned on qi(r) ∈ Si (i.e.,
uniform in {r ∈ Ω|qi(r) ∈ Si}). Similarly, let Yi denote
the distribution on Ω induced by picking a query q ∈ Q
uniformly and then picking ri uniformly at random from
the set {r ∈ Ω|q(r) = q ∧ qi(r) ∈ Si}. We use the no-
tation ri←D to denote that ri is picked according to dis-
tribution D. Note that the verifier WS1,S2 picks r1←Y1

and r2←Y2 (depending on the same random q ∈ Q). In
our analysis, we will show that, for a random Si, the dis-
tributions Xi and Yi are statistically close, where as usual
the statistical difference between Xi and Yi is defined as
maxT⊆Ω {Prri←Xi

[ri ∈ T]− Prri←Yi
[ri ∈ T]}. We will

then show that the verifier has low soundness error if it
works with the distributions X1 and X2. This informal de-
scription can be made rigorous by considering the following
“bad” events (over the probability space defined by the ran-
dom choices of S1 and S2):

BE1: The statistical difference between X1 and Y1 is more
than ε.

BE2: The statistical difference between X2 and Y2 is more
than ε.

BE3: There exist P and P1 such that for Q′ = Q′P (as in
Property (4) of Section 4.1.1)

Pr
r1←X1

[(q(r1) ∈ Q′) ∧ V1(r1, P (q(r1)), P1(q1(r1)))] > 2ε.

BE4: There exist P and P2 such that for Q′ = Q′P (as in
Property (4) of Section 4.1.1)

Pr
r2←X2

[(q(r2) 6∈ Q′) ∧ V2(r2, P (q(r2)), P2(q2(r2)))] > 2ε.

In the full version of this paper [14], we show that the
probabilities of the bad events are each at most 1/20. Fur-
ther we show that if none of the bad events occur, then the
soundness error of the verifier WS1,S2 is at most 6ε.

4.1.4 The 3-prover MIP: Stage III

Having reduced the sizes of the three prover oracles, it is
straightforward to reduce the amount of randomness used
by the three provers. Below we describe a reduced ran-
domness verifier WS1,S2,T where Si ⊆ Qi and T ⊆
{(r1, r2)|(q(r1) = q(r1)) ∧ (qi(ri) ∈ Si,∀i ∈ {1, 2})}.

• On input x, let V = Vx be the verifier’s predicate and
let V1 and V2 be as given in Property (1).

• Pick (r1, r2) ∈ T uniformly at random. [This uses the
sampleability property.]

• Compute q = q(r1) = q(r2), and make queries q,
q1 = q1(r1) and q2 = q2(r2), to P , P1 and P2, receiv-
ing answers a = P (q), a1 = P1(q1) and a2 = P2(q2).

• Accept if and only if V1(r1, a, a1) ∧ V2(r2, a, a2).

It is obvious that the verifier uses log2 |T | random bits. It
is also easy to see that if T is chosen randomly of suffi-
ciently large size then its soundness remains low. We skip
this proof, stating the resulting lemma.

Lemma 4.7 If S1, S2 are chosen randomly of size
O(|Q|max{log |A|, log |Q|}) and T is chosen randomly of
sizeO(|Q| log |A|+|S1| log |A1|+|S2| log |A2|), then, with
probability at least 2

3 , the verifier WS1,S2,T has soundness
error at most 7ε.

Lemma 4.2 follows from Lemma 4.7 in a straightforward
manner. See full version [14] for details.

4.2 Implication on PCP

Applying state-of-the-art composition lemmas from [2,
16], leads to the following theorem, where Part 2 implies
Theorem 2.3.

Theorem 4.8 (Our main PCP result):
1. For every ε > 0, SAT reduces probabilisti-

cally, under n1+O(1/ log logn)-length preserving reduc-
tions to a promise problem Π ∈ PCP1, 12 +ε[(1 +
O(1/ log log n)) · log n, 16].

2. For every ε > 0, SAT reduces probabilistically,
under n1+O(

√
logn log logn)-length preserving reduc-

tions to a promise problem Π ∈ PCP1, 12 +ε[(1 +
O(log log n/

√
log n)) · log n, 19].

Part 2 implies Theorem 2.3.

5 Conclusions and Open Problems

Our code constructions are randomized, and so we do
not obtain fully-explicit codes. The randomization amounts
to selecting a random subspace of random-tapes for certain
low-degree tests, and the probabilistic analysis shows that
almost all choices of the subspace will do. A natural (de-
randomization) goal is to provide an explicit construction
of a good subspace. For example, in case of the low-degree
test, the goal is to provide an explicit set of Õ(|F |m) lines
that can be used (as Rm in the construction of Section 3.2).

As a seemingly easier goal, consider the linearity test of
Blum, Luby and Rubinfeld [7]: To test whether f : G→ H
is linear, one uniformly selects (x, y) ∈ G × G and ac-
cepts if and only if f(x) + f(y) = f(x + y). Now, by the
probabilistic method, there exists a set R ⊂ G × G of size
O(|G| log |H|) such that the test works well when (x, y) is
uniformly selected inR (rather than inG×G).5 The goal is
to present an explicit construction of such a set R. Recent
progress on this special case (i.e., derandomization of the
BLR test) is reported in [15].

Another natural question that arises in this work refers
to obtaining locally-testable codes for coding k′ < k in-
formation symbols out of codes that apply to k information
symbols. The straightforward idea of converting k′-symbol
messages into k-symbol messages (via padding) and encod-
ing the latter by the original code, preserves many prop-
erties of the code but does not necessarily preserve local-
testability.6

We have presented locally testable codes and PCP
schemes of almost-linear length, where ` : N → N is
called almost-linear if `(n) = n1+o(1). For PCP, this im-
proved over a previous result where for each ε > 0 a
scheme of length n1+ε was presented (with query complex-
ity O(1/ε)). Recall that our schemes have length `(n) =
exp(log n)c) · n, for any c > 0.5. We wonder whether
length `(n) = poly(log n) ·n (or even linear length) can be
achieved. Similarly, the number of queries in our proof sys-
tem is really small, say 16, while simultaneously achieving
nearly linear-sized proofs. Further reduction of this query
complexity is very much feasible and it is unclear what the
final limit may be. Is it possible to achieve nearly-linear (or
even linear?) proofs with 3 query bits and soundness nearly
1/2?

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy.
Proof Verification and Intractability of Approximation Prob-
lems. JACM, Vol. 45, pages 501–555, 1998. Preliminary ver-
sion in 33rd FOCS, 1992.

[2] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New
Characterization of NP. JACM, Vol. 45, pages 70–122, 1998.
Preliminary version in 33rd FOCS, 1992.

[3] S. Arora and M. Sudan. Improved low degree testing and its
applications. In 29th STOC, pages 485–495, 1997.

5For every f : G→ H , with probability 1− exp(−|R|) a random set
R will be good for testing whether f is linear, and the claim follows using
the union bound for all |H||G| possible functions f : G→ H .

6Indeed, this difficulty (as well as other difficulties regarding the gap
between PCPs and codes) disappears if one allows probabilistic coding.
That is, define a code C : Σk → Σn as a randomized algorithm (rather
than a mapping), and state all code properties with respect to randomized
codewords C(a)’s.

[4] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking
Computations in Polylogarithmic Time. In 23rd STOC, pages
21–31, 1991.

[5] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient
probabilistically checkable proofs and applications to approx-
imation. In 26th STOC, 1994.

[6] E. Ben-Sasson, O. Goldreich, and M. Sudan. Impossibility
results for 2-query codeword testing. In preparation, 2002.

[7] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting
with Applications to Numerical Problems. JCSS, Vol. 47,
No. 3, pages 549–595, 1993.

[8] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifi-
cations of Boolean Constraint Satisfaction Problems. SIAM
Press, Philadeplhia, PA, USA, March 2001.

[9] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy.
Approximating Clique is almost NP-complete. JACM, Vol. 43,
pages 268–292, 1996. Preliminary version in 32nd FOCS,
1991.

[10] G.D. Forney. Concatenated Codes. MIT Press, Cambridge,
MA 1966.

[11] K. Friedl and M. Sudan. Some Improvements to Low-Degree
Tests. In the 3rd Israel Symp. on Theory and Computing Sys-
tems (ISTCS), 1995.

[12] O. Goldreich, S. Goldwasser, and D. Ron. Property test-
ing and its connection to learning and approximation. JACM,
pages 653–750, July 1998.

[13] O. Goldreich, H. Karloff, L.J. Schulman and L. Trevisan.
Lower Bounds for Linear Locally Decodable Codes and Pri-
vate Information Retrieval. In the Proc. of the 17th IEEE Con-
ference on Computational Complexity, 2002.

[14] O. Goldreich and M. Sudan. Locally Testable Codes and
PCPs of Almost-Linear Length. ECCC Technical Report,
TR02-050, August 2002.

[15] O. Goldreich and A. Wigderson. On derandomizing the BLR
test. Private communication, June 2002.

[16] P. Harsha and M. Sudan. Small PCPs with Low Query Com-
plexity. Computational Complexity, 9(3-4):157-201, 2000.

[17] J. Katz and L. Trevisan. On The Efficiency Of Local De-
coding Procedures For Error-Correcting Codes. In the 32nd
STOC, 2000.

[18] A. Polishchuk and D.A. Spielman. Nearly-linear size holo-
graphic proofs. In 26th STOC, pages 194–203, 1994.

[19] R. Raz and S. Safra. A sub-constant error-probability low-
degree test, and a sub-constant error-probability PCP charac-
terization of NP. In 29th STOC, 1997.

[20] R. Rubinfeld and M. Sudan. Robust characterization of poly-
nomials with applications to program testing. SIAM Journal
on Computing, Vol. 25 (2), pages 252–271, 1996.

