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Abstract

We show that random sparse binary linear codes are lo-
cally testable and locally decodable (under any linear en-
coding) with constant queries (with probability tending to
one). By sparse, we mean that the code should have only
polynomially many codewords. Our results are the first to
show that local decodability and testability can be found
in random, unstructured, codes. Previously known locally
decodable or testable codes were either classical algebraic
codes, or new ones constructed very carefully.

We obtain our results by extending the techniques of
Kaufman and Litsyn [11] who used the MacWilliams Iden-
tities to show that “almost-orthogonal” binary codes are
locally testable. Their definition of almost orthogonality ex-
pected codewords to disagree in n

2 ±O(
√

n) coordinates in
codes of block length n. The only families of codes known
to have this property were the dual-BCH codes. We extend
their techniques, and simplify them in the process, to in-
clude codes of distance at least n

2 −O(n1−γ) for any γ > 0,
provided the number of codewords is O(nt) for some con-
stant t. Thus our results derive the local testability of linear
codes from the classical coding theory parameters, namely
the rate and the distance of the codes.

More significantly, we show that this technique can also
be used to prove the “self-correctability” of sparse codes
of sufficiently large distance. This allows us to show that
random linear codes under linear encoding functions are
locally decodable. This ought to be surprising in that the
definition of a code doesn’t specify the encoding function
used! Our results effectively say that any linear function of
the bits of the codeword can be locally decoded in this case.

∗Research supported in part by NSF Award CCR 0514915.

1. Introduction

In this paper we study the local decodability and local
testability of random codes. Our goal is to see what are
general conditions under which error-correcting codes ex-
hibit these properties. We start by defining these concepts.

A (binary) code C is a subset of {0, 1}n, binary strings
of length n. The code is termed an error-correcting code
with (relative Hamming) distance δ where δ = δ(C) =
minx6=y∈C{δ(x, y)}. Here δ(x, y) denotes the fraction of
coordinates i ∈ {1, . . . , n} for which the ith coordinates of
x and y (denoted xi and yi) are unequal. Throughout the pa-
per we will be interested in infinite family of codes {Cn}n

whose length n → ∞ and whose distance is positive, i.e.,
for every n, δ(Cn) ≥ δ0 > 0.

Informally, a code is locally testable if it is possible
to test membership of a word v in C probabilistically
making few probes into v. Formally, for a vector v ∈
{0, 1}n, let δ(v, C) denote its distance to the set C, i.e.,
minx∈C{δ(v, x)}. For functions q : (0, 1] → Z+ and
ε : (0, 1] → (0, 1], 1 a binary code C is said to be (q, ε)-
locally testable if there exists a probabilistic algorithm T
called the tester that, given a parameter δ > 0 and oracle
access to a vector v ∈ {0, 1}n, queries the oracle at most
q(δ) times and accepts v ∈ C with probability one, and re-
jects codewords at distance greater than δ with probability
at least ε(δ). C is said to be strongly q-locally testable if
there exists a constant ε′ > 0 such that the tester above re-
jects every v 6∈ C with probability at least ε′ · δ(v, C) (i.e.,
q(δ) is a constant, and ε(δ) is linear in δ).

A code is informally self-correctable, if it is possible to
recover any specified coordinate of a codeword of C given
oracle access to a slightly corrupted version of the code-
word. Formally, a code C is q-self-correctable if there ex-
ists constants τ > 0 and ε < 1

2 and a probabilistic algo-
rithm SC called the corrector such that given oracle access
to a word v ∈ {0, 1}n that is τ -close to some codeword

1In this paper, Z+ denotes the set of non-negative integers and (0, 1]
the half-open interval of reals greater than 0 and at most 1.



c ∈ C, and any index i ∈ {1, . . . , n}, SCv(i) computes ci

with probability 1− ε.
Self-correction is closely related to the more popular

notion of locally decodable codes. Local decodability is
a property of the encoding function used to encode mes-
sages and requires the message to be locally decodable from
a corrupted codeword. Specifically, an encoding function
E : {0, 1}k → {0, 1}n is q-locally decodable if there
exist exists constants τ > 0 and ε < 1

2 and a proba-
bilistic decoding algorithm D such that, given oracle ac-
cess to a word v ∈ {0, 1}n that is τ -close to E(m) for
some message m ∈ {0, 1}k and an index i ∈ {1, . . . , k},
Dv(i) computes mi with probability 1− ε. Self-correction
is a property merely of the set of codewords (i.e., the set
C = {E(m)|m ∈ {0, 1}k}) and while it guarantees decod-
ability of every bit of the codeword it makes no statements
about the message bits (since these are not even defined).
However it is easy to see that E is q-locally decodable if
the code CE = {(m,E(m))|m} is q-self-correctible. This
relation suggests that self-correction is a somewhat stronger
property,

Local testability and self-correctability of codes have
been examined implicitly every since the seminal work of
Blum, Luby and Rubinfeld [6] which shows that Hadamard
codes2 are locally-testable and self-correctable. The gen-
eral notion of locally testable codes is implicit in [1] and
was systematically studied in [9]. Locally decodable codes
were implicit in [1] and were formally defined in Katz and
Trevisan [10]. Due to the central nature of these notions
in works on Probabilistically Checkable Proofs, and Pri-
vate Information Retrieval Schemes there has been a lot of
work on these notions in the past few years. By now, a
broad family of codes have been shown to be testable and
self-correctable. And recently there has been much activity
in constructing very efficient codes that are locally testable
(see, for example, [9, 3, 4, 5, 8]) and efficient codes that are
locally-decodable [2, 15].

Our interest in these properties is not motivated by the
efficiency of the codes, but rather by the generality of anal-
ysis techniques. All the properties under consideration (de-
codability, testability and self-correctability) are known to
be quite fragile. For instance, a code C may be testable,
but subcodes C ′ of C (i.e., C ′ ⊆ C) may turn out not to
be testable. A code C may be locally decodable for some
encoding functions but may not be decodable under other
encoding schemes. A code C may be self-correctible, but
if one adds just one more bit of redundancy to the encoding
(thus |C ′| = |C|, C ′ ⊆ {0, 1}n+1 and C ′ projected to the
first n coordinates equals C), then the new code need not

2Strictly speaking [6] only show that “Reed-Muller codes of order 1”
are locally testable, and this is a strict subclass of Hadamard codes. The
entire class of Hadamard codes is shown to be locally testable by the results
of [11].

be self-correctible. Given this fragility, it is understandable
that codes with such properties have been constructed quite
carefully in the past, even if the efficiency of the parameters
is not the prime concern.

Our Results: In this paper we describe results which are
contrary to the descriptions above. We do so by considering
a restricted class of codes: specifically linear, sparse codes,
chosen at random. Recall that a code C is said to be linear
if for every x, y ∈ C it is the case that x + y is also in C,
where x + y denotes the sum of x and y viewed as vectors
in Fn

2 . We show that when a sparse linear code is chosen
at random, then it is very likely to be locally decodable and
self-correctible.

We derive our results by showing that every “sparse”, lin-
ear code of “large-distance” is testable and self-correctable.
To be precise, say that C ∈ {0, 1}n is f(n)-sparse if
|C| ≤ f(n). Our main theorem on local testability shows
that every polynomially sparse code of distance 1

2 − n−γ is
locally testable.

Theorem 1.1 For every t < ∞ and γ > 0 there exists a
constant k such that the following holds: If C ⊆ {0, 1}n is
nt-sparse and δ(C) ≥ 1

2−n−γ , then C is strongly k-locally
testable.

To derive this result, we first focus on a subclass of
codes where the distance between codewords is sandwiched
tightly between 1

2 − n−γ and 1
2 + n−γ . We say that a

code C ⊆ {0, 1}n is said to be ε-biased if it satisfies
1
2 − ε ≤ δ(x, y) ≤ 1

2 + ε for every pair x 6= y ∈ C.
(ε-bias refers to the same concept as defined in [14], though
the description there is different. Our notion of ε-bias is also
a generalization of the notion of almost orthogonal codes in
[11]; almost-orthogonal codes are O(n−1/2)-biased codes.)
For ε-biased codes we also derive a complementary “self-
correction” result.

Theorem 1.2 For every t < ∞ and γ > 0 there exists a
constant k = kt,γ < ∞ such that the following holds: If
C ⊆ {0, 1}n is nt-sparse and n−γ-biased, then C is k-self-
correctable.

If a code C has small bias and is sparse, then so is C ′

consisting of the coordinates of C and a few additional co-
ordinates that are linear functions of the previous coordi-
nates. Using this observation we can use the above result
on self-correction to show that sparse, low-bias encodings
are locally decodable. (See Corollary 4.6.)

Since a random linear code with nt-codewords is very
likely to be O(log n/

√
n)-biased, we immediately get that

sparse random linear codes are locally testable and self-
correctible with high probability. (See Theorem 7.2.)



It turns out that our results above do not cover the self-
correctibility of even the Hadamard code and/or the dual-
BCH code. These codes are not small-biased. Indeed they
have the “all-ones” vector as codewords, making their bias
as bad as they could possibly be. However we note that
these codes are derived from n−γ-biased codes by “closing
them under complements”. Specifically for a code C, and
vector v, let C+v denote the set {x+v|x ∈ C}, and let C||v
denote the linear span of C and v, i.e, the set C ∪ (C + v).
Formally, say that a code C is complementation-closed if
C = C ′||1n for some code C ′. We show the following
simple extension of Theorem 1.2 which allows use to extend
our testing and self-correction results also for the familiar
versions of the Hadamard and dual-BCH codes.

Theorem 1.3 For every t and γ > 0, there exists k such
that the following hold: Let C = C ′||1n, be an nt-sparse
complementation-closed code with distance 1

2 −n−γ . Then
C is k-locally testable and k-self-correctable.

Techniques: Our techniques build upon those of Kauf-
man and Litsyn [11] who analyze the local-testability of
dual-BCH codes, which form a special family of codes that
satisfy the conditions of Theorem 1.2. Their technique re-
volves around the analysis of the “weight distribution” of
the code C (i.e., the distribution of the weight of a randomly
chosen codeword of C) and then using the MacWilliams
transform (an extension of the Fourier transform) to ana-
lyze a natural tester for the code. They then employ known
facts about the weight distribution of the dual-BCH codes
to derive their results. When testing a word v ∈ {0, 1}n

for membership in C, their analysis relies on the ability to
relate the number of codewords of a given weight k in the
dual of the code C with the number of codewords in the
dual of the code C||v. (Recall this is the code consisting of
the linear span of C and v.)

Our contributions to this technique is three-fold. First
we simplify (and slightly generalize) their analysis in the
context of small-biased codes (see Theorem 5.5). We don’t
use any special properties of the weight distribution other
than the most “obvious ones” (the number of codewords is
small, and all except the zero codeword have weight very
close to n/2). Our principal tool here is the Johnson bound
which bounds the number of codewords in any ball of small
radius. By reducing the proof to such simple elements, we
are now able to get to a broader class of codes including
randomly chosen codes (for the first time).

Next, we observe that the resulting understanding of the
dual of sparse, small-biased, linear codes is so good, that
we can pin down the weight distribution of C⊥ almost pre-
cisely, to within a 1 + o(1) multiplicative factor. Making
this observation explicit allows us to immediately build and
analyze self-correctors for all sparse, small-biased, linear

codes. Our analysis shows that the natural local tester for
these codes has a roughly “pairwise-independent” distribu-
tion of queries and so can be used to recover all coordinates
with high probability. Such a result is quite novel in the con-
text of self-correcting in that most previous self-correctors
were built for structured codes, whose design already al-
lowed for self-correction algorithms. Here we prove it is an
“inevitable” consequence of basic properties (distance and
density) of the code.

Third, we strengthen the techniques above to cover the
case of codes whose bias is not necessarily small. Techni-
cally this poses a significant challenge in that we no longer
have the ability to pin down the weight distribution of the
dual of C precisely and so the previous techniques seem to
fail. We overcome the challenge by first considering codes
of “moderate” bias (say, 1/3-biased codes) of large dis-
tance. In this case we give crude approximations, to within
O(1) factors, of the weight distribution of the dual of C.
However we show that we can still relate the number of
codewords of in the dual of C||v to those in the dual of C
quite precisely and thus deriving an analysis for the natural
test.

Our final testing theorem is then derived by viewing
every code as a small “extension” of a moderately-biased
code. We note that every large-distance code C can be writ-
ten as C = C ′||v where C ′ has moderate bias. We then
show how to derive local tests for C from local tests for C ′

(see Lemma 6.7), which allows us to get local tests for all
sparse codes of large distance.

Conclusions and Future Work: Our work produces the
first analysis for local testability and correctability of ran-
dom codes. While much of the analysis of the local test
is directly based on the prior work of Kaufman and Lit-
syn [11], our proofs are more self-contained and simpler,
and the results are significantly more general. (The only
non-trivial fact we seem to be using are bounds on the roots
of the Krawtchouk polynomials. All other facts can be
proved by elementary means.) The simplicity of the proof
offers hope that by further understanding of the Krawtchouk
polynomials, one can prove testing and correcting results
for denser classes of codes, and this seems to be an im-
portant but challenging open problem. Indeed, right now,
even generalizing the result to get self-correctors for gen-
eral (non-biased) sparse codes of relative distance 1

2 − n−γ

is open.

Organization of this paper: Section 2 describes the natu-
ral tester and self-correctors for the codes considered in this
paper. Section 3 lays out our analysis approach, using the
MacWilliams Identities, and states some basic properties
about sparse codes. Section 4 analyzes the self-corrector
for n−γ-biased codes. Section 5 analyzes the local test for



n−γ-biased codes. Section 6 presents a strong local tester
and self-corrector for complementation closed codes. This
section also analyzes the local testability of general (non-
biased) sparse codes. Section 7 mentions some implications
for random codes, showing that sparse random codes are
testable and correctible, while less sparse codes are not so.

2. Preliminaries and Overview of main results

The linearity of a code leads to a natural test and self-
correction algorithm for the code. We describe these al-
gorithms below. Most of the rest of the paper is devoted
to analyzing these natural algorithms for sparse, low-biased
codes (though in Section 6 we discuss some slightly more
general codes).

We start with some standard notions and notations: For
a positive integer n let [n] denote the set {1, . . . , n}. For a
word y ∈ {0, 1}n we let the weight of y, denoted wt(y), be
the quantity |{i ∈ [n] | yi = n}| = δ(y, 0n) · n. For a code
C ⊆ {0, 1}n, let [C]k denote the codewords of C of weight
k, i.e., [C]k = {x ∈ C | wt(x) = k}. For C ⊆ {0, 1}n,
0 ≤ k ≤ n and i ∈ [n], let [C]k,i = {y ∈ [C]k|yi = 1}.

For vectors x, y ∈ {0, 1}n let 〈x, y〉 =∑n
i=1 xiyi(mod2). For a linear code C, the dual of

C is the C⊥ = {y ∈ {0, 1}n | 〈x, y〉 = 0 ∀x ∈ C}.
Straightforward linear-algebra yields that if C is a linear
code of dimension ` (i.e., |C| = 2`), then C⊥ is a linear
code of dimension n− `.

For a finite set S, we let Z ∈U S denote the random
variable chosen uniformly from S.

The Self Corrector: We start by describing the canonical
k-self-correction algorithm for a binary linear code.

• k-self-corrector SCv
k(i)

/* with oracle access to v ∈ {0, 1}n satisfying
δ(x, v) < 1

2k for x ∈ C */.

– Pick y ∈U [C⊥]k,i.
– Output

∑
{j∈[n]−{i} | yj=1} vj .

It is straightforward to see that the self-corrector makes
k − 1 queries into v. The harder part of the analysis is to
show that the algorithm above correctly recovers xi for ev-
ery i, with high probability over its random choices. Indeed
it is not clear that the self-corrector does anything. For all
we know [C⊥]k, and hence [C⊥]k,i, may well be empty.

In Section 3, we will prove first that the set if C is
sparse and small biased then [C⊥]k is indeed non-empty
(see Lemma 3.5). In fact, we get very tight estimates on the
size of this set. This section introduces notions and tech-
niques needed in the rest of the paper as well.

We then go on to analyze the self-corrector in Section 4.
The crucial issue here is to prove that for every i, the set

[C⊥]k,i is non-empty and that the set of locations probed
by the algorithm above is roughly uniform. Since the code
C, and hence C⊥ are not really under our control, this has
to be proven for every code of the given parameters.

The Local Tester: We now describe the canonical k-local
test Tk associated with a linear code C.

• k-local tester T v
k () /* with oracle access to v ∈

{0, 1}n.

– Pick y ∈U [C⊥]k.
– Accept if and only if 〈y, v〉 = 0.

It is easy to see that the test makes exactly k queries
into v and accepts codewords of C with probability 1. The
hard part of the analysis is to show that the test rejects non-
codewords of C with noticeable probability. We do so in
Section 5, for sufficiently large odd integer k provided C
has small-bias. The resulting testing theorem (Theorem 5.5)
is stated and proved in Section 5). When the code C is com-
plementation closed however, C⊥ has no codewords of odd
weight. We extend our analysis to this setting by show-
ing (in Section 6.1) that for sufficiently large even integer
k, the canonical k-local test Tk is a strong k-local test for
C. In Section 6.2, we consider codes of moderate bias (but
large distance), and show that the canonical tests give local
tests in this setting. This allows us to get (non-canonical)
local tests for all sparse linear codes of large distance in
Section 6.3.

3. Duals of sparse codes contain low weight
codewords

Our approach (following [11]) is to use the
“MacWilliams Transform” to estimate the size of [C⊥]k.

For a code C and integer i ∈ {0, . . . , n} let BC
i = |[C]i|

denote the number of codewords of weight i. We refer to
the vector 〈BC

0 , . . . , BC
n 〉 as the weight distribution of C.

The MacWilliams Identities show that the weight distribu-
tion of C⊥ can be computed from the weight distribution of
C. Specifically the relationship is as given below:

Theorem 3.1 (MacWilliams Identity, see e.g., [7])
For a linear binary code C of length n, BC⊥

j =
1
|C|
∑n

i=0 BC
i Pj(i), where Pj(i) = Pn

j (i) =∑j
`=0(−1)`

(
i
`

)(
n−i
j−`

)
is the Krawtchouk polynomial of

degree j.

In our case, we do not know the weight distribution of C,
but we know a few things about it, which suffice to estimate
the weight distribution of C⊥. The following proposition
summarizes our knowledge of the weight distribution of C
and follows easily from the sparsity and the bias of the code.



Proposition 3.2 The following hold for every nt-sparse C
of with distance δ(C) ≥ 1

2 − n−γ .

1. BC
0 = 1.

2. BC
i = 0 for i ∈ {1, . . . , n

2 − n1−γ}.

3.
∑n

i=0 BC
i ≤ nt.

4. If C is n−γ-biased then BC
i = 0 for i ∈ {n

2 +
n1−γ , . . . , n}.

The following proposition summarizes our knowledge of
the Krawtchouk Polynomials, which is needed to translate
the knowledge of the weight distribution of C into informa-
tion about the weight distribution of C⊥.

Proposition 3.3 The following properties hold for
Krawtchouk polynomials:

1. Pk(0) =
(
n
k

)
.

2. For every x, we have Pk(x) = (−1)kPk(n− x).

3. [13, Equation (70)] Pk(·) has k real roots that lie be-
tween n/2−

√
kn and n/2 +

√
kn.

4. For i ∈ [n], the following bounds hold

0 ≤ Pk(i) ≤ (n−2i)k

k! if i ≤ n
2 −

√
kn

|Pk(i)| ≤ (nk)k/2

k! if |i− n
2 | ≤

√
kn

Pk(i) ≤ 0 if i ≥ n
2 +

√
kn and k is odd

5. Pk(i− 1)− Pk(i) = Pk−1(i) + Pk−1(i− 1).

6. For i > n/2 +
√

kn, Pk(i) is decreasing in i for odd
k, and increasing in i for even k.

Proof: Parts (1) and (2) follow from the definition of
Pk(i). Part (3) is from [13, Equation (70)]. Part (4) fol-
lows from Part (3) and the definition of Pk(i) by applying
elementary facts about polynomials. Part (5) is from [13,
Equation (17)]. Part (6) follows from Part (5) and the fact
that Pk−1(i) is positive in the given range for odd k and
negative for even k.

We show next that the above already suffice to get a
close estimate on BC⊥

k , the number of codewords in C⊥

of weight k. Before doing so, we encapsulate a simple
fact about sparse codes that will be used repeatedly in this
paper: Roughly it states that the middle terms in the ex-
pression “ 1

|C|
∑n

i=0 BC
i Pk(i)”, for BC⊥

k , contribute a neg-
ligible amount compared to the first term. Though our
principal concern at the moment are small-biased, sparse,
codes; we prove the claim more generally, for any sparse
set S ⊆ {0, 1}n.

Claim 3.4 For every γ > 0 and c, t < ∞ if k ≥ (t +
c + 1)/γ, then for any nt-sparse set S ⊆ {0, 1}n, the fol-

lowing holds: |
∑n

2 +n1−γ

i= n
2 −n1−γ BS

i Pk(i)| = o(n−c) · Pk(0).

Furthermore, if k is odd, we have
∑n

i= n
2 −n1−γ BS

i Pk(i) =
o(n−c) · Pk(0).

Proof: The proof follows easily from the fact that Pk(i) is
small in the given range of i and

∑
i BS

i is at most nt. See
the full version for the full proof [12].

Lemma 3.5 Let C be an nt-sparse, code with δ(C) ≥ 1
2 −

n−γ . Then for every c, t, γ, there exists a k0 such that for
every odd k ≥ k0 BC⊥

k ≤ Pk(0)
|C| · (1 + o(n−c)). If C is

n−γ-biased then for every (odd and even) k ≥ k0 it is the
case that BC⊥

k = Pk(0)
|C| · (1 + θ(n−c)).

Remark: Here and later we use the notation f(n) =
g(n)+ θ(h(n)) to imply that for every ε and for sufficiently
large n g(n)− ε · h(n) ≤ f(n) ≤ g(n) + ε · h(n).
Proof: By the MacWilliams Identities (Theorem 3.1) we
have:

BC⊥

k =
1
|C|

n∑
i=0

BC
i Pk(i)

=
Pk(0)
|C|

+
1
|C|

n∑
i=1

BC
i Pk(i)

=
Pk(0)
|C|

+
1
|C|

n∑
i= n

2 −n1−γ

BC
i Pk(i)

(Using Proposition 3.2, Part (2))

We can now use Claim 3.4 to see that the latter summation
is upper bounded by o(n−c).Pk(0)/|C|. The first part of
the lemma then follows. For the second part, where C is
n−γ-biased, we see that

BC⊥

k =
Pk(0)
|C|

+
1
|C|

n∑
i= n

2 −n1−γ

BC
i Pk(i)

=
Pk(0)
|C|

+
1
|C|

n
2 +n1−γ∑

i= n
2 −n1−γ

BC
i Pk(i)

(Using Proposition 3.2, Part (4))

=
Pk(0)
|C|

+ θ(n−c)
Pk(0)
|C|

(Using Claim 3.4),

which yields the second part of the lemma statement.

4. Analysis of the self-corrector

We start by proving that the self-corrector of Section 2
works correctly. Specifically we prove Theorem 1.2 by



showing that for sufficiently large k, the Self-Corrector SCk

of Section 2 correctly computes xi on input i and oracle
access to v ∈ {0, 1}n that is δ-close to x ∈ C, provided
δ < 1

2k .
To analyze the self-corrector, we study the distribution

of the bits yi, yj when y is a randomly chosen codeword of
C⊥ of weight k. Now, if the codewords of [C⊥]k had been
uniformly chosen from the vectors of weight k, then yi and
yj would be almost 2-wise independent (but not exactly so,
since we are sampling two items without replacement from
a universe of size n). We show below that the distribution of
yi, yj is almost the same when y is chosen uniformly from
[C⊥]k, for any sparse code C of low bias. (see Lemma 4.3).

To understand the distribution of yi, we need to approx-
imate the size of the set [C⊥]k,i. (Recall that [C⊥]k,i =
{y ∈ [C⊥]k|yi = 1}.) We do so by looking at the code
C−i which is the code C with the ith coordinate punc-
tured. In other words, C−i = {π−i(x)|x ∈ C}, where
π−i : {0, 1}n → {0, 1}n−1 is the projection function
π−i(y1, . . . , yn) = (y1, . . . , yi−1, yi+1, . . . , yn). The fol-
lowing proposition explains the relevance of this projection
to [C⊥]k,i.

Proposition 4.1 Let π−1
−i (y1, . . . , yi−1, yi+1, . . . , yn) =

(y1, . . . , yi−1, 0, yi+1, . . . , yn) and π−1
−i (S) =

{π−1
−i (y)|y ∈ S}. Then [C⊥]k,i = [C⊥]k −

π−1
−i ([(C−i)⊥]k), and thus |[C⊥]k,i| = |[C⊥]k| −
|[(C−i)⊥]k|.

The proof of this proposition (and others claims of this
section) are straightforward and hence omitted in this ver-
sion. See full version of this paper [12] for details.

Extending our notation to consider codes punctured
twice, let π−{i,j} denote the projection to all coordinates
except i and j, and let C−{i,j} denote the projection of the
code C by π−{i,j}. Let [C⊥]k,{i,j} = {y ∈ [C⊥]k|yi =
yj = 1}. Then, we get:

Proposition 4.2 For every i 6= j, [C⊥]k,{i,j} =
[C⊥]k − π−1

−i ([(C−i)⊥]k) − π−1
−j ([(C−j)⊥]k) +

π−1
−{i,j}([(C

−{i,j})⊥]k). Thus |[C⊥]k,{i,j}| =
|[C⊥]k| − |[(C−i)⊥]k| − |[(C−j)⊥]k|+ |[(C−{i,j})⊥]k|.

Armed with the facts above, and our knowledge of the
weight distribution of duals of sparse small-biased codes, it
is easy to prove the following lemma.

Lemma 4.3 For every γ > 0 and c, t < ∞ there exists
k such that for sufficiently large n the following holds: Let
C ⊆ {0, 1}n be an nt-sparse n−γ-biased linear code. Then
for every i 6= j ∈ [n], the probability that yj = 1 for a
randomly chosen vector y ∈ [C⊥]k,i is (k − 1)/(n − 1) +
θ(n−c).

We now state and prove our main lemma, which imme-
diately implies the correctness of the self-corrector SCk.

Lemma 4.4 For every t < ∞, γ > 0 there exists a k =
kt,γ < ∞ such that the following holds: Let C be an nt-
sparse, n−γ-biased code. Let v ∈ {0, 1}n be δ-close to x ∈
C. Then for every i ∈ [n], Pr[SCv

k(i) 6= xi] ≤ kδ+θ(1/n).

Proof: Pick k large enough to be able to apply Lemma 4.3
for c = 2. Thus, for random y ∈ [C⊥]k,i and j 6= i, we have
Pry[yj = 1] ≤ (k−1)/(n−1)+θ(n−2) ≤ k/n+θ(n−2).

Let E = {j ∈ [n]|vj 6= xj}. We have |E| ≤ δn. Now
consider y ∈U [C⊥]k,i and let Sy = {j ∈ [n]−{i}|yj = 1}.
If Sy ∩ E = ∅, we have SCv

k(i) = xi. Thus it suffices to
bound the probability Sy ∩ E 6= ∅ from above. We bound
this by |E| ·maxj∈E{Pry[yj = 1]} ≤ kδ + θ(n−1).

Theorem 1.2 now follows, for k as given by Lemma 4.4,
where the parameter τ in the definition of the self-corrector
(the fraction or errors that can be tolerated can be chosen
to be less than 1

2k and the error probability ε being kτ +
o(1/n).

4.1 Local Decodability of Sparse Codes

In this section we consider a “low-biased” linear encod-
ing function E : {0, 1}t log n → {0, 1}n and show that it
is locally decodable with high probability. By linear en-
coding we mean that E(m) = A · m for some matrix
A ∈ {0, 1}n×(t log n). Low-biased implies that the code
C = {E(m)|m ∈ {0, 1}t log n} is n−γ-biased for some
γ > 0. Local decodability of E follows easily from the
following proposition.

Proposition 4.5 Let E be a linear map and C =
{E(m)|m ∈ {0, 1}t log n} be an n−γ-biased code. Let C ′

be the linear code C ′ = {(m,E(m))|m ∈ {0, 1}t log n}.
Then C ′ is nt-sparse, O(n−γ)-biased, and given oracle ac-
cess to a word v ∈ {0, 1}n such that δ(v,E(m)) ≤ δ, one
can get oracle access to a word ṽ ∈ {0, 1}t log n+n that is
(δ + t

n log n)-close to the codeword (m,E(m)) ∈ C ′.

Proof: All parts are immediate. For the last part, we use an
oracle for ṽ = (0t log n, v). By Theorem 1.2, the code
C ′ above is self-correctible and so E is locally-decodable,
and so we get:

Corollary 4.6 For every t < ∞ and γ > 0 there exists a
k such that the following holds. Let E be an n−γ-biased
linear encoding mapping {0, 1}t log n to {0, 1}n. Then E is
k-locally decodable.

5. Analysis of the local test

The results of the previous sections show that C⊥ does
have many low-weight codewords and that they suffice to



give good local error-correction algorithms for C. Yet they
do not even imply that the low-weight codewords of C⊥

specify C uniquely. For all we know the set of vectors
{x ∈ {0, 1}n|〈x, y〉 = 0 ∀y ∈ [C⊥]k} may be a super-
set of C. In this section we show that this does not happen.
The low weight codewords of C⊥ completely define C in
the sense that C = {x|〈x, y〉 = 0 ∀y ∈ [C⊥]k} for some
constant k. Furthermore, we show that the canonical tester
of Section 2 rejects words at large distance from the code
with high probability.

To derive these results, we fix a word v ∈ {0, 1}n that
does not belong to C and attempt to understand two struc-
tures. First we consider the linear code C||v = C ∪ (C +v)
where C + v = {x + v|x ∈ C}. We then turn to the new
set of words C + v which form a coset of the code C and
attempt to understand it. Together these sets help us under-
stand the performance of the test of Section 2.

To see how these sets become relevant, we start with a
simple proposition relating the probability that the test test
T v

k rejects to the code C||v.

Proposition 5.1

Rejk(v) = 1−
B

(C||v)⊥

k

BC⊥
k

.

Proof: The proposition follows from the fact that the test
T v

k accepts on random choice y ∈ [C⊥]k if and only if y ∈
[(C||v)⊥]k (since the latter containment happens if and only
if 〈v, y〉 = 0).

In what follows we show that Rejk(v) > 0 if v 6∈
C. In fact, we show the stronger result that Rejk(v) =
Ω(δ(v, C)).

Lemma 5.2 For every c, t < ∞ and γ > 0 there exists a
k0 such that the following hold: Let C be an nt-sparse code
of distance δ(C) ≥ 1

2 − n−γ . Let v ∈ {0, 1}n \ C be δ-far
from C (i.e., δ(v, C) = δ). Then, for odd k ≥ k0,

B
(C||v)⊥

k ≤
(
1− δ/2 + o(n−c)

)
· Pk(0)
|C|

.

Proof: We prove the lemma using two “sublemmas”
(Lemmas 5.3 and 5.4) stated and proved below, which
bound some technical terms that will appear in this proof.

Let γ′ = γ/2. We prove the lemma for k0 =
max{k1, k2, 400} where k1 is chosen to be big enough
so that Claim 3.4 applies, and k2 is the constant given by
Lemma 3.5, for t, c and γ′.

Using the MacWilliams Identities (Theorem 3.1) we
have

B
(C||v)⊥

k =
1

|C||v|

n∑
i=0

B
(C||v)
i Pk(i)

=
1

2|C|

n∑
i=0

BC
i Pk(i) +

1
2|C|

n∑
i=0

BC+v
i Pk(i)

(Since (C||v) = C ∪ C + v)

=
1
2
BC⊥

k +
1

2|C|

n∑
i=0

BC+v
i Pk(i).

By Lemma 3.5 we have that BC⊥

k ≤ Pk(0)
|C| · (1 + o(n−c))

and so to prove the lemma it suffices to show that

1
|C|

n∑
i=0

BC+v
i Pk(i) ≤ (1− δ + o(n−c)) · Pk(0)

|C|
.

Since C + v is an nt-sparse code of distance 1
2 − n−γ , by

Claim 3.4 we have
∑n

i= n
2 −n1−γ′ BC+v

i Pk(i) = o(n−c ·
Pk(0)). It suffices to prove that

n
2 −n1−γ′∑

i=0

BC+v
i Pk(i) ≤ (1− δ + o(n−c)) · Pk(0).

We now know that BC+v
i = 0 for every i = {0, n

2−n1−γ′−
δn} except possibly for i = δn. If δn < n

2 −n1−γ′−δn we
are within the “unique” decoding radius and so BC+v

δn = 1.
Thus we have

n
2 −n−γ′∑

i=0

BC+v
i Pk(i) ≤ Pk(δn) +

b∑
i=a

BC+v
i Pk(i),

where a = max{n
2 − n1−γ′ − δn, δn} and

b = n
2 − n1−γ′ In Lemma 5.3 below we show

the first term is at most (1 − δ)k · Pk(0). In
Lemma 5.4 below we show the second term is
12Pk(0) ·

(
min{(1− 2δ)k−2, (4δ)k−2}+ n−(k−2)γ′

)
.

We thus conclude that
∑n

2 −n−γ′

i=0 BC+v
i Pk(i) ≤ Pk(0) ·(

(1− δ)k + 12 min{(1− 2δ)k−2, (4δ)k−2}+ o(n−c)
)
.

The expression (1 − δ)k + 12 min{(1 − 2δ)k−2, (4δ)k−2}
is upper bounded by 1 − δ for every 0 ≤ δ ≤ 1

2 (see [12]
for a proof). The lemma now follows.

We now present the “sublemmas”.

Lemma 5.3 For every k, for sufficiently large n (i.e., n ≥
nk) and for every δ < 1/2, Pk(δn) ≤ (1− δ)k · Pk(0).

Proof: We consider two cases on the value of δ.
If δ ≤ 1

2k , we claim that Pk(δn) ≤
(
n−δn

k

)
. To see

this let i = δn and T` =
(

i
`

)(
n−i
k−`

)
, so that Pk(i) =∑k

`=0(−1)`T`. We note that under the restriction on δ,
we have T` ≥ T`+1 for every ` and so the alternating sum∑k

`=0(−1)`T` can be upper bounded by its first term T0 =(
n−i

k

)
. It is now elementary to see that T0 ≤ (1−δ)kPk(0).



For the case that δ ≥ 1
2k we use the fact (from Proposi-

tion 3.3, Part (4)) that Pk(δn) ≤ (1 − 2δ)knk/k!. Writ-
ing nk/k! =

(
n
k

)
+ O(nk−1), we get Pk(δn) ≤ (1 −

2δ)k(Pk(0) + O(nk−1)). For sufficiently large n it is easy
to see that this is at most (1− δ)k ·Pk(0) for every δ ≥ 1

2k .

Lemma 5.4 Let k, t, γ be constants. Let γ′ ≤ γ/2. For
sufficiently large n, let D be an nt-sparse code of distance
at least 1

2 −n−γ . Let δ ≤ 1
2 , and let a = max{n

2 −n1−γ′−
δn, δn} and b = n

2 − n1−γ′ . Then
∑b

i=a Pk(i)BD
i =

12Pk(0) ·
(
min{(1− 2δ)k−2, (4δ)k−2}+ n−(k−2)γ′

)
.

Proof: The crux of this proof is the Johnson bound
which says that the number of codewords in a ball of ra-
dius i ≤ n/2−n1−γ/2 is at most 2n2/(n− 2i)2, for a code
of (relative) distance 1

2 − n−γ .
Let mi = 2n2/(n − 2i)2. Then, by the Johnson bound

we have that
∑i

j=0 BD
i ≤ mi for every i ≤ b. We first note

that

b∑
i=a

Pk(i)BD
i ≤ 1

k!

b∑
i=a

(n− 2i)kBD
i

≤ 1
k! (n− 2a)kma + 1

k!

∑b
i=a+1(n− 2i)k · (mi −mi−1).

We thus turn to upper bounding 1
k! (n − 2a)kma +

1
k!

∑b
i=a+1(n − 2i)k · (mi − mi−1). Looking at the first

term, we have

(n− 2a)k

k!
ma ≤

(n− 2a)k

k!
· (2n2

(n− 2a)2
= 2n2 (n− 2a)k−2

k!
.

To analyze the second term, we use the fact that mi −
mi−1 ≤ 8n2/(n − 2i)3 to conclude that 1

k!

∑b
i=a+1(n −

2i)k · (mi −mi−1) ≤ 4n2

k! (n− 2a)k−2 Putting the two to-
gether and using the crude bound nk/k! ≤ 2Pk(0) we get
the lemma statement.

We are now ready to state and prove our main testing
theorem for small-biased codes.

Theorem 5.5 For every t < ∞ and γ > 0 there exists
a constant k = kt,γ < ∞ such that the following holds:
If C ⊆ {0, 1}n is nt-sparse and n−γ-biased, then C is
strongly k-locally testable.

Proof: Given t and γ, let k be an odd integer greater than
k0 as given by Lemma 5.2 for c = 2. We claim that the
tester Tk has the required properties. As observed in Sec-
tion 2 the test makes k queries and accepts codewords of C.
By Proposition 5.1, for v 6∈ C it rejects with probability (ex-
actly) 1−B

(C||v)⊥

k /BC⊥

k . Let δ = δ(v, C). By Lemma 5.2,

we have B
(C||v)⊥

k ≤ Pk(0)
|C| · (1 − δ/4 + o(n−2)), while by

Lemma 3.5 we have BC⊥

k = Pk(0)
|C| · (1+ θ(n−2)). Thus the

rejection probability is at least δ/4−o(n−2). Using δ ≥ 1
n ,

we thus get that for sufficiently large n, the rejection prob-
ability is at least δ/8. We thus have that Tk satisfies the
definition of a k-local strong tester with ε′ = 1

8 .

6. Extensions to non-small-biased codes

In this section we first extend the results (easily) to the
class of complementation-closed codes. We then consider a
class of “moderately-biased” high distance codes, and give
a weak tester for such codes. Finally, we give a generic re-
duction from testing high-distance codes (of arbitrary bias)
to high-distance codes of moderate bias. This gives us a
weak tester for all sparse codes of large distance.

6.1 Testing and Correcting
Complementation-Closed Codes

Recall that here we consider codes of the form C =
C ′||1n and show how to test and correct them. The anal-
ysis is a straightforward modification of the analyses of
Sections 3, 4 and 5. The main difference now is that
C⊥ has no odd weight codewords! But we also know
that BC

i = BC
n−i and also B

(C||v)
i = B

(C||v)
n−i for every

v ∈ {0, 1}n. This allows use to study only the “bottom” half
of sums in the MacWilliams Identities and then conclude
that the top half behaves similarly. (E.g.,

∑n
i=0 BC

i Pk(i) =
2
∑n/2

i=0 BC
i Pk(i) etc.)

Specifically, we get the following variation of
Lemma 3.5.

Lemma 6.1 For every c, t, γ, there exists a k0 such that for
every even k ≥ k0, BC⊥

k = 2 · Pk(0) · (1 + θ(n−c)).

Using this lemma we can now prove Lemma 4.4 for the
class of complementation-closed codes as well, and thus get
a self-corrector for such codes. To get a local tester, we
prove the following variation of Lemma 5.2.

Lemma 6.2 For every c, t < ∞ and γ > 0 there exists
a k0 such that the following hold: Let C be an nt-sparse
n−γ-biased code. Let v ∈ {0, 1}n \C be δ-far from C (i.e.,
δ(v, C) = δ). Then, for even k ≥ k0,

B
(C||v)⊥

k ≤
(
1− δ/2 + o(n−c)

)
·BC⊥

k .

The analysis of the local test follows, and thus we get
Theorem 1.3.



6.2 Testing moderate-bias codes

Before moving on to general sparse, high-distance codes,
we consider the case where a code does not have codewords
of weight greater than say, 5

6 (while the distance of the code
is still very close to half, specifically, δ(C) ≥ 1

2 − n−γ).
We start with a simple, but weak analysis, for a local test
for such codes.

Lemma 6.3 For every γ > 0, t there exist functions q :
(0, 1] → Z+ and ε : (0, 1] → (0, 1], with q(δ) = O(log 1

δ )
and ε(δ) = Ω(δ), such that the following holds: If C is a
1/3-biased, nt-sparse code of distance 1

2 − n−γ , then C is
(weakly) (q, ε)-locally testable.

Proof: Fix the parameter δ > 0 and let w ∈ {0, 1}n

satisfy δ(w,C) ≥ δ. As usual we look at the quantities

BC⊥

k and B
(C||w)⊥

k for sufficiently large odd integer k. By
Lemma 5.2 we have that for sufficiently large odd k ≥ kγ,t,

B
(C||w)⊥

k ≤ (1− δ/2− θ(n−c)) · Pk(0)/|C|.

We now turn to bounding BC⊥

k from below. (The follow-
ing is just a minor modification of the proof of Lemma 5.2.)
As usual we have BC⊥

k = Pk(0)
|C| · (1 + θ(n−c)) +

1
|C|
∑ 5

6 n

i=n/2+n1−γ BC
i Pk(i). We thus turn to lower bound-

ing the final term
∑ 5

6 n

i=n/2+n1−γ BC
i Pk(i) above. Note

that this term may be negative and we wish to prove it
is not “too” negative. Below we’ll upper bound the ab-
solute value of this summation. Let τ be such that the
weight of the maximum weight codeword in C is (1− τ)n.

Note that τ ≥ 1/6. Then |
∑ 5

6 n

i=n/2+n1−γ BC
i Pk(i)| ≤

|Pk((1 − τ)n)| + |
∑n−a

i=n/2+n1−γ BC
i Pk(i)| where a =

max{(τn, n/2−n1−γ−τn)}. Using the fact that |Pk(i)| =
|Pk(n − i)|, we find thus that |

∑ 5
6 n

i=n/2+n1−γ BC
i Pk(i)| ≤

Pk(τn) +
∑b

i=a BC
i Pk(i) where b = n

2 − n1−γ . We
are now in a position to apply Lemmas 5.3 and 5.4. By
Lemma 5.3, we see that the first term is at most (1 − τ)k ·
Pk(0), while by Lemma 5.4, the second term is at most
12Pk(0)·

(
(1− 2τ)k−2 + n−(k−2)γ

)
. Using τ ≥ 1

6 and set-

ting k = Ω(log 1
δ ), we get that |

∑ 5
6 n

i=n/2+n1−γ BC
i Pk(i)| ≤

Pk(0) ·
(

δ
10 + θ(n−c)

)
. We conclude that for such a choice

of k, BC⊥

k ≥ Pk(0)
|C| ·

(
1− δ

10 − θ(n−c)
)
.

Putting the bounds on BC
k and B

(C||w)
k together, and ap-

plying Proposition 5.1, we find that the canonical test Tk, is
a (O(log 1

δ ),Ω(δ))-local test for C.
We now give a more complicated analysis, but now

yielding a strong local test for moderate codes.

Lemma 6.4 For every t < ∞, γ > 0 there exists a k =
kt,γ < ∞ such that the following holds: If C is a 1/3-
biased, nt-sparse code of distance 1

2 − n−γ , then C is
strongly k-locally testable.

Proof: As usual we use a canonical tester Tk for a suf-
ficiently large (but constant, given t and γ) odd integer k.
Below we argue that such a test rejects non-codewords with
probability proportional to their distance from the code.

Let w ∈ {0, 1}n be such that δ(w,C) = δ. For
an appropriate choice of k, we wish to bound the quan-
tity 1 − B

(C||w)⊥

k /BC⊥

k . While in previous analyses, we
bounded the two quantities separately, this time we will
work with the two quantities together.

Let b = n
2 + n1−γ . First note that as usual we have

BC⊥

k =
Pk(0)
|C|

· (1 + θ(n−c)) +
1
|C|

·

(
n∑

i=b

Pk(i) ·BC
i

)
.

Note that the final term above is negative for odd k, and so
poses a problem in our analysis. In this proof, we overcome
this obstacle by showing that a similar negative contribution
occurs in the expression for B

(C||w)⊥

k . We have

B
(C||w)⊥

k ≤ BC⊥

k

2
+

Pk(0)
2|C|

· (1− δ + θ(n−c))

+
1

2|C|

n∑
i=b

Pk(i) ·BC+w
i .

The rejection probability, which we’ll denote by ρ, can
be lower bounded by ρ ≥ δ+β−α+θ(n−c)

2 where α =Pn
i=b Pk(i)·BC+w

i

Pk(0) and β =
Pn

i=b Pk(i)·BC
i

Pk(0) . (Note both quan-
tities are negative!)

Using Lemma 6.5 below with ε = 1
2 , we get β−α ≥ − δ

2
and thus ρ ≥ δ/4 + θ(n−c). For sufficiently large n (using
say c = 1) we get ρ ≥ δ/8, thus showing that for odd k, the
test Tk is a strong k-local test for ε′ = 1/8.

The following lemma bounds the expression encoun-
tered in the proof of the previous lemma.

Lemma 6.5 For every t < ∞, γ, ε > 0, there exists a k0 =
kt,γ,ε such that the following holds for every odd k ≥ k0:
Let C be an nt-sparse, 1

3 -biased code of distance δ(C) ≥
1
2−n−γ . Let w ∈ {0, 1}n and δ > 0 be such that δ(w,C) =
δn. Then

n∑
i=b

Pk(i) ·BC
i −

n∑
i=b

Pk(i) ·BC+w
i ≥ −ε · δ · Pk(0),

where b = n
2 + n1−γ .

Proof: Without loss of generality, we assume that
wt(w) = δ · n. (If not, we can work with some w̃ ∈ C + w



with weight δn, since C||w̃ = C||w.) We also assume that
γ < 1

2 . If not we prove the lemma for some b′ = n
2 + k

√
n

and ε′ = ε/2. We can then easily lower bound the differ-
ence

∑b′

i=b Pk(i)·BC
i −
∑b′

i=b Pk(i)·BC+w
i by−ε/2δPk(0)

using Claim 3.4, thus yielding the lemma (for k = kt,γ′,ε′ ).
Let S1 = {x ∈ C | b + δn ≤ wt(x) ≤ 5

6n} and let
S2 = {x ∈ C | b ≤ wt(x) < b + δn}. Since Pk(i) is
negative for the range of interest, we have

n∑
i=b

Pk(i) ·BC
i −

n∑
i=b

Pk(i) ·BC+w
i ≥∑

x∈S1

(Pk(wt(x))− Pk(wt(x + w))) +
∑
x∈S2

Pk(wt(x).

Let T1 =
∑

x∈S1
(Pk(wt(x))−Pk(wt(x+w))) denote the

first term above, and let T2 =
∑

x∈S2
Pk(wt(x)) denote the

latter quantity. We bound the two in order.
First consider the term Pk(wt(x))− Pk(wt(x + w)) for

some x ∈ S1. Let i = wt(x). Then we have wt(x +
w) ≥ i − δn and so Pk(wt(x + w)) ≤ Pk(i − δn) (using
Proposition 3.3, Part (6)). Thus

Pk(wt(x))− Pk(wt(x + w))
≥ Pk(i)− Pk(i− δn)

=
i∑

j=i−δn+1

Pk(j)− Pk(j − 1)

=
i∑

j=i−δn+1

−(Pk−1(j) + Pk−1(j − 1))

(Using Proposition 3.3, Part (5))
≥ (−2δn) · Pk−1(i) (Using Proposition 3.3, Part (6))

We thus get that T1 ≥ (−2δn) ·
∑

x∈S1
Pk−1(wt(x)) =

(−2δn) ·
∑ 5

6 n

i=b+δn Pk−1(i)BC
i . Using the fact

that Pk−1(i) = Pk−1(n − i), we get that∑ 5
6 n

i=b+δn Pk−1(i)BC
i =

∑n
2 −δn−n1−γ

i= 1
6 n

Pk−1(i)BC′

i ,
where C ′ = C + 1n. This last term can be bounded using
Lemmas 5.3 and 5.4 and we get

∑ 5
6 n

i=b+δn Pk−1(i)BC
i ≤

((5/6)k + 12(2/3)k−2 + θ(n−c)) · Pk−1(0).
Plugging it back into our bound for T1, we get
T1 ≥ (−2δn) · ((5/6)k +12(2/3)k−2 + θ(n−c)) ·Pk−1(0).
Using the crude bound nPk−1(0) ≤ 2kPk(0) (which
holds for n ≥ 2k), we get that T1 ≥ −ckδPk(0) for
ck = 4k((5/6)k + 12(2/3)k−2) + θ(n−c). Picking k, n
sufficiently large, we can ensure ck ≤ ε/2 and so we have
Tk ≥ −ε/2 · δ · Pk(0).

We now move to the second term T2 =∑b+δn
i=b Pk(i)BC

i . This part can be analysed as
in the proof of Lemma 5.4 to get that T2 ≥

−(12(4δ)k−2 + θ(n−c)) · Pk(0). Again, by picking k, n
to be sufficiently large, we can set T2 ≥ −ε/2 · δ · Pk(0).
Putting the two terms together, we get the lemma.

6.3 Testing general codes

Next we move to the task of building tests for general
codes C based on tests for slightly-biased codes. We do so
with a generic reduction that shows that if a code C is lo-
cally testable, then so is the code C||v for any v ∈ {0, 1}n.

Definition 6.6 Given linear test T for C, and v ∈ {0, 1}n

we define tests T
(1)
v and T

(2)
v for the code C||v as follows:

T
(1)
v : Given oracle access to w ∈ {0, 1}n, accept if Tw

accepts or Tw+v accepts.

T
(2)
v : Let S ⊆ C⊥ be the “tests” of T . Fix a canonical

y0 ∈ S such that 〈y0, v〉 = 1 if such a y0 exists. Pick
random y ∈ S as drawn by the test T . If 〈y, v〉 = 0
then accept iff 〈y, w〉 = 0. If 〈y, v〉 = 1 then accept iff
〈y + y0, w〉 = 0.

We remark that even if T is a canonical test, T
(1)
v and

T
(2)
v are not (or at least need not be) canonical. However

they are both good tests, as shown below.

Lemma 6.7 If C is (q, ε)-locally testable with the linear
test T , then the following hold:

1. T
(1)
v is a (2q, ε2)-test for C||v.

2. T
(2)
v is a (2q, ε)-test for C||v.

In particular, if T is a strong test, then so are T
(1)
v and T

(2)
v .

Proof omitted. See [12] for a proof.
The proof of Theorem 1.1 now follows easily.

Proof: [Theorem 1.1] Suppose C is 1
3 -biased, then the the-

orem follows from Lemma 6.4. Suppose C is not 1
3 -biased.

Then let v ∈ C be such that δ(0, v) = 1 − τ > 5
6 . Let C ′

a linear subcode of C − {v} such that C = C ′||v. Then C ′

is nt-sparse, has distance 1
2 − n−γ (inheriting these prop-

erties from C). Most importantly, we note that C ′ is also
moderately small-biased. To see this consider a codeword
w of C ′ of weight (1− ε) · n. Then δ(v, w) ≤ τ + ε. Since
τ ≤ 1/6, it must be the case ε ≥ 1

3 − n−γ ≥ 1
6 (for suffi-

ciently large n). We conclude that C ′ has no codewords of
weight more that 5/6 ·n making it a (1/3)-biased code. We
can now apply Lemma 6.4 to conclude that C ′ is strongly
locally testable, and thus by Lemma 6.7, C = C ′||v is also
strongly locally testable.



7. On Sparse Random Codes

In this section we show that random linear codes with
O(nt) codewords are self-correctible and testable with high
probability, and that random linear encodings are locally de-
codable with high probability.

In contrast we point out that codes with quasi-
polynomially many codewords are not locally testable, by
showing they have no small weight codewords in their dual.

The first part follows immediately from the following
easy fact.

Proposition 7.1 Let E : {0, 1}t log n → {0, 1}n

be a random linear map chosen by picking A ∈U

{0, 1}n×(t log n) and letting E(m) = A · m. Let C =
{E(m)|m ∈ {0, 1}t log n}. Then with high probability C
is O(log n/

√
n)-biased.

We conclude with the following theorem (which follows
easily from Theorem 1.2, Theorem 5.5, and Corollary 4.6).

Theorem 7.2 For every t < ∞ there exists a constant
k = kt < ∞ such that a randomly chosen linear encod-
ing (chosen by picking its t log n basis vectors uniformly
from {0, 1}n with replacement) is k-locally decodable, with
probability tending to 1. Furthermore, the image of the
encoding is k-locally testable and k-self-correctible, with
probability tending to 1.

Conversely we have:

Proposition 7.3 For every t, if C ⊆ {0, 1}n is a ran-
dom linear code of size 2(log n)t

, then C⊥ has distance
Ω((log n)t−1) with high probability, and so can not be
tested with o((log n)t−1) queries.
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