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Abstract

We argue that the symmetries of a property being tested play a central role in property testing. We
support this assertion in the context of algebraic functions, by examining properties of functions mapping
a vector space Kn over a field K to a subfield F. We consider F-linear properties that are invariant under
linear transformations of the domain and prove that an O(1)-local “characterization” is a necessary and
sufficient condition for O(1)-local testability when |K| = O(1). (A local characterization of a property
is a definition of a property in terms of local constraints satisfied by functions exhibiting a property.) For
the subclass of properties that are invariant under affine transformations of the domain, we prove that the
existence of a single O(1)-local constraint implies O(1)-local testability. These results generalize and
extend the class of algebraic properties, most notably linearity and low-degree-ness, that were previously
known to be testable. In particular, the extensions include properties satisfied by functions of degree
linear in n that turn out to be O(1)-locally testable.

Our results are proved by introducing a new notion that we term “formal characterizations”. Roughly
this corresponds to characterizations that are given by a single local constraint and its permutations under
linear transformations of the domain. Our main testing result shows that local formal characterizations
essentially imply local testability. We then investigate properties that are linear-invariant and attempt to
understand their local formal characterizability. Our results here give coarse upper and lower bounds on
the locality of constraints and characterizations for linear-invariant properties in terms of some structural
parameters of the property we introduce. The lower bounds rule out any characterization, while the upper
bounds give formal characterizations. Combining the two gives a test for all linear-invariant properties
with local characterizations.

We believe that invariance of properties is a very interesting notion to study in the context of property
testing, in general and merits a systematic study. In particular, the class of linear-invariant and affine-
invariant properties exhibits a rich variety among algebraic properties and offer better intuition about
algebraic properties than the more limited class of low-degree functions.
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1 Introduction

Property testing considers the task of testing efficiently, by random sampling, if a function mapping a finite
domain to a finite range “essentially” satisfies a given property. The property to be tested can be specified
by the family of functions F that possess the property. A property F is k-locally testable if there exists a
randomized test that queries the value of a function f on k inputs and accepts f ∈ F and rejects f 6∈ F with
probability lower bounded by a quantity proportional to the distance of f from F . Proximity of functions
is measured in terms of its relative Hamming distance δ(f, g) = Prx[f(x) 6= g(x)] when x is chosen
uniformly from the finite domain. A function f is δ-close to F if there exists a g ∈ F such that δ(f, g) ≤ δ
and δ-far otherwise.
The study of property testing emerged in the wake of the linearity test of Blum, Luby, and Rubinfeld [4]
and was defined formally in Rubinfeld and Sudan [19]. The first substantial investigation of property testing
occurred in Goldreich, Goldwasser, and Ron [10] who focussed on the testing of properties of combinatorial
objects, in particular of graphs. Subsequent works have lead to major strides in the testing of graph properties
culminating with the works of Alon et al. and Borgs et al. [1, 6]. The testing of algebraic properties has also
seen significant progress since [4, 19] including testing of functions satisfying functional equations [18],
and testing of various algebraic properties leading to error-correcting codes e.g. testing of Reed-Muller
codes [2], generalized Reed-Muller codes [16, 13], dual-BCH codes [15]. On the negative side, the works
of Bogdanov, Obata, and Trevisan [5] and Ben-Sasson, Harsha,and Raskhodnikova [3] give properties that
are not locally testable.
In the light of this progress it is natural to ask: What are the essential features that make a property testable.
In the context of graph-property testing (in the “dense-graph” model) this question is answered by the works
of [1, 6], who show that a certain feature that they term “regularity” is necessary and sufficient for testing
graph properties. In the algebraic setting, a similar understanding of properties that lead to local testability
is lacking. In this paper we take some steps to remedy this.

Invariance and Property Testing: Our approach to (algebraic) property testing is to attribute testability to
some “invariance” features exhibited by the property. Invariance features of a family F , especially under
permutations of the domain, seems naturally linked to property testing. For example, let us consider the test
for “majority” (the property F consisting of all functions f : {1, . . . , N} → {0, 1} that take the value 1
at least N/2 times). This test is considered uninteresting and we propose a formal explanation. This test
actually uses the symmetry of the property F , and the symmetry required is the full group of permutations
over the domain. Indeed the test easily extends to any other “symmetric” property F of Boolean functions,
which has the feature that if f ∈ F and π is a permutation on the domain, the f ◦ π(x) = f(π(x)) is also
in F . A formal reason to declare the test “obvious” may be that the group of invariances needed in F is so
large (qualitatively).
Graph property testing similarly revolves around symmetries. This setting consider functions A : {1, . . . , n}×
{1, . . . , n} → {0, 1}, and properties that are invariant under permutations that permute rows and columns
simultaneously. The groups of symmetries thus is somewhat smaller ((

√
N)! as opposed to N !, where

N = n2 is the domain size). But now one needs some more features (monotonicity/heredity) to get property
testers [1, 6]. Despite this natural link between property testing and invariances, this link does not seem to
have been explicit in prior literature. We make it explicit here. We remark that in independent work, Gol-
dreich and Sheffet [11], also make this notion explicit, and use it to understand the randomness complexity
needs of property testing.
In this paper we explore invariances of an algebraic kind. To do so, we consider functions mapping an
n-dimensional vector space over a finite field K to a subfield F of K. Among such functions the families F

1



we consider satisfy two properties:

1. They are K-linear invariant (or simply linear invariant), i.e., for every function f ∈ F , and linear
map L : Kn → Kn (i.e., a function that satisfies αL(x) + βL(y) = L(αx + βy) for every α, β ∈ K
and x,y ∈ Kn), it is the case that f ◦ L, given by (f ◦ L)(x) = f(L(x)), is also in F . If such a
closure holds for all affine maps L from Kn to Kn, then the property F is said to be affine-invariant.

2. They are F-linear (or simply linear), i.e., for every pair of functions f, g ∈ F and α, β ∈ F it is the
case that the function αf + βg is also in F . This is the property that typically leads to linear codes
over the alphabet F.

In the algebraic context, linear-invariance over the domain seems to be a natural class of invariances (though
not necessarily the only class) to consider, and may be viewed as analogous to the choice of working with
“graph-properties”. The linearity of the family F (when viewed as a vector space over the range) is an
additional property we impose to derive some testability results (analogous to the role played by hered-
ity/monotonicity in graph property testing).
For simplicity we suppress the use of the phrase “F-linear” in this paper, and use the term linear-invariant
(affine-invariant) family to reflect families which are both linear-invariant (resp. affine-invariant) and linear.
(We stress that this is merely a notational choice. It maybe quite interesting to study non-linear properties
that are linear-invariant also, but we don’t do so here.)
The resulting collection of families unify most previously considered in algebraic settings. They include
the class of linear functions, low-degree polynomials (and thus generalized Reed-Muller codes), as well
as the dual-BCH codes. But they also include other families such as homogenous polynomials of any
given degree and linearized polynomials. They satisfy nice closure properties e.g., if F1 and F2 are linear-
invariant, then so are F1 ∩ F2 and F1 + F2, the family that consists of the sum of functions from F1 and
F2. Finally, we remark that the group of symmetries required by linear-invariance is relatively tiny, and
only quasipolynomial in the domain size, compared to the exponential sizes relied upon in the symmetric
properties as well as in graph properties.
Our principal results are to show necessary and sufficient conditions for testing linear-invariant families
mapping Kn to F. The results hold for all choices of K and F as n → ∞, but are specially strong when
|K| = O(1). We describe our results, and approach, below.

Constraints, Characterizations, Formal Characterizations, and Testing: To understand necessary con-
ditions for local testability, we start by recalling the some basic notions in this context, namely those of
“constraints” and “characterizations”.
We say that a family F satisfies a constraint C = (x1, . . . , xk;S) where x1, . . . , xk ∈ Kn and S ( Fk if
every member f ∈ F satisfies 〈f(x1), . . . , f(xk)〉 ∈ S. We refer to this constraint as a k-local constraint.
In order for a property to be k-locally testable, with one-sided error, it must be the case that functions in the
family satisfy some k-local “constraint” (since every rejected function must be rejected with a proof of non-
membership in the family). Local constraints also essential for a family of functions to be self-correctible
and indeed it turns out that all function families we analyze are self-correctible.
Testable properties where every non-member is rejected with positive probability (as required by our defi-
nition of a local test) actually need to show even more structure. Specifically, it must be that there is some
set of local constraints that completely characterize the family, i.e., f ∈ F if and only if it satisfies every
one of the given set of k-local constraints. (See Definition 2.1 for a formal definition.) In this paper we will
consider all function families that are linear invariant and have a local characterization and show that they
are testable.
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To derive this result we examine the source of the local characterizability of a family. Local characterizability
of a family requires that a family be specified by several local constraints. In examining the features that
lead to property testing it is natural to ask for an explanation for this abundance of local constraints. One
way to explain them is via the invariance features of the family. If a family satisfies one local constraint, then
every “permutation” of the domain that preserves membership in the family yields a potentially new local
constraint. In our case, thus the abundance of constraints can be explained by the linear invariance of the
family. Every linear transformation of a constraint, leads to another valid constraint, and together this set can
be quite large. Motivated by this, we introduce the notion of a formal characterization, which requires that
the family be specified by a single constraint and its “orbit”, i.e., all the other constraints obtained by linear
transformations of the given one, characterize the family. (The actual definition allows a slightly broader
class of characterizations, see Definition 2.3.) Modulo the formal definitions of these objects, we can state
our first theorem informally as follows:

Main Theorem 1 (Informal): If a family F is linear-invariant and has a k-local formal characterization,
which satisfies some additional restrictions, then it is k-locally testable. (See Theorem 2.9 for a formal
statement.)

The requirement that a single constraint and its orbit characterize a family may seem overly restrictive, but
known characterizations of most algebraic functions including those from [4, 19, 2, 16, 13] are actually
formal and satisfy the (thus far unspecified) additional restrictions (see Proposition 2.7). As a result Theo-
rem 2.9 already subsumes many of the algebraic testing results. Moreover, as discussed later in this section,
the proof is actually somewhat simpler and unifies the different proofs presented in the literature for the
different cases.
Our other main results show that the above theorem actually gives testers for all linear-invariant families
provided the family is locally characterizable, a clear necessary condition. For the special case of affine-
invariant families, we show that the existence of a single local constraint suffices to establish testability.
Again we describe these theorems informally below.

Main Theorem 2 (Informal): If a family F is affine-invariant and has a k-local constraint, then it has a
kpoly(|K|)-local formal characterization which satisfies the additional restrictions mentioned in Main Theo-
rem 1 (Informal). Hence F is kpoly(|K|)-locally testable. (See Theorem 2.10 for a formal statement.)

Thus when |K| = O(1), the above pins down the local testability to with polynomial factors. Moving to
the case of linear-invariant families, here we do get local formal characterizations, but they do not satisfy
the additional restrictions described in Theorem 2.9. However, we still manage to use the theorem to give a
local test for all such families.

Main Theorem 3 (Informal): If a family F is linear-invariant and has a k-local characterization, then it
has a kpoly(|K|)-local formal characterization (which need not satisfy the additional restrictions mentioned
in Main Theorem 1 (Informal)). Furthermore, F is kpoly(|K|)-locally testable. (See Theorem 2.11 for a
formal statement.)

Significance of results: The significance of the results depend on the “novelty” of the class of properties
that are linear-invariant, and have local constraints or characterizations. At first look it may appear that
linear-invariance is just a rephrasing of the notion of being low-degree polynomials1. Indeed we even prove

1We remark that it is not possible to deny that every property from Kn to F is a property of “polynomials”, since every function
is from Kn to F is a polynomial. However this is no more interesting than saying that the function family is |K|n-locally testable!
What we claim here, and show later in the paper, is that the class of properties showing linear-invariance is not just polynomials of
a given upper bound on the degree.
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that when K = F = Zp is a prime field then the only affine-invariant families are polynomials of a given
bound on their degree. However each restriction, K = F, F = Zp and the affine-invariance of F (as opposed
to mere linear-invariance), when relaxed leads to a broader set of properties.
For instance, when K = F and F is not a prime field, then the class of “linearized polynomials” lead to an
interesting collection of “high-degree” polynomials that are affine-invariant, but testable with much greater
locality than their degree would suggest. (Linearized polynomials over the field F of cardinality ps for prime
p and s > 1 are functions of the form

∑s−1
i=0 cix

pi
.) In Theorem 7.1 we give a generalization of this result to

multivariate polynomials and p-degree greater than 1, giving a moderately broad class of functions that are
very locally testable using Theorem 2.9.
Moving to the case where K 6= F, a priori it is not even clear that it is good to think of them as polynomials
over K (though as noted earlier, every function from Kn to K, and hence from Kn to F, is a polynomial
with coefficients from K). Every non-constant function takes on a constant value 1/|F| fraction of the times
and so must be a very high degree polynomial over K (of degree at least |K|/|F |). Yet they can be locally
testable with O(1) locality, again suggesting that the “degree” of polynomials in the set is not a good way to
measure their testability. This class of functions are interesting in that they capture the “dual-BCH” codes
studied (in the context of property testing) by Kaufman and Litsyn [15]. In this paper, we give some basic
structural results about such functions (see Section 6) which allows us to get some weak, but general, results
about testing multivariate versions of such functions.
The strongest contrast from low-degree polynomials however comes when studying linear-invariant (as op-
posed to affine-invariant) families. In the previous cases, it was the structure within the field K that played a
central role in differentiating the properties under consideration from the class of low-degree polynomials.
While this distinction led to some nice examples, the “coarseness” of our general results (Informal Theo-
rems 2 and 3 above) is weak to capture this distinction. In the case of linear-invariant families, homogenous
polynomials start to play a special role and this role is quantitatively much more significant. For example
consider the set of n-variate polynomials over Z3 supported on monomials of odd degree or monomials of
degree at most 10. It can be verified that this a linear-invariant family. On the one hand this set includes
polynomials of degree upto 2n − 1, and indeed the supporting set of monomials has cardinality at least
2n. However, it turns out that this family is testable with O(1)-locality independent of n (and this follows
from Lemma 6.17 that is used to prove the Informal Theorem 3 above)! Indeed Lemma 6.17 gives a broad
generalization of this example to a rich collection of non-low-degree polynomials that are locally testable.
We remark that linear-invariance also leads to other rich effects. As mentioned above, the class of ho-
mogenous polynomials of degree d is linear-invariant and O(d)-locally testable. Also if F1 and F2 are
linear-invariant, then so is F1 +F2. It follows, again from Lemma 6.17, that if both are locally testable then
so is F1 + F2.
In summary, we assert that the class of linear-invariant properties mapping Kn to F form a rich enhancement
of the class of low-degree polynomials and our results here show how to extend some of the property testing
results to the enhanced collection of properties.
Techniques: Our techniques belong into three different categories.
Unification of previous testing results by Tensor product of codes. Our testing result (Informal Theorem
1) unifies, simplifies and generalizes the proof of the robustness result from several prior works [4, 19, 2,
16, 13]. The later works in this sequence built on the proof structure developed in [4], but then needed to
find new ways to address the many variants of a common technical problem that arose in all the proofs. Our
insight in this work is to notice that all these problems were hovering around the concept of “tensor products”
of linear spaces (or codes). By extracting this element explicitly (see proofs of Lemmas 3.1 and 3.3) we are
able to find a single proof (not much more complicated than the first) that simultaneously solves all the
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Figure 1: Informal summary of the notions and results in this paper.

problems. We remark that this proof does not specialize to any of the previous proofs, not even in the case
of [4]. Previous proofs were more “efficient” in terms of the tradeoff between the rejection probability of
the test and the distance from the family F . By sacrificing this efficiency we are able to unearth some of
the underlying reasons for why testing works. Given the central role of linearity and low-degree testing in
complexity theory, we hope that the additional understanding will be of technical benefit in the future.
Structural theorems for linear invariant families. Our structural theorems about linear-invariant families
(Informal Theorems 2 and 3) are based on a careful analysis of polynomials mapping Kn to F. Recalling
that every function from Kn to F can be viewed as a n-variate polynomial over K, we ask questions of
the form, what does a linear invariant family F containing a single function (polynomial) f look like? We
present some very simple but broadly useful lemmas in this context, which we describe first for the simple
case when K = F. We give a “monomial extraction lemma”, Lemma 4.2, which shows that every monomial
appearing in the support of f is also in F (where we view the monomial also as a function from Fn to F).
For example, any linear-invariant family containing the polynomial x2 +xy2 +y4 also contains the function
xy2. This turns our attention to linear invariant families F that contain some given monomial m. We show a
“monomial spreading lemma”, Lemma 4.6, which describes many other monomials that should be contained
in F as well. For example a family containing the monomial x2y3 over a field of characteristic greater than
5 also contains the monomials x5 and xy4 etc. We show a similar (more general) variant for affine-invariant
families also. These lemmas, though simple, forge the path for a better understanding of linear-invariant
and affine-invariant families. In particular they say that these families are completely characterized by the
monomials in the families. In the case of affine-invariant families, the maximum degree of the monomials
in the family forms a good, though crude, bound on the locality of the characterization/tests of the family,
and this leads to the Informal Theorem 2 above.
For linear-invariant families however, the degree turns out to be the wrong measure to estimate the locality
of characterizations or tests. Instead we introduce a new parameter that we call the linear-invariance degree
of a family. For example, for the earlier-mentioned example of the family mapping Zn

3 to Z3 supported on all
monomials of odd degree and on other monomials of degree upto 10, the linear-invariance degree turns out
to be 10. We show that this invariance degree bounds, again crudely, the locality of the characterization/tests
of any family and this leads to the Informal Theorem 3 above, in the case of K = F.
Systematic study of functions from a field K to a subfield F. Finally we extend the results to the case of
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function families mapping Kn to some subfield F of K. Thus, our work provides the first systematic study
of testability of functions from a field to its subfield. In this case we describe a basis for functions mapping
Kn to F, which itself seems somewhat new. This basis generalizes in a common way the well-studied
“trace” and “norm” functions, both of which map K to F. These functions, that we refer to as “Traces
of monomials”, satisfy similar properties to the monomials in the simpler case of functions from Fn to
F. Viewed as a polynomial over K, if a function f has a support on a monomial m, then the trace of the
monomial m is itself a function in any linear-invariant family containing f . Furthermore, the presence of
one monomial implies the presence of many others in the family, leading to upper and lower bounds on the
characterizations/tests of the family.

Conclusions, the Alon et al. Conjecture and Future Work: Our work attempts to highlight on the role
of invariance in property testing. We remark that despite the obvious relationship of this notion to property
testing, it has not been highlighted before. The only prior mentions seem to be in the works of Alon et
al. [2], and in Goldreich and Sheffet [11].
Our work highlights linear-invariance as a central theme in algebraic property testing. Our results show
that this notion yields a wide class of properties that have local property tests. These results are strong
when the underlying field K is small. However when K is large, the characterization results (in particular,
Theorem 2.10) becomes quite weak, even for affine-invariant families. In particular, in the case of the dual-
BCH codes (which consider functions mapping F2t to F2), our characterizations are completely trivial, while
these codes do have very efficient tests [15]. One way to improve our results would be if Theorem 2.10 could
be improved to have no dependence on t. This however is not possible, as shown in upcoming joint work
with Grigorescu [12]. Specifically they exhibit a family of affine-invariant functions mapping F2t to F2 that
have 8-local constraints, but no o(t)-local characterizations. Thus some dependence on K is necessary in
translating constraints to characterizations.
Our work provides the first systematic study of testing functions from a field to its subfield. This setting is
different than the well studied case of functions from a field to itself. This difference is best illustrated by
the following example

• For affine invariant function family of the form Fn
2 → F2 we have : a local constraint imply local

characterization and local testability.

• For affine invariant function family of the form F2n → F2 we might have (by the work of [12]) a local
constraint, but no local characterization! , and hence no local testing!

Moreover, our work suggests a method to construct new locally testable codes by picking the dual code to
be a code spanned by an orbit of a short local constraint (orbit under the group of linear transformations).
In general, we feel that the class of linear-invariant functions offer a rich variety of properties, sufficiently
wide to test out conjectures about the nature of testable properties. For instance, Alon et al. [2] had con-
jectured that linear codes of large distance, that have a small weight codeword in the dual, and have a
“2-transitive invariant group” are locally testable. When applied to codes derived from affine-invariant
function families, their conjecture implies that every affine-invariant family from Kn → F with a k-local
constraint, must have an fF(k)-local test and in particular, an fF(k)-local characterization. The aforemen-
tioned result [12] refutes this conjecture of [2] by considering affine-invariant families. However, our work
(Theorem 2.10) shows that a weak version of the [2] conjecture does hold, within the class of linear-invariant
codes, by giving an fK(k)-local algebraic characterization and test.
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This leaves the possibility that every locally characterized code with a “2-transitive invariant group” may
be locally testable. Again we feel that this question can and should be examined in the context of affine-
invariant families. In general, we feel that for every missing arrow, or qualitatively weak one, in Figure 1
poses an interesting open question that we hope will be investigated in future work.
This work put in focus object of the following form: F-linear subspaces that are invariant under permutations
of a group G. In this work the group G is the group of linear transformations of the domain. In a future
work one may try to understand invariance under different groups in the following sense.

• Does k-local formal characterization imply local-testing also when the group of invariances is differ-
ent than the group of linear transformations?

• Given a linear subspace that is invariant under permutations of a group G, when it is the case that
k-local formal characterization exists (i.e. when there exists one short orbit that span the dual space)?

Organization of this paper:
In Section 2 we introduce some basic definitions needed to present our main results and we provide formal
statements of our main results. Then in Section 3 we prove our main result on testing linear-invariant
families. Section 7 presents an example of some families that possess very local characterizations and
thus local tests. The remaining sections undertake the analysis of locality of characterizations in general
linear-invariant families. Section 4 describes some basic structural properties, in particular on the role of
monomials in functions mapping Fn to F. Section 5 turns these results into bounds on the locality of the
characterizations and tests for affine-invariant and linear-invariant families mapping Fn to F. Section 6
extends the results of the previous two sections to the case of functions mapping Kn to F.

2 Definitions and Statement of Results

We start with some common notation we use. We use Z to refer to the integers. We use [n] to denote the
set {1, . . . , n}. Throughout we work with finite fields F of cardinality q = ps and K of cardinality Q = qt.
F∗ and K∗ will denote the non-zero elements of the fields. For an integer vector d = 〈d1, . . . , dn〉 with
0 ≤ di < Q and c ∈ K∗, we let c ·xd denote the monomial c ·

∏n
i=1 xdi

i . We use K[x] to denote polynomials
in x with coefficients from K. We use L to denote the space of linear functions from Kn → Kn and A to
denote the set of affine functions.

2.1 Robust local tests

We start with the formal definitions of constraints, characterizations and formal characterizations.

Definition 2.1 (k-local constraint/characterization) A k-local constraint C is given by k points x1, . . . ,xk ∈
Kn and a set S ( Fk. We say that a family F satisfies a k-local constraint C = (x1, . . . ,xk;S) if
〈f(x1), . . . , f(xk)〉 ∈ S for every f ∈ F . We say that a family F has a k-local characterization if there
exists a collection C of k-local constraints such that f ∈ F if and only if f satisfies all constraints C ∈ C.

When the property being tested is F-linear, it is well-known [3] that the set S might as well be an F-linear
proper subspace of Fk. In what follows we often use the letter V to denote such a subspace (instead of S).
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We now introduce the notion of a k-local formal characterization. We start with a strong and elegant defi-
nition, though we will soon switch to a slightly weaker (but more cumbersome) definition that is easier to
work with. The strong definition formalizes characterizations derived from linear, or affine, translations of
a single k-local constraint.

Definition 2.2 (Strong Formal Characterization) A family of functions F ⊆ {Kn → F} has a strong k-
local formal characterization it there exists a constraint C = (x1, . . . ,xk;V ⊆ Fk) such that f ∈ F if and
only if for every linear function L : Kn → Kn it is the case that 〈f(L(x1)), . . . , f(L(xk))〉 ∈ V .

Characterizations such as the above are common in property testing. For instance the class of linear functions
from Zn

p to Zp, for prime p and n ≥ 2 can be described by the constraint C = (a,b,a + b;V ) where
a = 〈1, 0, . . . , 0〉, b = 〈0, 1, 0, . . . , 0〉, and V = {〈α, β, α + β〉|α, β ∈ Zp}. Similarly, the class of
degree d polynomials mapping Zn

p to Zp, for d ≤ p and n ≥ 2 can be described by the constraint C =
(a,a + b,a + 2b, . . . ,a + (d + 1)b;Vd) where Vd = {〈α0, . . . , αd+1〉 ∈ Fd+2|

∑d+1
i=0 (−1)i

(
d+1

i

)
αi = 0}.

More complex expressions can be found for functions mapping polynomials over any (esp. a non-prime)
field to itself. However all these definitions do restrict n to be at least 2, which is somewhat artificial. Also
for technical reasons we will use a “dual” (and weaker) notion of a “formal” constraint.
In the above version, a formal characterization may be viewed as being given by a collection of constraints:
one for every linear map from Kn to Kn. In the “dual” version below, we will consider a collection of
constraints which are parametrized by a constant number of variables taking values in Kn. The “variables”
of a constraint, i.e., locations examined by the constraint, are linear functions of the parameters. As usual
the constraint requires that the vector of function values at the specified locations come from the set S.

Definition 2.3 ((Weak) k-local formal characterization) A family F has a (weak) k-local formal charac-
terization if there exists an integer m; k linear functions `1, . . . , `k : (K)m → K; and a linear subspace
V ⊂ Fk such that f ∈ F if and only if for every y1, . . . , ym ∈ Kn, we have 〈f(x1), . . . , f(xk)〉 ∈ V , where
xi = `i(y1, . . . , ym). (Here we interpret the linear function `i as a map from (Kn)m → Kn in the natural
way.)

The following proposition establishes a fairly close connection between strong and weak formal characteri-
zations.

Proposition 2.4 A family F ⊆ {Kn → F} has a weak k-local formal characterization if is it has a strong
k-local formal characterization. If n ≥ k then the converse also holds.

Proof: Let C = (x1, . . . ,xk;V ) give a strong formal characterization of F . Renumber x1, . . . ,xk so that
the vectors x1, . . . ,xm are linearly independent and xj =

∑m
i=1 λijxi for j ∈ {m + 1, . . . , k}. Now let

`1, . . . , `k : Km → K be defined as `j(z1, . . . , zm) = zj if j ≤ m and `j(z1, . . . , zm) =
∑m

i=1 λijzi for
j ∈ {m + 1, . . . , k}. Then it can be easily seen that `1, . . . , `k and V give a weak formal characterization
of F .
In the other direction, suppose `1, . . . , `k : Km → K and V give a weak formal characterization of F . Let
α1, . . . , αm ∈ Kn be linearly independent vectors in Kn. (Note such a collection exist since m ≤ k ≤ n.)
Let x1, . . . ,xk be given by xj = `j(α1, . . . , αm). Then it can be verified that the constraint (x1, . . . ,xk;V )
gives a strong formal characterization of F .

Henceforth whenever we refer to formal characterizations, we mean weak ones. The formal version of the
Informal Theorems 1, 2, and 3 rely on some restricted classes of formal characterizations that we specify
below.
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Definition 2.5 (2-ary Independent and Affine Formal Characterizations) A k-local formal characteri-
zation (`1, . . . , `k;V ) is 2-ary independent if `1 and `j are linearly independent for every j ∈ {2, . . . , k}. If
all the `i’s are of the form y1+ ˜̀

i(y2, . . . , ym), where ˜̀
i’s are non-zero, then we say that the characterization

is an affine characterization. (Note that every affine characterization is also 2-ary independent.)

In the propositions below, we mention some general results on the existence of formal local characteriza-
tions. The first gives a general transformation, which may be quite weak for large K, but is quite useful
for small K. The second summarizes known (quite strong) characterizations in our terms. Both proofs are
omitted.

Proposition 2.6 For every K there exists a function g = gK : Z → Z such that if F has a k-local charac-
terization, then it has a g(k)-local formal characterization.

Proposition 2.7 (Follows from [7, 16]) The set Fn,d,F of n-variate polynomials of degree at most d over F
(so here K = F) of cardinality q = ps, have a d + 2-local formal characterization, if d ≤ q − q/p, and a
qdd/(q(1−1/p))e-local formal characterzation if d ≥ d(1− 1/p). In both cases, the formal characterizations
are affine.

A much wider class of properties (other than just the class of low-degree polynomials) have local character-
izations. We discuss this in detail shortly, but first we describe a natural test for properties with local formal
characterizations.

Definition 2.8 (Linear-invariant test) For familyF that has a formal local characterization given by (`1, . . . , `k;V ),
the linear-invariant test is defined to be: “Pick x1, . . . , xm ∈ Kn at random and accept if and only if
〈f(y1), . . . , f(yk)〉 ∈ V , where yi = `i(x1, . . . , xm).”

We can now state our main theorem, which formalizes the Informal Theorem 1 of Section 1, for testing
linear-invariant families with local formal characterization.

Theorem 2.9 If F is a (linear invariant) family of functions mapping Kn to F, with a 2-ary independent
k-local formal characterization, then it is k-locally testable. Specifically, the linear-invariant test accepts
all members of F , while a function f that is δ-far from F is rejected with probability min

{
δ
2 , 1

(2k+1)(k−1)

}
.

We prove this Theorem in Section 3. In particular, note that in all cases the rejection probability is indepen-
dent of n and K. So if k = O(1), then the rejection probability is Ω(δ).
For well-known linear-invariant families such as linear functions [4], and Reed-Muller codes [19, 2, 16, 13],
the theorem above produces local tests with the same locality as in the previous works, though the rejection
probability may be slightly smaller in our case. The rest of this section describes property tests that we can
derive that are not already captured by previous results.
To do so we study invariance properties of functions mapping Kn to F. All functions from Kn to F are
polynomials. So the principal questions we study here are: “Which subsets of polynomials are linear (or
affine) invariant?” and “Which of these families have k-local formal characterizations?”
We differentiate our results into two categories: those for affine-invariant families and those for linear-
invariant families. In both cases, as argued earlier there is a rich variety of function families that are not
“merely” low-degree polynomials. However in the case of affine-invariant families, the maximum degree

9



of functions in the family does give a crude bound on the locality of characterizations and tests for the
family. On the one hand families that contain even a single high-degree function cannot satisfy any local
constraint; and on the other hand families with only low-degree functions have local formal characterizations
(see Lemmas 6.9 and 6.14). For affine-invariant families, the characterizations can be converted to affine-
invariant, and hence 2-ary independent ones, one can now apply Theorem 2.9 to get a testing result as well.
This leads us to the following theorem, which formalizes Informal Theorem 2.

Theorem 2.10 . For fields F ⊆ K with |F| = q and |K| = Q, let F ⊆ {Kn → F} be an affine-invariant
family with a k-local constraint. Then F has a k′ = (Q2k)Q2

-local formal affine characterization. Further-
more F is k′-locally testable where the test accepts members of F with probability 1 and rejects functions
that are δ-far with probability min

{
δ
2 , 1

(2k′+1)(k′+1)

}
.

Theorem 2.10 is proved in Section 6, though the simpler case where K = F is proved in Section 5.
The gap between the upper and lower bounds is the above theorem is quite weak. Partly this is because
the degree of the polynomial in a family is only a weak estimator of the locality of characterizations. In
Section 7 we give an example of a family mapping Fn to F where the degree is larger than the locality of the
characterization by a factor of about q/p. This example is interesting in its own right in that it shows some
of the ways in which affine-invariant families differ from families of low-degree polynomials.
In the case of linear-invariant families, the degree is no longer even a crude estimator of the locality of
characterizations. In Section 5 we introduce the notion of the linear-invariance degree of a family and use
this parameter in Sections 5 and 6 to derive upper bounds on the locality of formal characterizations, while
also deriving lower bounds on the locality of (any) characterization (see Lemmas 6.8 and 6.16). These
characterizations, unfortunately, are not 2-ary independent. However we manage to reduce the testing of
linear-invariant families to some related families that do have 2-ary independent characterizations. This
allows us to use Theorem 2.9, in a slightly more involved way, to get local tests for linear-invariant families
as well. The following theorem, which formalizes Informal Theorem 3, summarizes this investigation.

Theorem 2.11 . For fields F ⊆ K with |F| = q and |K| = Q, let F ⊆ {Kn → F} be an linear-
invariant family with a k-local characterization. ThenF has a k′ = (Q2k)Q2

-local formal characterization.
Furthermore F is k0-locally testable, for k0 = 2Qk′ where the test accepts members of F with probability
1 and rejects functions that are δ-far with probability min

{
δ
2 , Q2

(2k0+Q)(k0+Q)

}
.

Again, Theorem 2.11 is proved in Section 6, though the simpler case where K = F is proved in Section 5.
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Part I

3 Local Testing from Local Formal Characterizations

In this section we wish to prove Theorem 2.9 which asserts that a linear-invariant family F with a 2-ary
independent k-local formal characterization is k-locally testable, by the linear-invariant test for F . We
restate the theorem below.
Theorem 2.9 (restated) If F is a (linear invariant) family of functions mapping Kn to F, with a 2-ary inde-
pendent k-local formal characterization, then it is k-locally testable. Specifically, the linear-invariant test
accepts all members ofF , while a function f that is δ-far fromF is rejected with probability min

{
δ
2 , 1

(2k+1)(k−1)

}
.

In particular, the theorem implies that every affine-invariant family F with a k-local formal characterization
is testable.
Recall the linear-invariant test picks x1, . . . , xm ∈ Kn at random and accepts if and only if 〈f(y1), . . . , f(yk)〉 ∈
V , where yi = `i(x1, . . . , xm) for i ∈ [k].
Let ε(f) denote the probability that the linear-invariant test rejects a function f . It is clear that if f ∈ F then
ε(f) = 0. So to prove Theorem 2.9 for the case of 2-ary independent formal characterizations, it suffices to
show that if ε(f) < 1

(2k+1)(k−1) , then δ(f,F) ≤ 2ε(f).

We start by making some notational simplifications. For i ∈ [k] and j ∈ [m], let cij ∈ K be such that
`i(x1, . . . , xm) =

∑m
j=1 cijxj . Without loss of generality, we assume that the first m linear functions

simply project on to the first m coordinates; i.e., `i(x1, . . . , xm) = xi for i ∈ [m]. (This can be achieved by
a linear transformation of the variable x1, . . . , xm and by permuting the `i’s.) Furthermore, we assume the
remaining coordinates are linearly independent of x1 and so for every i 6= 1, the vector 〈ci2, . . . , cim〉 6= 0.
Fix a function f with ε(f) < 1/((2k + 1)(k − 1)). As in [4], we now describe a function g : Kn → F
that is close to f , that will turn out to be a member of F . For any choice of values α2, . . . , αk ∈ F notice
that there is at most one α ∈ F such that 〈α, α2, . . . , αk〉 ∈ V . Define DECODE(α2, . . . , αk) to be this α if
it exists (and a special symbol ⊥ denoting error otherwise). For x ∈ Kn and let Scf (x;x2, . . . , xm) =
DECODE(f(y2), . . . , f(yk)) where yi = `i(x, x2, . . . , xm). Note that ε(f) equals the probability that
f(x) 6= Scf (x;x2, . . . , xm), when x, x2, . . . , xm are chosen uniformly and independently from Kn. In
particular f(x) = Scf (x;x2, . . . , xm) for every x, x2, . . . , xm if and only if f ∈ F .
Finally, we are ready to define the function g, which we claim to be the function close to f that is in F . For
x ∈ Kn, let g(x) = pluralityα∈(Kn)m−1Scf (x, α).
We now follow the same sequence of steps as in [4]. It is straightforward to show that f is close to g and we
do so in Lemma 3.2. But before we do so, we move to the crucial step, which is to prove that the plurality
above is really an overwhelming majority for every x. We show this first in Lemma 3.1. Finally, a proof
similar to that of Lemma 3.1 shows that g must be a member of F and we do so in Lemma 3.3. Theorem 2.9
follows easily from these lemmas.

Lemma 3.1 For every x ∈ Kn, Pry,z[(Scf (x,y) 6= Scf (x, z))] ≤ 2(k − 1)ε(f). Hence, for every x ∈ Kn,
Pry[g(x) 6= Scf (x,y)] ≤ 2(k − 1)ε(f).

Proof: Let ε = ε(f). We build two k× k matrices M,N with Mij ∈ Kn and Nij ∈ F and use properties of
these matrices to prove the lemma.

11



For i, j ∈ [m] pick γij ∈ Kn as follows. Let γ11 = x, γ1j = yj , γi1 = zi, and γij be chosen independently
and uniformly at random from Kn otherwise. (Note every γij except γ11 is thus drawn uniformly at random
from Kn.) Now for i ∈ [k] and j ∈ [m], let Mij = `i(γ1j , . . . , γmj). (In particular, we have Mij = γij for
i, j ∈ [m].) Finally for i ∈ [k] and j ∈ [k], let Mij = `j(Mi1, . . . ,Mim). The second matrix Nij is defined
to be f(Mij) except when i = j = 1, in which case we define N11 = Scf (x,y).
Below we show that all the rows of N are codewords of V (with high probability), and that all the columns
except possibly the first are also codewords of V . This allows us to conclude that the first column is also a
codeword of V and this in turn yields the lemma.
We start by examining the properties of M and N . We claim that every row and every column of M cor-
responds to the queries of a potential test by our tester. We start with the rows. Fix i ∈ [k] and note that
the entries of the ith row correspond to queries of the test with randomness Mi1, . . . ,Mim (corresponding
to queries of the test “Does f(Mi1) = Scf (Mi1;Mi2, . . . ,Mim)?”). Notice further that for i 6= 1 the values
Mi1, . . . ,Mim are drawn uniformly and independently at random from Kn (independent of x). To see this,
suppose cij 6= 0 for some j ∈ {2, . . . ,m}. Then note that there is a one to one correspondence between
〈γj1, . . . , γjm〉 and 〈Mi1, . . . ,Mim〉 for any fixed choice of {γik}i6=j,k. Thus choosing 〈γj1, . . . , γjm〉 uni-
formly at random makes 〈Mi1, . . . ,Mim〉 uniform over (Kn)m independent of γ11 = x. We conclude that
the probability that f(Mi1) 6= Scf (Mi1;Mi2, . . . ,Mim) is at most ε. In other words, the probability that the
ith row of N is not a codeword of V is at most ε for i 6= 1.
Next we move to the columns of M and N . Note that the construction of M was asymmetric in that every
row was defined to form a “query” pattern of our test. However, we note that the same matrix could have
been defined by constructing the first m rows first, and then defining each column to be a “query pattern” of
the test. To see this recall that `i(x1, . . . , xm) =

∑m
j=1 cijxj . Thus we have

Mij = `j(Mi1, . . . ,Mim)

=
m∑

j′=1

cjj′Mij′

=
m∑

j′=1

cjj′

m∑
i′=1

cii′Mi′j′

=
m∑

i′=1

cii′

m∑
j′=1

cjj′Mi′j′

=
m∑

i′=1

cii′Mi′j

= `i(M1j , . . . ,Mmj).

By a similar argument to the previous paragraph we now have that the probability that the jth column of N
is not a codeword is at most ε for j 6= 1.
Thus, by the union bound, we have that with probability at most 2(k− 1)ε there exists a row (other than the
first) or a column (other than the first) such that N restricted to the row or the column is not a codeword of
V . We now use this to show that the first row of N and the first column of N are also codewords of V . Here
we use the properties of tensor products of codes. Recall that the tensor product of V with itself, denoted
V ⊗ V is the code consisting of all k × k matrices over F all of whose rows are codewords of V and all of
whose columns are codewords of V . It is well known that if V has distance d then its tensor product with
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itself has the following “erasure-correcting” property: Given the projection of any matrix B = A|S×T to
a subset S of the rows and a subset T of the columns with |S|, |T | ≥ k − d + 1, B can be extended to a
(unique) codeword A of V ⊗ V if and only if for every row s ∈ S, the sth row of B is consistent with (the
projection to T of) some codeword of V , and for every column t ∈ T , the tth column of B is consistent
with (the projection to S of) some codeword of V .
In our case, the code V has distance at least 2 and we know the projection of N onto all columns ex-
cept the first and all rows except the first are consistent with V . Thus the extension to N to a code-
word of V ⊗ V is unique and this is the unique value which satisfies N11 = DECODE(N12, . . . , N1k) =
DECODE(N21, . . . , Nk1). We conclude that with probability at least 1−2(k−1)ε, we have Pry,z[Scf (x,y) 6=
Scf (x, z)] ≤ 2(k − 1)ε(f).
The consequence to g follows from the fact when drawing samples from a distribution, the probability of a
collision is no more than the probability of the most likely element.

We now revert to the task of proving that f is close to g and that g is a member of the family F . We start
with the former task which we show in exactly the same way as in [4, 19].

Lemma 3.2 δ(f, g) ≤ 2ε(f).

Proof: Let B = {x ∈ Kn|Prα[f(x) 6= Scf (x, α)] ≥ 1
2}. Notice that ε(f) ≥ 1

2 Prx[x ∈ B]. On the other
hand, if x 6∈ B, then f(x) = pluralityα[Scf (x, α)]. The lemma follows.

Next we show that the proof technique of Lemma 3.1 can be adapted to prove also that g ∈ F . This
modification is similar to those in the early papers [4, 19].

Lemma 3.3 Let f be a function with ε(f) < 1
(2k+1)(k−1) and let g be its self-corrected version. Then g ∈ F .

Proof: It suffices to show that for every x1, . . . , xm ∈ Kn the vector 〈g(y1), . . . , g(yk)〉 ∈ V , where
yi = `i(x1, . . . , xm). Fix such a sequence x1, . . . , xm ∈ Kn and let yi = `i(x1, . . . , xm). for i ∈ [k]. As in
the proof of Lemma 3.1, we will construct a matrix M ∈ (Kn)k×k whose first row will be y1, . . . , yk. We
will then define a related matrix N and show that all rows of N , except possibly the first, and all columns
are codewords of V . We will then conclude that its first row must be a codeword of V and this will imply
the lemma.
For i, j ∈ [m], pick γij as follows. γ1j = xj and γij is drawn uniformly and independently from Kn for all
other i, j pairs. For i′ ∈ [k] and j ∈ [m], define Mi′j = `i′(γ1j , . . . , γmj). Finally, for i′, j′ ∈ [k], define
Mi′j′ = `j′(Mi′1, . . . ,Mi′m). Now let Nij = g(Mij) if i = 1 and f(Mij) otherwise.
As in the proof of Lemma 3.1 we have that all the rows of M except the first represent the queries of
a random test, and in particular the queried points are independent of y1, . . . , yk. Thus we have that the
probability that the i′th row of N is not a codeword of V is at most ε, for i′ 6= 1.
Next we turn to the columns of N . Note that once again we have Mij = `i(M1j , . . . ,Mmj). Now for
every j, the jth column of M represents the queries of a random test through yj . Thus we have that
the probability that the jth column of N is not a codeword of V is given by the probability of the event
g(yj) 6= Scf (yj ;M2j , . . . ,Mmj) and by Lemma 3.1 the probability of this event is at most 2(k − 1)ε.
Taking the union of all the “bad events” and deducting them, we have that with probability at least 1− (2k+
1)(k − 1)ε we have that all the rows of N except the first, and all the columns of N are codewords of V .
We conclude (as in the proof of Lemma 3.1) that the first row of N , i.e., the vector 〈g(y1), . . . , g(yk)〉 is a
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codeword of V . Since 1− (2k +1)(k− 1)ε(f) > 0, we have with positive probability 〈g(y1), . . . , g(yk)〉 ∈
V . But y1, . . . , yk were chosen deterministically and so the probability of this event is either zero or one,
yielding that this event must happen with probability one.

Finally, we can prove our main testing theorem, namely that locally (formally) characterized function fami-
lies are locally testable.
Proof of Theorem 2.9: From Lemma 3.2, we have δ(f, g) ≤ 2ε(f). and by Lemma 3.3, we have g ∈ F
and so δ(f) ≤ 2ε(f).
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Part II

4 Structure of Affine-/Linear-Invariant Families

In this section we aim to study structural properties of linear-invariant and affine-invariant families of func-
tions mapping Fn to F. (Later we extend the study to functions from Kn to F in Section 6.) We start by
proving two basic lemmas that describe some of the members of any linear-invariant (or affine-invariant)
family F containing a given function f . The first of these shows that in a linear-invariant family F con-
taining f , every monomial in the support of f , when viewed as a function, is also in the family F . The
second lemma illustrates that given a single monomial in some linear-invariant family F , one can deduce
the presence of many other monomials in F . In fact, over a prime field we show that all monomials with
degree less than or equal to that of the starting monomial are in the family, if the family is affine-invariant.
Together, these lemmas lead to a good understanding of the behavior of linear-invariant families and help
the study of (formal) local characterizations in Section 5.
Before launching into the section we first introduce some notation and definitions that apply generally to
functions mapping Kn → F.
We use {Kn → F} to denote the set of all functions mapping Kn to F.

Definition 4.1 For a set of functionsF ⊆ {Kn → F}, SPANF(F) = {
∑`

i=1 αi ·fi|` ∈ Z+, αi ∈ F, fi ∈ F}
denotes the linear span (over F) of F . For a family of functions F ⊆ {Kn → F} we let the linear span of F ,
denoted L-SPANF(F), be the smallest linear-invariant family of functions containing F . Finally, the affine
span of F , denoted A-SPANF(F) is the smallest affine-invariant family containing F .

When the range F is clear from the context we suppress the subscript and refer to SPANF(F) as simply
SPAN(F). Note that L-SPAN(F) can be written as SPAN({f(L(x))|f ∈ F and L : Kn → Kn is a linear function}).
Similarly, A-SPAN(F) can be written as SPAN({f(A(x))|f ∈ F and A : Kn → Kn is an affine function}).
We will be switching back and forth between functions and polynomials. Specifically, given an n-dimensional
vector space Kn, we will associate n variables x = 〈x1, . . . , xn〉 with the space. Given a function f : Kn →
F we will often use it exchangeably to represent the unique polynomial in pf ∈ K[x] (with coefficients in
K) whose degree in each variable is at most |K| − 1, and which evaluates to the function f on every point in
Kn. In particular, below we will be thinking of monomials in F[x] as functions from Fn → F.

4.1 Extracting Monomials in Linear-Invariant Families

For a polynomial f =
∑

d cdxd, we refer to the support of f to be the set of monomials cdxd with cd 6= 0.
For a monomial m = xd, we denote the degree of the monomial by deg(m) =

∑n
i=1 di. Our first lemma

asserts that in a linear-invariant family mapping Fn to F, every monomial in the support of a function in the
family also belongs to the family.

Lemma 4.2 [Monomial extraction lemma] For every function f : Fn → F, every monomial in the support
of f is contained in L-SPAN(f).

Proof: We prove the lemma by proving the following claim about univariate polynomials, and then using
induction on the number of variables.
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Claim 4.3 Let f(x) =
∑q−1

k=0 fi · xi
n where fi ∈ F[x1, . . . , xn−1] for i ∈ {0, . . . , q − 1} and q = |F|. Then

for every such k ∈ {0, . . . , q − 1}, fk · xk
n ∈ L-SPAN(f).

Proof: Note that for k = 0, f0 = f(x1, . . . , xn−1, 0) which is obviously in L-SPAN(f). So fix k ∈
{1, . . . , q − 1}. Now let f̃ = f − f0 =

∑q−1
i=1 fi · xi

n. Note that since f̃ ∈ L-SPAN(f), it suffices
to show that fk · xk

n ∈ L-SPAN(f̃). Fix a primitive element α ∈ F − {0}. We claim that fk · xk
n =

−
∑q−1

j=1 α−kj f̃(x1, . . . , xn−1, α
jxn), which immediately implies fk · xk

n ∈ L-SPAN(f̃). To verify the
claim, we work on the RHS:

−
q−1∑
j=1

α−kj f̃(x1, . . . , xn−1, α
jxn) = −

q−1∑
j=1

α−kj
q−1∑
i=1

fi · (αjxn)i

= −
q−1∑
i=1

fi · xi
n ·

q−1∑
j=1

α(i−k)j


But the inside term is of the form

∑q−1
j=1 βj which is zero for every β ∈ F−{1}, and equals−1 when β = 1.

We conclude that the above expression simplifies to fk · xk
n. This concludes the proof of Claim 4.3.

We now conclude the proof of the lemma with a simple inductive argument. Let f =
∑

d cdxd. Fix a vector
e such that ce 6= 0. We will show that cexe is in L-SPAN(f). To do so let

hi =
∑

d1,...,di

cd1,...,di,ei+1,...,en

i∏
j=1

x
dj

j

n∏
j=i+1

x
ej

j .

Note that hn = f and h0 = cexe is the monomial of interest to us. From Claim 4.3 we get that for every i,
hi is in L-SPAN(hi+1) and thus in L-SPAN(f). For i = 0, this yields the lemma.

4.2 The spread of monomials in linear-/affine-invariant families

The main lemma is a general lemma that asserts that the presence of a single monomial in a family implies
the presence of other monomials, with “smaller” degrees in a somewhat technical sense. We follow the
lemma up with a corollary that describes some of the ways in which the lemma will be used later. Before
presenting the lemma we present a simple useful proposition.

Proposition 4.4 Let x and z be disjoint sets of variables. If a monomial m = xd has the monomial
m′ = xe · ze′ it its linear (affine) span, then the monomial m · zf has the monomial m′ · ze′+f it its linear
(resp. affine) span.

Proof: We prove the proposition for the case of affine spans. The linear case is similar.
Let n denote the dimension of x and n′ denote the dimension of z. By the fact that m′ is in the affine span of
m we get that m′ = xe · ze′ =

∑`
i=1 ci(Aix + bi)d for some finite sequence {(ci, Ai,bi)}`

i=1 with ci ∈ F,
Ai ∈ F(n+n′)×n and bi ∈ Fn+n′ . For every i ∈ [`], let A′

i ∈ F(n+n′)×(n+n′) be given by

A′
i =

(
Ai

∣∣∣∣ 0
In′

)
,
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and let b′
i = bi. Note that

∑̀
i=1

ciA
′
i(x, z + b′

i)
〈d,f〉 =

∑̀
i=1

ci(Aix + bi)d · zf = xe · ze′ · zf .

Thus we have that the monomial xd · zf has the monomial xe · ze′+f it its affine span.

Proposition 4.5 Let m,m′ ∈ F[x] ⊆ F[x, y] be such that m′ ∈ A-SPAN(m). Then ydeg(m)−deg(m′) ·m′ ∈
L-SPAN(m).

Proof: Let d = deg(m) and d′ = deg(m′). Let m′ =
∑`

i=1 cim(Aix + bi). Then
∑`

i=1 cim(Aix + biy)
is a homogenous polynomial f(x, y) of degree d. Furthermore f(x, 1) = m′. If follows that f(x, y) =
yd−d′ ·m′. To see this, let f(x, y) =

∑d
i=0 fi(x)yi where fi is a homogenous polynomial of degree d − i.

Then f(x, 1) =
∑d

i=0 fi(x). Note that if fi(x) 6= 0, then there are no cancellations from the any of the
other fj(x)’s since these polynomials have disjoint support. Thus it follows that fi(x) = 0 for i 6= d− d′

and fd−d′(x) = m′, thus yielding the proposition.

We now present the main lemma of this section. To motivate the lemma, we first give an example. Consider
the linear span of the monomial x5 ∈ F[x, y]. If the characteristic p of F is greater that 5 (or if p = 3), then
L-SPAN(x5) = SPAN({x5, x4y, x3y2, x2y3, xy4, y5}). On the other hand, if F is of characteristic 5, the
L-SPAN(x5) = SPAN({x5, y5}). If F is of characteristic 2, then L-SPAN(x5) = SPAN({x5, x4y, xy4, y5}).
The lemma below attempts to capture some of this diversity.

Lemma 4.6 (Monomial Spread Lemma) Let d = 〈d1, . . . , dn〉 ∈ {0, . . . , q−1}n and e = 〈e1, . . . , en〉 ∈
{0, . . . , q−1}n. For i ∈ [n] and j ∈ {0, . . . , s−1} let dij and eij be the unique integers from {0, . . . , p−1}
such that di =

∑s−1
j=0 dijp

j and ei =
∑s−1

j=0 eijp
j . Let m be the monomial xd and let m′ = xe. If for every

j ∈ {0, . . . , s− 1} it is the case that
∑n

i=1 eij ≤
∑n

i=1 dij , then the following hold:

1. m′ ∈ A-SPAN(m).

2. yf−deg(m′)+deg(m) ·m′ ∈ L-SPAN(yf ·m) for every non-negative f .

Proof: We only prove Part (2). The affine case follows by setting y = 1 in the proof below. Alternately, one
can make the general observation that if a monomial yam′ is contained in L-SPAN(m) for m,m′ ∈ F[x],
then m′ is contained in A-SPAN(m). Applying this observation to the conclusion from Part (2) of the lemma
(with f = 0) yields Part (1).
We start with a simple claim that deals with the special case of the span of bivariate monomials. The lemma
then follows by a simple induction using this claim.

Claim 4.7 Let k ∈ {0, . . . , q−1} and k0, . . . , ks−1 ∈ {0, . . . , p−1} be such that k =
∑s−1

j=0 kjp
j . Let ` be

a non-negative integer and let j0 ∈ {0, . . . , s−1} be such that kj0 > 0. Then, the monomial y`+pj0 ·xk−pj0

is contained in L-SPAN
(
y` · xk

)
.

Proof: Let M(x, y) = y` ·xk. We show below that M(x + y, y) has the monomial M(x, y) · (y/x)pj0 in its
support. The claim then follows by Lemma 4.2.
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For a monomial y`
∏s

j=1 xaj ·pj−1
, we say that

∑
j aj is its pseudo-degree. Then note that M(x + y, y) =

M(x, y) +
∑

j∈[s] kj · M(x, y) · (y/x)pj−1 + M ′(x, y) where M ′(x, y) is a polynomial of pseudo-degree
less than (

∑s
j=1 kj)− 1. Thus the coefficient of M(x, y)(y/x)pj0−1 in M(x + y, y) is exactly kj0 which is

non-zero if kj0 6= 0.

We now move to the proof of the lemma. We prove this lemma by induction on
∑

i,j |dij−eij |. We consider
two cases:
CASE 1: ∃j s.t.

∑
i dij >

∑
i eij : Let ` ∈ {0, . . . , s − 1} be such that

∑
i di` >

∑
i ei` and let k ∈ [n]

be such that dk` > ek`. Let d̃ij be given as follows: d̃k` = dk` − 1 and d̃ij = dij otherwise. Let d̃i =∑s−1
j=0 d̃ijp

j . By Claim 4.7 we have that the monomial yf+p` · xd̃k
k is in the linear span of yfxdk

k and so

(using Proposition 4.4) yf+p`−1 ∏
i x

d̃i
i is in the linear span of yf

∏
i x

di
i . By induction we also have that

yf+deg(m)−deg(m′)xe is in the linear span of yf+pj−1
xd. Putting the two together we get the lemma in this

case.
CASE 2: ∃k1, k2, ` s.t. dk1` > ek1` and dk2` < ek2`: Now define d̃ to be d̃k1` = dk1` − 1, d̃k2` = dk2` + 1
and d̃ij = dij otherwise. Again, let d̃i =

∑s−1
j=0 d̃ijp

j . Applying Claim 4.7 to x = xk1 and y = xk2 , we

now have that the monomial x
d̃k1
k1

· xd̃k2
k2

is contained in the linear span of x
dk1
k1

· xdk2
k2

. It follows (using

Proposition 4.4) that yf ·
∏n

i=1 xd̃i
i is in the linear span of yfxd. Again, by induction, it also follows that

yf+deg(m)−deg(m′) ·xe′ is in the linear span of yfxd̃ We conclude that yf+deg(m)−deg(m′) ·m′ is in the linear
span of yf ·m. This yields the lemma statement for this case.
The lemma now follows since the two cases above are exhaustive.

In the following corollary we describe some of the special cases that are used in later sections.

Corollary 4.8 The following statements are true:

1. If e1, . . . , en are non-negative integers such that en−1 + en < p then the monomial xe1
1 · · ·xen

n is in
the linear span of the monomial xe1

1 · · ·xen−2

n−2 · x
en−1+en

n−1 .

2. If q/p ≤ d < q and f is an arbitrary integer then the monomial xq/pyf+d−q/p is in the linear span of
xdyf . and xq/p is in the affine span of xd.

3. If d1 + · · ·+ dn ≥ q/p and f ≥ 0, then the monomial ye+fx
q/p
1 is in the linear span of yfxd1

1 · · ·xdn
n

for e = d1 + · · · dn − q/p, and x
q/p
1 is in the affine span of xd1

1 · · ·xdn
n .

Proof: We prove only the containments in the linear span. The affine part can be obtained by setting y = 1
in the proofs.

1. Part 1 is obtained as follows. Let di = ei for i ∈ [n − 2] and dn−1 = en−1 + en and dn = 0. Let
dijs be the unique integers such that di =

∑s
j=1 dijp

j−1, and let eij be defined analogously from ei.
Finally let f = f ′ = 0. Then it is clear that eij = dij except possibly when i ∈ {n− 1, n} and j = 1.
In these cases we have dn−1,1 = en−1 + en and en−1,1 = en−1 and en,1 = en, which also satisfies
dn−1,1 + dn,1 ≤ en−1,1 + en,1. Also note that f ′ = f +

∑s
j=1 pj−1

∑n
i=1(dij − eij) = 0. Thus, by

Lemma 4.6, we have that xe1
1 · · ·xen

n is in the linear span of the monomial xe1
1 · · ·xen−2

n−2 · x
en−1+en

n−1 .
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2. For Part 2, we use Lemma 4.6 with d1j such that d =
∑s

j=1 d1jp
j−1 and e1j = 0 except when j = s

in which case e1s = 1. Since d ≥ q/p we have d1s ≥ 1 = e1s, satisfying the condition of the
corollary.

3. For Part 3, assume d1 ≥ d2 ≥ · · · ≥ dn. Let k ≥ 1 be the smallest index such that q
p ≤

∑k
i=1 di < q.

(Note that such a k exists since either q/p ≤ d1 < q in which case k = 1, or di < q/p for every i
and so for the first k such that

∑k
i=1 di ≥ q/p, this sum is also less than 2q/p.) Let e =

∑k
i=1 di.

Consider the linear transformation that sets x1, · · · , xk to x1 and xk+1, · · · , xn to y. This shows that
the monomial m1 = x1

ey
Pn

i=1 dn−e+f is in L-SPAN(yfxd1
1 · · ·xdn

n ). Applying, Part 2 to m1 we get
this part.

Lemma 4.9 Let m ∈ F[x, y] be a monomial of degree d. Let ` = bd/qc. Then
∏`

i=1 x
q/p
i is contained

in A-SPAN(m), Furthermore, {yd1 · m′|m′ ∈ A-SPAN(
∏`

i=1 x
q/p
i ), d1 + deg(m′) ≡ d mod (q − 1)} is

contained in L-SPAN(m).

Proof: We prove only the containment for the assertion about A-SPAN(m) and the containment in the linear
span follows using Proposition 4.5.
Let m = xd1

1 · · ·xdn
n and let d1 ≥ d2 ≥ · · · ≥ dn. Partition the variables xi into blocks where the total

degree of the variables within each block (except at most one) is at least q/p and less than q. The number
of full blocks (ones of total degree at least q/p) is at least `. Inductively, with ` applications of Part 3 of

Corollary 4.8 (and using Proposition 4.4), we get that
∏`

i=1 x
q
p

i is in A-SPAN(xd).

We also prove a characterization of affine-invariant families over prime fields, showing that a family of
functions over a prime field is affine-invariant if and if only it forms a “Generalized Reed-Muller code”.

Corollary 4.10 F is an affine invariant family mapping Fn
p → Fp if and only if there exists an integer d

such that F is the family of all polynomials over Fp in n-variables of degree at most d.

Proof: It is obvious that the set of degree d polynomials form an affine-invariant family, giving one di-
rection. For the other direction, let d be the maximum degree of any polynomial in F , and let m be the
monomial of degree d in the support of this polynomial. Then by the Monomial extraction lemma m ∈ F .
Furthermore, using the affine part of Lemma 4.6 (with s = 1) we see that every monomial xe of degree at
most d is contained in F . We conclude that every polynomial of degree d is in F . Finally, F contains no
other functions (since the highest degree of any polynomial in F is d). We conclude that F is the set of
polynomials of degree d, as asserted.

5 Bounding the Locality of Characterization for Aff/Lin

In this section we prove Theorems 2.10 and 2.11 for the special case when K = F. In the process we give
upper and lower bounds on the locality of formal characterizations of affine-invariant and linear-invariant
families, in terms of the degree patterns of the monomials in their support.
Our (upper bounds on) characterizations are obtained by considering the values of a given function on some
small dimensional subspace and verifying that these values agree with the values of some function in the
family. Keeping this in mind, we define the restriction of a function family to a smaller dimension.
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Definition 5.1 (Projections of function families) For positive integers ` and n, and for a linear-invariant
family of functions F ⊆ {Kn → F}, the `-dimensional restriction (extension) of F , denoted F|` is the
family F|` = {f ◦ L|f ∈ F , L : K` → Kn linear }.

Note that we don’t insist that ` ≤ n and indeed the definition above makes sense also in this case. However
in all our usage below, we think of ` ≤ n.
For affine-invariant families our characterizations depend simply on the maximum degree of functions in the
family. For linear invariant functions this is no longer true. For instance, the family of functions supported
on all monomials in x1, . . . , xn of degree 3 mod 4 over F5 has a 2-local characterization even though it
contains polynomials of degree Ω(n). For linear-invariant families, the characterizations depend on a more
refined parameter that we define next.

Definition 5.2 For a linear invariant family F properly contained in {Fn → F}, let dlin(F), the linear-
invariance degree of F , be the largest integer d such that F contains a monomial m1 of degree d, while
there also exists a monomial m2 6∈ F of degree d′ for some d′ > 0 with d′ ≡ d( mod q − 1).

5.1 Upper bounds on locality of characterizations

The next lemma is the crux of our characterizations for linear-invariant as well as affine-invariant families.

Lemma 5.3 . Let F ⊆ {Fn → F} be a linear-invariant family of linear-invariance degree dlin(F) = d.
Suppose f : Fn → F is not in F . Then, if n ≥ 1 +

(
2
p · (d + q)

)
, then there exists a linear function

L : Fn−1 → Fn such that f ◦ L 6∈ F|n−1.

Proof: Let m = xd1
1 · · ·xdn

n be a monomial of maximal degree in the support of f that is not contained in
F . We show that there is a linear map L : Fn−1 → Fn such that m ◦ L is not in F|n−1. We consider two
cases:
Case 1: There exist distinct indices i, j such that di + dj < p: Without loss of generality assume i = n− 1
and j = n. Let m′ be the monomial m′ = xd1

1 · · ·xdn−2

n−2 · xdn−1+dn

n−1 . First note by the Monomial Spread
Lemma (in particular, by Part 1 of Corollary 4.8) that m ∈ L-SPAN(m′). So m′ 6∈ F and hence m′ 6∈ F|n−1.
We claim that for some choice of α, β ∈ F, the map Lα,β(x1, . . . , xn−1) = 〈x1, . . . , xn−2, αxn−1, βxn−1〉
leaves the monomial m′ with non-zero support in f ◦Lα,β , which would suffice to prove the lemma (in this
case).
To see this, let ci be the coefficient of the monomial xd1

1 · · ·xdn−2

n−2 · xi
n−1x

dn−1+dn−i
n in f . Let h(x, y) =∑dn−1+dn

i=0 cix
iydn−1+dn−i. It can be verified that the coefficient of m′ in f ◦ Lα,β is exactly h(α, β).

Furthermore, h(α, β) is a non-zero polynomial since the coefficient cdn−1 is the coefficient of m in f which
is non-zero. Thus there must exist α, β such that h(α, β) 6= 0 and this yields the claim.
Case 2: For every pair of distinct i, j, di + dj ≥ p. Let e denote the degree of m. For every t, we have
d2t−1 + d2t ≥ p, and so e, the total degree of m, is at least pbn/2c ≥ d + q.
We first note that no monomial m′ of degree e or e− (q− 1) is in F . Otherwise the linear-invariance degree
of F would be the degree of m′. For example, if m′ has degree e − (q − 1) > d, then m′ satisfies the role
of the monomial m1 in the definition of the linear-invariance degree and m of degree e = e − (q − 1)(
mod q − 1) satisfies the role of m2 in the definition of linear-invariance degree thereby yielding dlin(F) =
e− (q − 1) > d. So we conclude m′ can not be in F .
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But now consider the linear map Lα,β as in the previous case, i.e., Lα,β(x1, . . . , xn−1) = 〈x1, . . . , xn−2, αxn−1, βxn−1〉.
Let m′ be the monomial xd1

1 · · ·xdn−2

n−2 ·x
f
n−1 where f = dn−1 + dn if dn−1 + dn < q and f = dn−1 + dn−

(q− 1) otherwise. The degree of m′ is thus e or e− (q− 1). We claim that for some α, β, the coefficient of
m′ is non-zero in f ◦ Lα,β and this will yield the lemma in this case.
To verify the claim, note that the coefficient of m′ in f ◦ Lα,β is exactly h′(α, β) where h′(x, y) =∑min{q−1,dn+dn−1}

i=0 cix
iydn+dn−1−i and ci is the coefficient of the monomial xd1

1 · · ·xdn−2
n−2 ·xi

n−1x
dn+dn−1−i
n

in f . Again, we have h′(x, y) is not identically zero (the coefficient cdn−1 is non-zero) and so there exists
α, β such that h′(α, β) 6= 0.

We can now give a characterization for linear-invariant families.

Lemma 5.4 Let F be a linear invariant family, properly contained in {Fn → F}, of linear-invariance
degree dmax. Then F has a q`-local formal characterization for ` = 2(d+q)

p .

Proof: We claim that the characterization is simply the one that f ∈ F if and only if f ◦ L is in F|` for
every linear map L : F` → Fn.
It is easy to verify that (if this indeed characterizes the family correctly) this is a q`-local formal characteri-
zation. We analyze the correctness below.
In one direction, it is obvious that every f ∈ F and L : F` → Fn satisfies f ◦L ∈ F|`. The other direction is
a simple induction based on Lemma 5.3. Fix f 6∈ F . Let m be any integer between ` + 1 and n. Assume by
induction on n−m that there a linear map Lm : Fm → Fn such that f ◦Lm 6∈ F|m. Now we prove that there
is a map Lm−1 : Fm−1 → Fn such that f ◦Lm−1 6∈ F|m−1. Since F is linear-invariant, so is F|m. Also the
linear-invariance degree of F|m is at most dmax. By Lemma 5.3 there is a linear map L : Fm−1 → Fm such
that (f ◦ Lm) ◦ L 6∈ (F|m)|m−1 = F|m−1. Thus f ◦ Lm−1 6∈ F|m−1 for Lm−1 = Lm ◦ L. We conclude
that the linear map L` : F` → Fn derived from setting m = ` + 1, satisfies f ◦ L` 6∈ F|`.

Immediately, we also get a characterization for affine-invariant families (since every affine invariant family
with polynomials of degree at most dmax is also a linear-invariant family of linear-invariance degree at most
dmax).

Lemma 5.5 LetF be a proper subset of {Fn → F} and let dmax denote the maximum degree of any function
in F . Then F has a q`-local formal characterization for ` ≤ 2(d+q)

p .

5.2 Lower bounds on locality of characterizations for affine-invariant families

We now turn to proving lower bounds on the locality of constraints (and thus characterizations) in affine-
invariant families. The lower bound is eventually derived from the study of Generalized Reed-Muller codes
where it is known that the family of polynomials of degree d has no qbd/qc-local characterizations. Specifi-
cally we have:

Lemma 5.6 ([14, 8]) F = A-SPAN(
∏d

i=1 xi) has no qbd/qc-local constraints.

Proof: Note that every monomial xe of degree at most d is contained in F . Suppose e = 〈e1, . . . , en〉 then
we can substitute xj for ej variables in

∏
i xi for every j, and substitute 1 for the remaining variables to

get an affine transormation that transforms
∏d

i=1 xi to xe. Thus the family F1 of d-variate polynomials of
degree at most d is contained in F .
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We can now invoke well-known results from the study of the “Generalized Reed-Muller codes”, in par-
ticular [14, Theorem 5] (see also [8, Theorems 2.2.1 and 2.6.2]), which state that the class of degree d
polynomials in d variables have no constraints of locality qbd/qc. In other words F1 has no qbd/qc-local
constraints. Using Claim 5.8 we get that F also has no q

b d
q
c-local constraints.

We are now ready to prove lower bounds on the locality of constraints in affine-invariant families.

Lemma 5.7 Let F be an affine invariant family properly contained in {Fn → F} containing a polynomial
of degree d. Then F has no q`-local constraints for ` ≤ (d− q2)/q2.

Proof: Before proving the lower bound, we provide generic conditions under which the absence of local
constraints in one family of functions imply the absence of local constraints in another family.

Claim 5.8 Let F1 and F2 be non-trivial families of functions from Fn → F. Suppose F1 has no k-local
constraints. Then, if there exists a function g : Fn → Fn such that for every f ∈ F1 it is the case that
f ◦ g ∈ F2, then F2 also has no k-local constraints. In particular, if F1 ⊆ F2 then F2 has no k-local
constraints.

Proof: Suppose F2 has a k-local constraint of the form 〈x1, . . . , xk;S〉 where xi ∈ Fn and S is a proper
subset of Fk. (I.e., f ∈ F2 implies 〈f(x1), . . . , f(xk)〉 ∈ S for every f ∈ F2.) Then we can use g
to translate this into the constraint 〈g(x1), . . . , g(xk);S〉 for F1 (since 〈h(g(x1)), . . . , h(g(xk))〉 ∈ S for
every h ∈ F1), which would be a contradiction.
In particular, if F1 ⊆ F2, then using the identity function g(x) = x, we get that F2 has no k-local con-
straints.

We now apply Claim 5.8 to the conclusion of Lemma 5.6 to derive a lower bound on the constraints of a
family of functions that is slightly more convenient for us to work with.

Claim 5.9 The family F = A-SPAN(
∏d

i=1 x
q
p

i ) has no qbd/qc-local constraints.

Proof: By Lemma 5.6 we have thatF1 = A-SPAN(
∏d

i=1 xi) has no qbd/qc-local constraints. Let g(x1, . . . , xn) =
〈xq/p

1 , . . . , x
q/p
n 〉. Note that g−1(x1, . . . , xn) = 〈xp

1, . . . , x
p
n〉. Note that for every n×n matrix A and vector

b ∈ Fn, we have Ag(x) + b = g(g−1(A)x + g−1(b)) (where g−1(A) simply applies g−1 to every column
of A). This implies that every f ∈ F1 = A-SPAN(

∏
i xi) satisfies f ◦ g ∈ F . So we can apply Claim 5.8 to

conclude that F also has no qbd/qc-local constraints.

We ready to prove Lemma 5.7. Recall that we are given a family F with some monomial, say m1, of degree
d. By Lemma 4.9 the monomial m1 has F1 =

∏`
i=1 x

q/p
i in its affine span for ` = bd/qc. By Claim 5.9,

we have that F1 has no qb`/qc-local constraints. Since F ⊃ F1, we can now apply Claim 5.8 again (with the
identity function g) to conclude that F has no qb`/qc-local constraints either. The lemma follows using the
fact that bbd/qc/qc ≥ (d− q2)/q2.
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5.3 Lower bounds for Linear-Invariant Families

In this section we provide lower bounds on the locality of characterizations of linear-invariant families,
based on their “linear-invariance degree” (see Definition 5.2). As shown in Section 5.1, this parameter also
yields upper bounds and thus together we find that this parameter governs (in some weak sense, since the
bounds are far apart) the locality of characterizations for linear-invariant families.
In order to understand the locality of characterizations, we introduce the notion of a constraint on a family
F1 relative to a family F2.

Definition 5.10 For families F1,F2 ⊆ {Fn → F}, with F1 ( F2, we say that a constraint C is a constraint
on F1 relative to F2 if every function f ∈ F1 satisfies C and there exists a function g ∈ F2 that does not
satisfy C.

The following straightforward fact explains the relevance of constraints relative to other families when
analyzing characterizations.

Proposition 5.11 If C1, . . . , Cm form a characterization of F1, then for every family F2 ) F1, there exists
an index j such that the constraint Cj is a constraint on F1 relative to F2.

In what follows, we will consider a familyF of linear invariance degree d. We will construct familiesF1 and
F2 related to d such that F1 has no constraints of small locality relative to F2. We will then use reductions
to tranfer this result to showing that F has no constraints of small locality relative to some family F3 which
will yield a lower bound on the locality of its characterizations.
Throughout this section we will consider functions from Fn+1 → F, and we will associate them with
polynomials from F[x, y] where x = 〈x1, . . . , xn〉 is a collection of n variables.
For a set of functions G ⊆ {Fm → F}, let SPAN(G) denote the span of the functions in G, i.e., SPAN(G) =
{
∑t

i=1 αigi|αi ∈ F, gi ∈ G}.

Lemma 5.12 Let d and ` be positive integers and let F1 = SPAN({yd1 ·m|m ∈ A-SPAN(
∏`

i=1 x
q/p
i ), d1 +

deg(m) ≡ d mod (q − 1), 1 ≤ d1 ≤ q − 1}). Let F2 = SPAN{m|m monomial in F[x, y],deg(m) ≡ d
mod (q − 1),degy(m) ≥ 1}, be the collection of all polynomials supported on monomials of degree d

mod (q − 1), with positive degree in y. Then F1 has no constraints of locality qb`/qc relative to F2.

Proof: Note by the definitions of F1 and F2 that F1 ⊆ F2. (In particular the degree in y of every monomial
in the support of F1 is positive.) If F1 = F2 then the claim is trivial since there can be no function in
F2 −F1 and so none violating any given constraint. So assume F1 ( F2.
Let C = (z1, . . . , zk;S), where S, be a constraint on F1 relative to F2. We will show that k ≥ q`/q. To
show this we will map (most points of) Fn+1 to Fn in a way that maps homogenous polynomials of positive
degree in y to generic polynomials over x.
For a point z = 〈x1, . . . , xn, y〉 ∈ Fn+1, let π(z) = 〈x1/y, . . . , xn/y〉 if y 6= 0 and some special symbol ⊥
if y = 0.
Note that for any function f ∈ F2 and point z ∈ Fn+1, f(z) = 0 if π(z) = ⊥. Further, note that if
π(z1) = π(z2) then there exists a λ ∈ F − {0} such that z2 = λz1 and f(z2) = λdf(z1). We use these
observations to “simplify” the constraint C while maintaining the property that it remains a constraint on
F1 relative to F2.
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First note that we can assume w.l.o.g. that π(zi) 6= ⊥ for every i ∈ [k]. To see this, suppose π(zk) = ⊥.
Then it can be verified that the constraint C ′ = (z1, . . . , zk−1;S′) is a constraint on F1 relative to F2, where
S′ = {〈α1, . . . , αk−1〉|〈α1, . . . , αk−1, 0〉 ∈ S}. (We omit the simple verification steps.)
Next, we also note that we can assume that π(zi)’s are all distinct for distinct i ∈ [k]. Again to see this,
suppose π(zk−1) = π(zk). Then it must be that zk = λzk−1. Once again it can be verified that the constraint
C ′ = (z1, . . . , zk−1;S′) is a constraint onF ′

1 relative toF2, where S′ = {〈α1, . . . , αk−1〉|〈α1, . . . , αk−1, λ
dαk−1〉 ∈

S}. (Again, we omit the simple verification steps.)
Note that in the “simplification” process above, we may have potentially lost the property that S 6= Fk. But
we note that the fact that C is a constraint on F1 relative to F2 implies S 6= Fk as follows: Suppose C is
violated by some function g ∈ F2. Then we have that 〈g(z1), . . . , g(zk)〉 6∈ S and so S 6= Fk.
So we may now assume that the π(zi)’s are distinct elements of Fn and that S 6= Fk. Let zi = 〈xi1, . . . , xin, yi〉.
Now consider the constraint C ′ = (π(z1), . . . , π(zk), S′), for S′ = {〈α1/yd

1 , . . . , αk/yd
k〉|〈α1, . . . , αk〉 ∈

S}. Since S 6= Fk, we also have S′ 6= Fk. We claim that C ′ is a k-local constraint on the family
A-SPAN(

∏`
i=1 x

q/p
i ). To verify this claim, we need to show that every f ∈ A-SPAN(

∏`
i=1 x

q/p
i ) satisfies

〈f(π(zi)), . . . , f(π(zk)〉 ∈ S′.
Consider the following map from polynomials in F[x] to F2, where a monomial m ∈ F[x] is mapped to
the monomial m̂ = m · yi where i ∈ [q − 1] is chosen so that deg(m) + i = d mod (q − 1). This
map can be extended linearly to every polynomial F[x] mapping the polynomial p to p̂. Note that since
functionally yj(q−1)+i = yi we can w.l.o.g. think of the monomial m̂ as having degree ≥ d. In particular
for monomials from A-SPAN(

∏`
i=1 x

q/p
i ) the corresponding monomial has degree exactly d. Thus, for any

function f ∈ A-SPAN(
∏`

i=1 x
q/p
i ), the corresponding function f̂ ∈ F1. Thus we have that f̂ satisfies the

constraint C, i.e., 〈f̂(z1), . . . , f̂(zk)〉 ∈ S. By the definition of π and f̂ , we have that f̂(zi) = yd
i ·f(π(zi)).

Thus 〈yd
1 · f(π(z1)), . . . , yd

k · f(π(zk))〉 ∈ S and so Thus 〈f(π(z1)), . . . , f(π(zk))〉 ∈ S′.

Thus C ′ is a non-trivial constraint on A-SPAN(
∏`

i=1 x
q/p
i ) and so, by Claim 5.9 k > qb`/qc.

Lemma 5.13 Let F ( {Fn+1 → F} be a family of linear invariance degree d. Then F has no characteri-
zations of locality q(d−q2)/q2

.

Proof: Let m ∈ F ⊂ F[x, y] be a monomial of degree d. Let m′ ∈ F[x, y] be a monomial of degree d′ ≡ d
mod (q − 1) such that m′ 6∈ F . (Such monomials exists, by the definition of linear-invariance degree.)
Assume without loss of generality that degy(m′) > 0 (since we could rename variables to achieve this).

Let ` = bd/qc. Let F1 and F2 be as in Lemma 5.12, so that F1 has no constraints of locality qb`/qc relative
to F2. Note first that by Lemma 4.9 we have that F1 is contained in L-SPAN(m) ⊆ F .
Let F3 = F + F2 consist of all functions {αf + βg|f ∈ F , g ∈ F2, α, β ∈ F}.
Note that F ( F3. The containment is by definition, while the propriety of the containment follows from
the fact that m′ ∈ F3 −F .
We now claim that F has no qb`/qc-local constraints relative to F3 and this (combined with Proposition
5.11) yields the lemma.
Suppose C = (z1, . . . , zk;S) is a constraint on F relative to F3. Without loss of generality, we can assume
that S is a F-linear subspace of Fk (since F is a linear subspace) [3]. On the one hand, since F1 ⊆ F we
have that C is also a constraint on F1. We now claim that C is actually a constraint on F1 relative to F2.
Now let h = αf + βg ∈ F3 not satisfy C, where f ∈ F and g ∈ F2. Let vf = 〈f(z1), . . . , f(zk)〉,
vg = 〈g(z1), . . . , g(zk)〉, and vh = 〈h(z1), . . . , h(zk)〉. Then we have vh = αvf + βvg. On the one hand,
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we have vf ∈ S (since f ∈ F) and on the other, we have vh 6∈ S. Since S is a linear subspace, it must be
that vg 6∈ S. Thus g ∈ F2 violates C and so C is a constraint on F1 relative to F2. By Claim 5.9 we have
k > qb`/qc.

5.4 Testing Linear Invariant Families

The formal characterization described in Section 5.1 can immediately be turned into an affine invariant
characterization for affine-invariant families. Coupled with Theorem 2.9 this leads immediately to a tester
for affine-invariant families. However the characterization does not immediately lead to a tester for linear-
invariant families, since these characterizations are not necessarily 2-ary independent. In this section we fix
this gap.
We start with a definition that isolates a seemingly problematic subclass of linear-invariant families, where
the characterizations are necessarily not 2-ary independent.

Definition 5.14 A linear invariant family F ⊆ {Fn → F} is said to be projective if, for every pair of
monomials xd and xe with

∑n
i=1 di ≡

∑n
i=1 ei mod (q − 1), it is the case that xd is in the support of F

if and only if xe is in the support of F .

Projective families have a very simple local formal characterization, which is unfortunately not 2-ary inde-
pendent, as described below.

Proposition 5.15 A familyF is projective if and only if there exists a set of monomials S ⊆ {x0, x1, . . . , xq−1}
on a single variable x such that the following holds: f ∈ F if and only if for every 1-dimensional linear
function L : F → Fn, the support of f ◦ L is contained in S.

Proof: Let D be the set of degrees of monomials in the support of F reduced modulo q − 1 (i.e., to the set
{1, . . . , q − 1}, except if the monomial x0 is in the support of F , in which case we include 0 in the set D).
Let S = {xi|i ∈ D}.
On the one hand, it is clear that that if f ∈ F then f ◦ L has its support in S for every linear function
L : F → Fn. For the reverse direction, we reason as in the proof of Case 2 of Lemma 5.3. Let f be
a polynomial not in F and let m be a monomial of maximal degree in the support of f that is not in F .
Suppose the degree of m is d. By the definition of projective families, we have that d mod (q − 1) 6∈ D.
We first note that there is a linear function Ln : Fn−1 → Fn such that f ◦ Ln has a monomial in its support
of degree d or d − (q − 1). In either case the degree of this monomial (modulo (q − 1)) is not in D. We
continue this way to find a sequence of linear functions Li : Fi−1 → Fi such that for L = Ln ◦ · · · ◦L2 it is
the case that f ◦ L has a monomial in its support of degree not in D.

Even though projective families do not have a 2-ary independent linear characterization, they turn out to
have a simple local test: Namely pick a random line L : F → Fn and verify f ◦ L has its support in S.
We won’t prove the correctness of this test right now (it will follow from the general case). Instead we
turn to showing that every linear invariant family can be written as the sum of a nice family (with a 2-ary
independent formal characterization) and a projective family and this ends up leading to a test.

Lemma 5.16 Let F be a linear-invariant family of linear invariance degree d. Then there exists a linear-
invariant family F1 containing polynomials of degree at most d, and a projective family F2 such that F =
F1 + F2. Furthermore given an oracle to a function f : Fn → F one can construct an oracle for a
function g : Fn → F where the oracle for g makes q oracle calls to f , such that g ∈ F1 if f ∈ F and
δ(f,F) ≤ δ(g,F1).
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Proof: The first part follows from the definition of linear invariance degree. Let D ⊆ {1, . . . , q − 1} be
given by D = {i|∃ monomial m ∈ F with deg(m) > d and deg(m) ≡ i mod (q − 1)}. Let F1 be the
span of the set of monomials in F of degree at most d. Let F2 be the span of set of the monomials m′ of
degree deg(m′) ≡ i mod (q − 1) for some i ∈ D. By the definition of linear-invariance degree, we have
that every monomial m′ of degree deg(m′) ≡ i mod (q − 1) for some i ∈ D is contained in F and so
F2 ⊆ F2. It thus follows that F = F1 + F2.
For the second part, we define g : Fn → F as follows. Given α = 〈α1, . . . , αn〉 ∈ Fn, Let fα(t) = f(t · α).
Further, let c0, . . . .cq−1 be such that fα(t) =

∑q−1
i=0 cit

i. Finally let f̃α(t) =
∑

i6∈D cit
i. We define g(α) =

f̃α(1). Note by the definition of g that computing g at any point only requires q oracle calls to the oracle for
f .
We claim that f − g ∈ F2. This is verified by noting that for linear functions L : F → Fn, the function
(f − g) ◦ L has all of its support on monomials with degree in D. (For instance if L(t) = t · α, then
(f − g) ◦ L = fα(t)− f̃α(t) =

∑
i∈D cit

i.) By Proposition 5.15, it follows that f − g ∈ F2.
It is immediate that δ(f,F) = δ(g,F) ≤ δ(g,F1). To see that if f ∈ F then g ∈ F1, note that g ◦L always
has its monomials from {0, . . . , q−1}−D. Applying Proposition 5.15, we find that g ∈ F ′ where F ′ is the
projective space consisting of the span of monomials whose degree, modulo q− 1, is in {0, . . . , q− 1}−D.
But since g ∈ F and the only monomials in F whose degree modulo q − 1 is not in D, are those of degree
at most d, we conclude that g is of degree at most d and hence g ∈ F1.

Finally we use a simple proposition that can be used to give 2-ary independent localy characterizations for
family F1 above.

Proposition 5.17 Let F ⊆ F ′ have a k1-local formal characterization. Furthermore suppose F ′ has a
2-ary independent k2-local formal characterization. Then F has a k1 + k2-local 2-ary independent formal
characterization.

Proof: Let m, `1, . . . , `k1 , V describe the characterization of F i.e., f ∈ F iff for every x1, . . . , xm ∈ Kn it
is the case that 〈f(y1), . . . , f(yk1)〉 ∈ V for yi = `i(x1, . . . , xm).
Similarly let m′, `′1, . . . , `

′
k2

, V ′ denote the characterization of F ′.

Then we claim that the characterization m′ + m, ˜̀′
1, . . . ,

˜̀′
k2

, ˜̀
1, . . . , ˜̀

k1 , Ṽ forms a 2-ary independent char-
acterization of F , where

• ˜̀′
i(z1, . . . , zm′ , x1, . . . , xm) = `′i(z1, . . . , zm′),

• ˜̀
i(z1, . . . , zm′ , x1, . . . , xm) = `i(x1, . . . , xm),

• and 〈a1, . . . , ak2 , b1, . . . , bk1〉 ∈ Ṽ if and only if 〈a1, . . . , ak2〉 ∈ V ′ and 〈b1, . . . , bk1〉 ∈ V .

The claim is immediate: On the one hand, if f 6∈ F then there must exist x1, . . . , xm such that 〈f(y1) . . . , f(yk1)〉 6∈
V and thus for every z1, . . . , zm′ 〈f(y′1), . . . , f(y′k2

), f(y1), . . . , f(yk1)〉 6∈ Ṽ , where yi = `i(x1, . . . , xm)
and y′i = `′i(z1, . . . , zm′). On the other hand if f ∈ F then f is also inF ′ and so for every x1, . . . , xm, z1, . . . , zm′

we have 〈f(y′1), . . . , f(y′k2
), f(y1), . . . , f(yk1)〉 ∈ Ṽ . Finally, it is straightforward to verify that ˜̀′

1 is lin-
early independent of all the other linear functions: it is independent of ˜̀′

i by th 2-ary independence of the
characterization of F ′; and it is independent of ˜̀

i since it operates on a disjoint set of formal variables.

Putting all the ingredients together we get:
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Lemma 5.18 Let F ⊆ {Fn → F} be a linear-invariant family of linear-invariance degree d. Then it is
k′ = 2q · q2(d+q)/p-locally testable. Specifically, there is k′-query local test that accepts members of F with
probability 1 and rejects functions that are δ-far from F with probability min

{
δ
2 , q2

(2k′+q)(k′+q)

}
.

Proof: By Lemma 5.16 there exists a linear-invariant family F1 of polynomials of degree at most d and a
projective family F2 such that F = F1 + F2.
Since the linear invariance degree of F1 is at most d, it has, by Lemma 5.4 a q2(d+q)/p-local formal char-
acterization. Since F1 is contained in the family of degree d polynomials it also has a 2-ary independent
(in fact, affine) q2(d+q)/p-local formal constraint (now using the fact that any constraint on the family of
degree d polynomials is a constraint on F1 and using Lemma 5.4 again to see that the family of degree d
polynomials has an affine invariant q2(d+q)/p-local constraint). Using Proposition 5.17, we conclude that F1

has a 2q2(d+q)/p-local 2-ary independent formal characterization. By Theorem 2.9, we have that F1 has a
k1 = 2q2(d+q)/p-local test that accepts members of F1 and rejects a member that is δ-far with probability
min

{
δ
2 , 1

(2k1+1)(k1+1)

}
.

We now describe the test for membership in F . Given oracle access to a function f , we invoke Lemma 5.16
to get oracle access to the function g such that δ(f,F) ≤ δ(g,F1) and such that f ∈ F implies g ∈ F1. We
test if g ∈ F1 using the test for F1 from the previous paragraph. This test makes q ·k1 queries into the oracle
for f (to simulate the k1 queries to g). If f ∈ F then g ∈ F1 and this test accepts with probability 1. If f is
δ-far from F , then g is also δ-far from F1 and so the test rejects with probability min

{
δ
2 , 1

(2k1+1)(k1+1)

}
.

The lemma follows using k′ = qk1.

5.5 Summarizing: Constraints, Characterizations and Tests

The lemmas proved in the earlier parts of this section combine to prove Theorems 2.10 and Theorems 2.11
for the special case when K = F. Specifically, we get that affine invariant families have local formal
characterizations and local tests if and only if they have a single local constraints. For linear invariant
families we get the same conclusion under the stronger hypothesis that they have a local characterization.
For the sake of completeness we include a formal statement and proof below.

Theorem 5.19 If F ⊆ {Fn → F} is an affine-invariant family with a k-local constraint, then it has a
k′ = (q2k)q2

-local formal affine characterization, where q = |F|. Furthermore F is k′-locally testable
where the test accepts members of F with probability 1 and rejects functions that are δ-far with probability
min

{
δ
2 , 1

(2k′+1)(k′+1)

}
.

Proof: By Lemma 5.7 we have that if F has a k-local constraint then every function of F has degree
d < q2 + q2 logq k. Now, from Lemma 5.5 we have that if every function in F is a polynomial of degree
at most d, then F has a k′ = q2(d+q)/p local formal characterization. Combining the two bounds with
some crude manipulations, we get that k′ ≤ (q2k)q2

. Since every formal characterization of an affine
invariant family can be converted into an affine formal characterization, and hence a 2-ary independent
formal characterization, with the same locality, we can now apply Theorem 2.9 to conclude that F is k′-
locally testable.

Similarly, by combining Lemmas 5.13, 5.4, and 5.18, we also get an analogous theorem for linear-invariant
families where the hypothesis of k-local constraint is replaced by the hypothesis of a k-local characterization,
and the parameter of interest in the proof is now the linear-invariance degree of F .
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Theorem 5.20 If F ⊆ {Fn → F} is a linear-invariant family with a k-local characterization then it has a
k′ = (q2k)q2

-local formal characterization for q = |F|. Furthermore F is k0-locally testable for k0 = 2qk′

where the test accepts members of F with probability 1 and rejects functions that are δ-far with probability
min

{
δ
2 , q2

(2k0+q)(k0+q)

}
.

Proof: By Lemma 5.13, we have that the linear-invariance degree of F is at most d < q2 + q2 logq k. By
Lemma 5.4, we have that F has a k′ = q2(d+q)/p-local formal characterization. It follows that k′ ≤ (q2k)q2

.
Finally, by Lemma 5.18, we have that F is k0 = 2qk′-locally testable.

6 Function Families over Extension Fields

In this section we now generalize our study of function families to the case of general fields K and F
with K ⊇ F. We extend the results from Sections 4 and 5 to this setting. Throughout the section we let
q = |F| = ps and Q = |K| = qt (though sometimes we will repeat this fact, for redundancy).
We start by describing a basis for functions from Kn to F that extends the role played by monomials in the
case of functions from Fn to F. Two well-known functions mapping K to F are the “Trace” function, which
we will denote Trace0(·), and the “Norm” function. The standard Trace function is given by Trace0(x) =
x+xq + · · ·+xqt−1

. The Norm function N(x) is given by N(x) = x1+q+···+qt−1
. We wish to find a “basis”

of all functions that map from Kn to F, we need a family which generalizes both these families, hopefully
in a nice algebraic way. We describe such a generalization below. We refer to the functions we work with
as the ‘Traces of monomials”. (We are not aware of previous use of this family.)

Definition 6.1 For a vector d = 〈d1, . . . , dn〉 of non-negative integers, let b(d) denote the smallest positive
integer b such that di · qb ≡ di mod (Q − 1) for every i ∈ [n]. Note that b ≤ t. We say that c ∈ K is
d-admissible if cqb(d) = c. For a vector d and d-admissible coefficient c ∈ K, the Trace of the monomial
m = c · xd, denoted Trace(m), is the polynomial m + mq + · · ·+ mqb−1 for b = b(d).

In what follows it is critical that we do not confuse the monomial Trace function Trace(m) : Kn → F from
the function Trace0 ◦ m : Kn → F. Whereas the latter is more commonly studied, it is the former that
is central to this section. For example, over K = F16 and F = F2, Trace(x3) = x3 + x6 + x12 + x9,
Trace(y5) = y5 + y10, and Trace(x3y5) = x3y5 + x6y10 + x12y5 + x9y10.
In the definition above, we were careful with the coefficients of the monomials in the argument of the Trace
function. This is important since the function Trace(αxd) could be linearly independent (over F) of the
function Trace(βxd). However, for admissible coefficients, Trace(αxd) and Trace(βxd) generate the same
linear span, as we show below. (This proposition simplifies our life later, by letting us ignore the coefficients
of the monomials in our basis functions.)

Proposition 6.2 For a vector d = 〈d1, . . . , dn〉 of non-negative integers and d-admissible coefficients
α, β ∈ K∗, it is the case that Trace(αxd) ∈ L-SPAN(Trace(βxd)).

Proof: Let b = b(d). Note that admissibility of α, β implies that they are contained in the field L = Fqb

(since αqb
= α and βqb

= β). Let S denote the set of coefficients S = {γ|Trace(γxd) ∈ L-SPAN(Trace(βxd)).
We will prove the proposition by proving S = L.
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First note that since the monomial-Trace function is additive, and the linear span of any set is closed under
addition, we get that S is closed under addition.
Now we turn to its multiplicative properties. To do so, we need to understand b = bd. Notice that qt − 1
divides di · (qb − 1) for every i. So if we let e = gcd(d1, . . . , dn), we have that qt − 1 divides e · (qb − 1)
and furthermore b is the smallest positive integer that has this property. Let ω be a primitive (qt − 1)th root
of unity in K. Then, by the fact that b is the smallest integer such that qt − 1 divides e · (qb − 1), we have
that L is the smallest subfield of K that contains ωe. We claim that if τ ∈ S, then τ · ωe ∈ S. To see this,
let a1, . . . , an be integers such that e =

∑n
i=1 aidi. Then note that Trace(τ(ωa1x1)d1 · · · (ωanxn)dn) ∈

L-SPAN(Trace(τxd)) and so we have τωe ∈ S. We thus conclude that S is closed under addition, and
under multiplication by ωe. It follows that S = L.

Thus from now on, whenever we refer to monomials, we may ignore the leading coefficient, since any
admissible coefficient is equivalent to the coefficient 1. The central nature of the trace of monomials is
explained by the following proposition.

Proposition 6.3 Every function f : Kn → F can be described by a set of monomials M such that f(x) =∑
m∈M Trace(m).

Proof: Let f(x) =
∑

d cdxd. We prove the lemma by induction on the size of the support of f . Let e be
a vector such that ce 6= 0. Then we note that c(q·e) mod (Q−1) = cq

e. This is so since f(x)q = f(x) (since
f(x) ∈ F. Furthermore, f(x)q = (

∑
d cdxd)q =

∑
d cq

dx
qd mod (Q−1). By considering the coefficient of

cq·e mod (Q−1) we get c(q·e) mod (Q−1) = cq
e. Note further that since qb(e)e ≡ e mod (Q − 1) it follows

that cqb(e)

e = ce and so ce is e-admissible. It follows that if we subtract Trace(cexe) from f(x) we get a
function on a smaller support. We conclude that f can be decomposed into a sum of traces of monomials.

In what follows, we start by giving an extraction lemma for linear-invariant families of function mapping
Kn to F, which shows that the trace of any monomial that is in the support of a function in the family is also
in the family. We then use this, along with standard monomial “spread” properties to give upper bounds
(see Section 6.2) and lower bounds (Sections 6.3 and 6.4) on the constraints and characterizations of affine-
invariant and linear-invariant families mapping Kn to F. In Section 6.5 we use the characterizations to build
a tester for the linear-invariant case. The resulting theorems are summarized in Section 6.6.

6.1 Extracting Traces of Monomials

For a set of functions S ⊆ {Kn → F}, recall the notions of SPAN(S) = SPANF(S) and L-SPAN(S) and
A-SPAN(S) (see Definition 4.1 in Section 4 for the formal definitions). These notions will be used in this
and subsequent sections.

Lemma 6.4 (Trace of Monomial Extraction Lemma) Let f : Kn → F. Then for every monomial m in
the support of f , we have Trace(m) ∈ L-SPAN(f).

Proof: Let m be a monomial in the support of f . Let m = cxe where e = 〈e1, · · · , en〉 and c ∈ K is
e-admissible. Let b = b(e), so that Trace(m) = m + mq + · · · + mqb−1

. We wish to show Trace(m) ∈
L-SPAN(f).
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We first claim that we can assume w.l.o.g. that ei 6= 0 for every i ∈ [n]. If not, and suppose en = 0, then

we are done by induction on the number of variables, since g(x1, . . . , xn−1)
4
=f(x1, . . . , xn−1, 0) has the

feature that m is in the support of g and g depends on fewer variables. So Trace(m) ∈ L-SPAN(g) and
g ∈ L-SPAN(f) yielding Trace(m) ∈ L-SPAN(f).
Next we claim that we can assume that for every i ∈ [n] and for every monomial cdxd in the support of f ,
it is the case that di 6= 0. We prove this by induction on i. Assume the statement is true for j ∈ [i] (i.e.,
dj 6= 0 for every j ∈ [i] and every monomial xd with non-zero coefficient in f ). Now consider the function
f̃(x1, . . . , xn) = f(x1, . . . , xn) − f(x1, . . . , xi, 0, xi+2, . . . , xn). f̃ now has no support on monomials of
the form xd with dj = 0 for any j ∈ [i + 1]. But m is still in the support of f̃ and f̃ ∈ L-SPAN(f). So
proving Trace(m) ∈ L-SPAN(f̃) suffices to prove Trace(m) ∈ L-SPAN(f).
Finally we get to the real case: We now have a monomial m = cxe in the support of f . For every monomial
cdxd in the support of f and every i ∈ [n] we have di 6= 0. We’d like to show Trace(m) ∈ L-SPAN(f).
Let f =

∑
d cdxd. Let K∗ = K− {0}. Consider the following expression.

g(x) =
b−1∑
s=0

∑
〈α1,...,αn〉∈(K∗)n

(α1)−e1·qs · · · (αn)−en·qs
f(α−1

1 x1, , · · · , α−1
n xn).

We claim that g(x) ∈ L-SPAN(f) and that g(x) = (−1)n · Trace(cexe) thereby showing that Trace(m) ∈
L-SPAN(f).
For the first part, it is obvious that g(x) is in L-SPANK(f), but this is not what we want. We need to
show that g(x) ∈ L-SPANF(f). To see this we use the property of the monomial m0 = xe. Note that
Trace(m0) = m0 + mq

0 + · · ·+ mqb−1

0 since b = b(e) is independent of c. Note that

g(x) =
∑

α∈(K∗)n

Trace(m0(α)) · f(α−1
1 x1, α

−1
2 x2, · · · , α−1

n xn).

Since Trace(m0) maps Kn to F, we have that the expression for g forms an F-linear combination of f
applied to K-linear transforms of the vector x. By definition of L-SPAN we have g ∈ L-SPANF(f).
Next to see that g(x) = (−1)n Trace(cexe), we write g(x) =

∑b−1
s=0 gs(x), where gs(x) =

∑
α∈(K∗)n m0(α)qs ·

f(α−1
1 x1, · · · , α−1

n xn). We claim that gs(x) = (−1)ncqs·em0(x)qs
= cqs

e m0(x)qs
and this implies g(x) =

Trace(m). But then the identity gs(x) = (−1)ncqs·em0(x)qs
, follows easily from the Fourier Transform.

Specifically:

gs(x) =
∑

α∈(K∗)n

αqs·e · f(α−1
1 x1, · · · , α−1

n xn)

=
∑

α∈(K∗)n

αqs·e ·
∑
d

cdα−dxd

=
∑
d

cdxd
∑

α∈(K∗)n

αqs·e−d

=
∑
d

cdxd
n∏

i=1

 ∑
αi∈K∗

α
(qs·ei−di)
i

 .

Now the summation
∑

αi∈K∗ α
(qs·ei−di)
i equals −1 if qsei = di and 0 otherwise. So the final quantity above

equals (−1)ncqsexqse as desired.
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6.2 Upper bounds on the characterizations of linear-invariant families

In this section we give characterizations, and thus upper bounds on the locality of characterizations, of
affine-invariant and linear-invariant families mapping Kn to F. As in the case when K = F, the affine-
invariance locality is a function of the degree of the highest degree polynomial contained in the family
under consideration. In the linear-invariant case we need to extend the notion of the linear-invariance degree
and we do so below.

Definition 6.5 For a linear invariant family F properly contained in {Kn → F}, let dlin(F), the linear-
invariance degree of F , be the largest integer d such that F contains a monomial m1 of degree d in its
support, while there also exists a monomial m2 that is not in the support of F , whose degree is d′ for some
d′ > 0 with d′ ≡ d mod (Q− 1), where Q = |K|.

To get an upper bound, we first give a simple monomial spread lemma for functions from Kn to F.

Lemma 6.6 Let m = xd be a monomial with dn−1 < p and dn = 0. For i ∈ {0, . . . , dn−1}, let m̃ be the
monomial xd1

1 · · ·xdn−2

n−2 · xi
n−1 · x

dn−1−i
n . Then the function Trace(m̃) ∈ L-SPAN(Trace(m)).

Proof: Let f(x) = Trace(m(x)). Note that since dn−1 < p ≤ q, we have that qt−1dn−1 < qt and so b(d)
must equal t. Thus Trace(m(x)) = Trace0(m(x)). So we need to show Trace(m̃) ∈ L-SPAN(Trace0(m)).

Now consider f̃(x) = f(x1, . . . , xn−2, xn−1+xn, 0) ∈ L-SPAN(f). We have f̃(x) =
∑t−1

`=0

∑dn−1

i=0

(
dn−1

i

)
(xd1

1 · · ·xdn−2

n−2 ·
xi

n−1 · x
dn−1−i
n )q`

. We note that the coefficient of m̃ in this expression is exactly
(
dn−1

i

)
which is non-zero.

It follows from the monomial extraction lemma that m̃ is in L-SPAN(f̃) ⊆ L-SPAN(f).

The following lemma now shows that one can project non-members of a family F to smaller dimensional
subspaces while preserving non-membership in F .

Lemma 6.7 Let F ⊆ {Kn → F} be a linear-invariant family of linear-invariance degree dlin(F) = d.
Suppose f : Kn → F is not in F . Then, if n ≥ 1 +

(
2(d+Q)

p

)
, then there exists a linear function L :

Kn−1 → Kn such that f ◦ L 6∈ F|n−1.

Proof: The proof is exactly the same as that of Lemma 5.3 with notational changes. We include it below for
completeness.
Let m = xd1

1 · · ·xdn
n be a monomial of maximal degree in the support of f that is not contained in the

support of F . We show that there is a linear map L : Kn−1 → Kn such that m ◦ L is not in the support of
F|n−1. We consider two cases:
Case 1: There exist distinct indices i, j such that di + dj < p: Without loss of generality assume i = n− 1
and j = n. Note first that for the the monomial m′ = xd1

1 · · ·xdn−2

n−2 · xdn−1+dn

n−1 , we have, by Lemma 6.6,
Trace(m′) 6∈ F (and hence Trace(m′) 6∈ F|n−1). We claim that for some choice of α, β ∈ F, the map
Lα,β(x1, . . . , xn−1) = 〈x1, . . . , xn−2, αxn−1, βxn−1〉 leaves the monomial m′ with non-zero support in
f ◦ Lα,β , which would suffice to prove the lemma (in this case).

To see this, let ci be the coefficient of the monomial xd1
1 · · ·xdn−2

n−2 · xi
n−1x

dn−1+dn−i
n in f . Let h(x, y) =∑dn−1+dn

i=0 cix
iydn−1+dn−i. It can be verified that the coefficient of m′ in f ◦ Lα,β is exactly h(α, β).

Furthermore, h(α, β) is a non-zero polynomial since the coefficient cdn−1 is the coefficient of m in f which
is non-zero. Thus there must exist α, β ∈ K such that h(α, β) 6= 0 and this yields the claim.
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Case 2: For every pair of distinct i, j, di + dj ≥ p. Let e denote the degree of m. For every t, we have
d2t−1 + d2t ≥ p, and so e, the total degree of m, is at least pbn/2c ≥ d + Q.
We first note that no monomial m′ of degree e or e− (Q−1) is in F . Otherwise the linear-invariance degree
of F would be the degree of m′. For example, if m′ has degree e− (Q− 1) > d, then m′ satisfies the role
of the monomial m1 in the definition of the linear-invariance degree and m of degree e = e − (Q − 1)(
mod Q− 1) satisfies the role of m2 in the definition of linear-invariance degree thereby yielding dlin(F) =
e− (Q− 1) > d. So we conclude m′ can not be in F .
But now consider the linear map Lα,β as in the previous case, i.e., Lα,β(x1, . . . , xn−1) = 〈x1, . . . , xn−2, αxn−1, βxn−1〉.
Let m′ be the monomial xd1

1 · · ·xdn−2

n−2 · xf
n−1 where f = dn−1 + dn if dn−1 + dn < Q and f =

dn−1 + dn − (Q − 1) otherwise. The degree of m′ is thus e or e − (Q − 1). We claim that for some
α, β, the coefficient of m′ is non-zero in f ◦ Lα,β and this will yield the lemma in this case.
To verify the claim, note that the coefficient of m′ in f ◦ Lα,β is exactly h′(α, β) where h′(x, y) =∑min{Q−1,dn+dn−1}

i=0 cix
iydn+dn−1−i and ci is the coefficient of the monomial xd1

1 · · ·xdn−2
n−2 ·xi

n−1x
dn+dn−1−i
n

in f . Again, we have h′(x, y) is not identically zero (the coefficient cdn−1 is non-zero) and so there exists
α, β such that h′(α, β) 6= 0.

We are now ready to give the characterization for linear-invariant families.

Lemma 6.8 Let F be a linear invariant family, properly contained in {Kn → F}, of linear-invariance
degree d. Then F has a (Q)`-local formal characterization for ` = 2(d+Q)

p .

Proof: We claim that the characterization is simply the that f ∈ F if and only if f ◦ L is in F|` for every
linear map L : K` → Kn.
It is again easy to verify that, if correct, this is indeed a q`-local formal characterization. We analyze the
correctness below.
In one direction, it is obvious that every f ∈ F and L : K` → Kn satisfies f ◦ L ∈ F|`. The other
direction is a simple induction based on Lemma 5.3. Fix f 6∈ F . Let m be any integer between ` + 1 and
n. Assume by induction on n − m that there a linear map Lm : Km → Kn such that f ◦ Lm 6∈ F|m.
Now we prove that there is a map Lm−1 : Km−1 → Kn such that f ◦ Lm−1 6∈ F|m−1. Since F is linear-
invariant, so is F|m. Also the linear-invariance degree of F|m is at most dmax. By Lemma 5.3 there is a
linear map L : Km−1 → Km such that (f ◦Lm) ◦L 6∈ (F|m)|m−1 = F|m−1. Thus f ◦Lm−1 6∈ F|m−1 for
Lm−1 = Lm ◦ L. We conclude that the linear map L` : K` → Kn derived from setting m = ` + 1, satisfies
f ◦ L` 6∈ F|`.

Again, using the fact that the maximum total degree of a polynomial in the family F is an upper bound on
the linear-invariance degree of F , we also get the following corollary for affine-invariant families.

Lemma 6.9 Let F be a proper subset of {Kn → F} and let d denote the maximum degree of any function
in F . Then F has a Q`-local formal characterization for ` ≤ 2(d+Q)

p .

6.3 Lower bounds on the locality of constraints for Affine Invariant Families

We now move to lower bounds on the locality of constraints for affine-invariant families. Our starting
point is Claim 5.9 which shows that the family A-SPANK(

∏`
i=1 x

Q/p
i ⊆ {Kn → K} has no Qb`/Qc-local
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constraints. We start with a simple proposition that turns this into a lower bound on a family mapping Kn

to F. First we recall some definitions.
Recall that Trace0 : K → F denotes the standard trace function given by Trace0(x) =

∑
i = 0t−1xqi

. We
extend this to functions and function families as follows. For f : Kn → K, Trace0(f) is the function that
maps x ∈ Kn to Trace0(f(x)). For F ⊆ {Kn → K}, let Trace0(F) = {Trace0(f)|f ∈ F}.
We also extend the notion of the trace of monomials to functions and function families. We say that a
monomial cxe is admissible if c is e-admissible. For a function f : Kn → K which is the sum of admissible
monomials, we define Trace(f) to be the sum of the traces of the monomials in its support. Finally, for a
function family F , we let Trace(F) = {Trace(f)|f ∈ F}.
The following proposition relates Trace0(F) to Trace(F).

Proposition 6.10 For a linear-invariant family F ⊆ {Kn → K}, Trace0(F) ⊆ Trace(F).

Proof: Note that it suffices to show that Trace0(m) ∈ Trace(F) for every monomial m ∈ F . Let m = cxd

and let b = b(d). Note that Trace0(m) = Trace(m′) where m′ = c′xd and c′ = c+cqb
+cq2b

+ · · ·+cqt−b
.

In particular note that (c′)qb
= c′ and so c′ is d-admissible. Also note that m′ is an admissible monomial

and a member of F and so Trace(m) ∈ Trace(F). We thus conclude that Trace0(m) ∈ Trace(F). The
proposition follows.

The next proposition shows that a lower bound on the locality of (relative) constraints for a family F ⊆
{Kn → K} also yields a lower bound for Trace0(F).

Proposition 6.11 LetF1,F2 ⊆ {Kn → K}. IfF1 has no k-local constraints relative toF2, then Trace0(F1)
has no k-local constraints relative to Trace0(F2).

Proof: Let C = (x1, . . . ,xk, S) with S ( Fk be a constraint on Trace0(F1) relative to Trace0(F2). Then
we claim that C ′ = (x1, . . . ,xk, S

′), where S′ = {〈α1, . . . , αk〉 ∈ Kk | 〈Trace0(α1), . . . ,Trace0(αk)〉 ∈
S}, is a constraint on F1 relative to F2. We omit the straightforward verification steps.

The above propositions immediately give a family of affine invariant functions with no constraints of small
locality.

Lemma 6.12 For every `, the family A-SPAN(Trace(
∏`

i=1 x
Q/p
i )) has no constraints of locality Qb`/Qc.

Proof: Follows immediately by combining Claim 5.9 with Propositions 6.10 and 6.11.

We now turn to the task of showing that a family with some high degree monomial also contains other high
degree monomials. We don’t provide a very general lemma, but rather one that is sufficient for our purposes.

Lemma 6.13 For every vector d = 〈d1, . . . , dn〉 of non-negative integers and index i ∈ [n], the monomial
Trace(xe) ∈ A-SPAN(Trace(xd)), where e = 〈e1, . . . , en〉 is given by ei = Q/p, and ej = dj for
j ∈ [n]− {i}, provided di ≥ Q/p.

Proof: For notational simplicity we assume i = 1.
Let b = b(d). Note that since e1 = Q/p, we have that the smallest integer b′ such that eb′

1 ≡ e1 mod (Q−1)
is t and thus Trace(xe) = Trace0(xe). Our goal is thus to show that Trace0(xe) is in the affine span of
Trace(xd). If d1 = Q/p, then this is trivial, and so assume d1 > Q/p.
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We claim that, for some γ ∈ K, the monomial xe has a non-zero coefficient in the polynomial g(x) =
Trace(〈x1 + γ, x2, . . . , xn〉d). Assuming this claim, using the fact that g(x) ∈ A-SPAN(Trace(xd)) and
that every monomial m in the support of g(x) is in A-SPAN(g), we get that for some admissible β ∈ K∗,
Trace(β · xe) is in A-SPAN(Trace(xd)). Combining with Proposition 6.2 we see that we can drop the
coefficient β and get that Trace(xe) is also in A-SPAN(Trace(xd)). It thus suffices to prove the claim.
Note that

g(x) = Trace

( d1∑
i=0

(
d1

i

)
γd1−1xi

1

)
·

n∏
j=2

x
dj

j


=

b−1∑
`=0

(
d1∑
i=0

(
d1

i

)q`

γq`·(d1−i)xi·q`

1

)
·

n∏
j=2

x
dj ·q`

j

To determine the coefficient of xe in the above expression, let S = {(i, `)|0 ≤ i < b, i · q` = Q/p
mod (Q − 1) and dj · q` = dj mod (Q − 1), ∀j ∈ {2, . . . , n}}. Then the coefficient of xe in g(x) is∑

(i,`)∈S

(
d1

i

)
· γq`·(d1−i) = γ−Q/p ·

∑
(i,`)∈S

(
d1

i

)
· γq`·d1 . This coefficient is itself a polynomial in γ and

we prove that it is a non-zero polynomial. To see this we focus on the coefficient of γd1 . Note that, by
the definition of the index b (and Trace(xd)), the only index ` for which q` · d1 = d1( mod Q − 1) (and
q` ·dj = dj( mod Q−1) for all other j’s) is ` = 0. Furthermore, the only i for which i · q0 = Q/p is Q/p.
Thus the pair (Q/p, 0) is the unique pair in S that contributes to the coefficient of γd

1 in the expression above
and this coefficient is

(
d1

Q/p

)
which can be verified to be non-zero. Thus the coefficient of xe is a non-zero

polynomial in γ and thus there exists a γ for which this coefficient is non-zero. This proves the claim, and
hence the lemma.

The two lemmas above can be combined to derive a lower bound on the locality of constraints for any
affine-invariant family containing any high-degree polynomial, as shown next.

Lemma 6.14 If an affine-invariant family F ( {Kn → F} contains a polynomial of degree d, then it has
no constraints of locality Q(d−Q2)/Q2

.

Proof: Fix a monomial m such that Trace(m) is in F and the degree of m is d. Partition the variables
in x so that the degree of m in each block,except at most one, is between Q/p and Q − 1 (again this can
be done by putting variables of degree greater than Q/p into blocks of their own, and greedily packing the
remaining variables into blocks till a block size exceeds Q/p). The number of blocks is thus strictly greater
than d/Q. Now replace all variables in block i by the variable xi to get a new monomial m′ = xd such that
Trace(m′) ∈ F and the degree of at least Q/p variables in m′ is at least Q/p. Applying Lemma 6.13 to these
variables in turn shows that Trace(

∏`
i=1 x

Q/p
i ) is contained in F for ` = bd/Qc. Applying Lemma 6.12 we

conclude that F has no Q(d−Q2)/Q2
-local constraints.

6.4 Lower Bound in the Linear Invariant Case

We now give a lower bound for the the case of linear-invariant families. We do so by reducing to the lower
bound for functions from Kn → K.

Lemma 6.15 Let d ∈ (Z+)n, i ∈ [n], and let f be a non-negative integer, such that di ≥ Q/p. Let e be
given by ej = dj , except when j = i in which case ei = Q/p. Then xe · yf+di−Q/p ∈ L-SPAN(xd · yf ).
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Proof: Similar to the proof of Lemma 6.13.

Lemma 6.16 . Let F ( {Kn → F} be a linear invariant family of linear invariance degree d. Then F does
not have a Q(d−Q2)/Q2

-local characterization.

Proof: We proceed as in the proof of Lemma 5.13. Let m ∈ K[x] be a monomial of degree d such that
Trace(m) ∈ F . Let m′ be a monomial of degree d′ ≡ d mod (Q − 1) such that Trace(m′) 6∈ F . Let
x1 be a variable of positive degree in m′. Then note that the monomial m̃ = m′y/x1 ∈ K[x, y] also
satisfies Trace(m̃) 6∈ F (since m̃ is in the linear span of m̃). Since the degree in y of m̃ is 1, we have that
Trace(m̃) = Trace0(m̃). We now use m and m̃ to get a lower bound on the characterization of F .

Let ` = bd/Qc. Let F1 = SPAN({yd1 · m1|m1 monomial in ∈ A-SPAN(
∏`

i=1 x
q/p
i ), d1 + deg(m1) ≡ d

mod (q − 1), 1 ≤ d1 ≤ q − 1}). Let F2 = SPAN{m2|m2 monomial in F[x, y],deg(m2) ≡ d mod (q −
1),degy(m2) ≥ 1}, be the collection of all polynomials supported on monomials of degree d mod (q−1),
with positive degree in y. Recall, by Lemma 5.12, that F1 has no constraints of locality Qb`/Qc relative
to F2. By Propositions 6.10 and 6.11, we also have that Trace(F1) has no constraints of locality Qb`/Qc

relative to Trace0(F2). Furthermore, since Trace0(m̃) ∈ Trace0(F2), we have that Trace0(F2) is not
contained F . Thus it suffices to show that Trace(F1) is contained in F .
For this part, we proceed as in the proof of Lemma 6.14. We collect the variables of x in blocks with each
block having degree between Q/p and Q in m. By identifying the variables within a block with copies of
a single variable, we get a monomial m1 of degree between Q/p and Q in at least ` variables such that
Trace(m1) ∈ F . Repeatedly applying Lemma 6.13 to it, we get that for every monomial m2 ∈ Trace(F1),
Trace(m2) ∈ F , and thus Trace(F1) ⊆ F .
It follows that F has no constraints of locality Qb`/Qc relative to F + Trace0(m̃) and hence does not have
a Qb`/Qc-local characterization. The lemma follows by noting that b`/Qc = bq/Q2c ≥ (d−Q2)/Q2.

6.5 Testing for linear invariant families

We conclude, as in Section 5.4, by giving a testing theorem for linear-invariant families. Again we remark
that the test does not follow immediately from the characterization results, since the characterization are not
necessarily 2-ary independent.
However, it follows directly from the results of Section 5.4, and the characterization of Section 6.2, that
every linear invariant family of linear invariance degree d is Q2(d+Q)/p-locally testable. Specifically we
note that:

• Definition 5.14 of “projective” families is still applicable to families mapping Kn → F, being subsets
of {Kn → K}.

• Proposition 5.15 characterizing projective families still applies.

• Lemma 5.16 giving a decomposition of every linear invariant family F into the sum of a family F1

of bounded degree and a projective family F2, along with a local reduction to compute a function g
whose distance from F1 estimates the distance of f from F , also still applies.

• The familyF1 derived in the previous step does have a 2-ary independent local formal characterization
and thus a local test.
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Putting that above observations together, as in the proof of Lemma 5.18 we get:

Lemma 6.17 Let F ⊆ {Kn → F} be a linear-invariant family with a k-local characterization. Then has a
k′ = 2Q · (Q2k)Q2

-local test that accepts members of F with probability 1, while rejecting δ-far members
with probability at least min

{
δ
2 , Q2

(2k′+Q)(k′+Q)

}
.

6.6 Putting the results together

Combining Lemmas 6.14 and 6.9 and Theorem 2.9 we get a proof of Theorem 2.10.
Similarly, by combining Lemmas 6.16, 6.8, and 6.17, we get a proof of Theorem 2.11.
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Part III

7 A non-trivial local formal characterization

In this section we consider a set of polynomials, of potentially very large degrees, which is affine invariant.
We show that this set has a formal characterization of very small locality.
Let Fd

q [x1, . . . , xn] denote the space of polynomials of degree at most d in n variables over Fq. For q = ps,
let Fchar,d

q [x1, . . . , xn] be the space of functions

{f ∈ Fq[x1, . . . , xn]|∃g ∈ Fd
q [z11, . . . , zsn] s.t. f(x1, . . . , xn) = g(x1, x

p
1, . . . , x

ps−1

1 , x2, . . . , x
ps−1

n )}.

When d = 1, and g is homogenous, then we get the class of linearized polynomials. Extending this terrible
nomenclature, we refer to elements of Fchar,d

q [x] as d-ized polynomials. We claim below that the property of
being a d-ized polynomial is locally testable with (d + 2)-local tests.

Theorem 7.1 For q = pm with p being prime and for an integer d ≤ p−2, the family of d-ized polynomials
has a (d+2)-local formal affine characterization. Specifically a function f : Fn

q → Fq is a d-ized polynomial
if and only if ∀x,y ∈ Fn

q ,
∑d+1

i=0 αi,df(x + iy) = 0, where αi,d = (−1)i
(
d+1

i

)
.

We remark that the degree of a d-ized polynomial over pm may be as high as d · ps−1 and so the characteri-
zation can be quite local even when the polynomial has high degree. To prove Theorem 7.1 we use heavily
the characterization from [19, 9] that for a prime field Fp, a function g : Fn

p → Fp is a degree d polynomial
if and only if

∑d+1
i=0 αig(x + iy) = 0 for every x,y ∈ Fn

p .
To translate results about Fp to results about Fq for q = pm, we use the following correspondence from Fq

to Fm
p using linearized polynomials. (For this part we also use the fact that Fp is contained in Fq, given by

the solutions of the equation xp − x = 0.)

Proposition 7.2 There exist maps b : Fq → Fm
p and b−1 : Fm

p → Fq satisfying:

• For every β ∈ Fq, β = b−1(b(β)).

• b = 〈b1, . . . , bm〉, where bi : Fq → Fq is a linearized polynomial (i.e., a polynomial of the form
bi(x) =

∑m−1
j=0 cijx

pj
) with its image being Fp. In particular, the bi’s are Fp-linear maps.

• b−1 is an Fp-linear map. In particular, b−1(0) = 0.

We extend the maps b and b−1 to apply to vectors in Fn
q and Fmn

q using the extension b(x1, . . . , xn) =
〈b(x1), . . . , b(xn)〉, and b−1 being its inverse. Using these maps we can create an alternate characterization
of the d-ized polynomials.

Lemma 7.3 f : Fm
q → Fq is a d-ized polynomial if and only if there exists polynomials g1, . . . , gm : Fmn

p →
Fp of degree at most d such that f(x) = b−1(g1(b(x)), . . . , gm(b(x))).
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Proof: We start with the forward direction, i.e., Assume such g1, . . . , gm exist and prove that f is d-ized in
such a case.
For both parts it is useful to see a “more” explicit version of b−1. Since b−1 is linear, we have that there
exists w1, . . . , wm ∈ Fq such that b−1(α1, . . . , αm) =

∑m
i=1 αiwi (for all α1, . . . , αm ∈ Fp). Using this

we see that f(x) = b−1(g1(b(x)), . . . , gm(b(x))) =
∑m

i=1 gi(b(x))wi. But b(x) is just a collection of mn

linear forms in x1, . . . , x
pm−1

1 , . . . , xpm−1

n , and gi is a degree d polynomial in its arguments, and so their
composition is degree d-ized polynomial in x. Thus we get each gi(b(x)) is a d-ized polynomial in x and
so f , which is a linear combination of such polynomials, is also a d-ized polynomial.

For the other direction, assume f is d-ized. So f(x1, . . . , xn) = g(x1, . . . , x
pm−1

1 , . . . , xpm−1

n ) for some
degree d polynomial g. Note that

gi(y) = bi(f(b−1(y)))

= bi(f(
∑

j

y1jwj , . . . ,
∑

j

ynjwj))

= bi

g


∑

j

y1jwj

 , . . . ,

∑
j

y1jwj

pm−1

, . . . ,

∑
j

ynjwj

pm−1



= bi(g̃(y1, . . . , ymn))

for some degree d polynomial in mn variables with coefficients from Fq. (For the last step we use the fact
that yp

i = yi when yi ∈ Fp.) Finally we use the fact that we are only interested in the evaluations of g̃ over
elements of Fmn

p . Note that bi(g̃) has the same degree as g̃ in this case, since bi is Fp-linear (and so for a
monomial of the form c ·

∏
y

ejk

jk , we have bi(c ·
∏

y
ejk

jk ) = bi(c) ·
∏

y
ejk

jk ).

We are now ready to prove Theorem 7.1.
Proof: We prove the forward direction first. Suppose f ∈ Fchar,d

q [x]. We wish to show that for every x,y ∈
Fn

q ,
∑d+1

i=0 αif(x + iy) = 0. By Lemma 7.3 we have that there exist degree d polynomials g1, . . . , gm :
Fmn

p → Fp such that f(x) = b−1(g1(b(x)), . . . , gm(b(x))). So we have

d+1∑
i=0

αif(x + iy)

=
d+1∑
i=0

αib
−1(g1(b(x + iy)), . . . , gm(b(x + iy)))

= b−1

(
d+1∑
i=0

αig1(b(x + iy)), . . . ,
d+1∑
i=0

αigm(b(x + iy))

)
(By the linearity of b−1)

= b−1

(
d+1∑
i=0

αig1(b(x) + ib(y)), . . . ,
d+1∑
i=0

αigm(b(x) + ib(y))

)
(By the linearity of b)

= b−1(0, . . . , 0) (By [19])

= 0 (By linearity of b−1)
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Now for the reverse direction, suppose f : Fn
q → Fq satisfies

∑d+1
i=0 αif(x + iy) = 0 for every x,y ∈ Fn

q .
Consider the function gi : Fmn

p → Fp given by gi(z = 〈z11, . . . , zmn〉) = bi(f(b−1(z))). We now note that
for any pair u,v ∈ Fmn

p , we have

d+1∑
j=0

αjgi(u + jv) =
d+1∑
j=0

αjbi(f(b−1(u + jv)))

= bi

d+1∑
j=0

αjf(b−1(u + jv))


= bi

d+1∑
j=0

αjf(b−1(u) + jb−1(v))


= bi(0)
= 0

We conclude that gi is a degree d polynomial for every i ∈ [m]. But now since f(x)b−1(g1(x), . . . , gm(x)),
we conclude that f must also be a d-ized polynomial.
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