
Sparse Random Linear Codes are Locally Decodable and Testable

Tali Kaufman∗ Madhu Sudan†

July 11, 2007

Abstract

We show that random sparse binary linear codes are locally testable and locally decodable
(under any linear encoding) with constant queries (with probability tending to one). By sparse,
we mean that the code should have only polynomially many codewords. Our results are the first
to show that local decodability and testability can be found in random, unstructured, codes.
Previously known locally decodable or testable codes were either classical algebraic codes, or
new ones constructed very carefully.

We obtain our results by extending the techniques of Kaufman and Litsyn [11] who used
the MacWilliams Identities to show that “almost-orthogonal” binary codes are locally testable.
Their definition of almost orthogonality expected codewords to disagree in n

2 ± O(
√

n) coordi-
nates in codes of block length n. The only families of codes known to have this property were
the dual-BCH codes. We extend their techniques, and simplify them in the process, to include
codes of distance at least n

2 − O(n1−γ) for any γ > 0, provided the number of codewords is
O(nt) for some constant t. Thus our results derive the local testability of linear codes from the
classical coding theory parameters, namely the rate and the distance of the codes.

More significantly, we show that this technique can also be used to prove the “self-correctability”
of sparse codes of sufficiently large distance. This allows us to show that random linear codes
under linear encoding functions are locally decodable. This ought to be surprising in that the
definition of a code doesn’t specify the encoding function used! Our results effectively say that
any linear function of the bits of the codeword can be locally decoded in this case.

∗MIT CSAIL. kaufmant@mit.edu.
†MIT CSAIL. madhu@mit.edu. Research supported in part by NSF Award CCR 0514915.

0

1 Introduction

In this paper we study the local decodability and local testability of random codes. Our goal is to
see what are general conditions under which error-correcting codes exhibit these properties. We
start by defining these concepts.

A (binary) code C is a subset of {0, 1}n, binary strings of length n. The code is termed an error-
correcting code with (relative Hamming) distance δ where δ = δ(C) = minx 6=y∈C{δ(x, y)}. Here
δ(x, y) denotes the fraction of coordinates i ∈ {1, . . . , n} for which the ith coordinates of x and y
(denoted xi and yi) are unequal. Throughout the paper we will be interested in infinite family of
codes {Cn}n whose length n →∞ and whose distance is positive, i.e., for every n, δ(Cn) ≥ δ0 > 0.

Informally, a code is locally testable if it is possible to test membership of a word v in C probabilis-
tically making few probes into v. Formally, for a vector v ∈ {0, 1}n, let δ(v, C) denote its distance
to the set C, i.e., minx∈C{δ(v, x)}. For functions q : (0, 1] → Z+ and ε : (0, 1] → (0, 1], 1 a binary
code C is said to be (q, ε)-locally testable if there exists a probabilistic algorithm T called the tester
that, given a parameter δ > 0 and oracle access to a vector v ∈ {0, 1}n, queries the oracle at most
q(δ) times and accepts v ∈ C with probability one, and rejects codewords at distance greater than
δ with probability at least ε(δ). C is said to be strongly q-locally testable if there exists a constant
ε′ > 0 such that the tester above rejects every v 6∈ C with probability at least ε′ · δ(v, C) (i.e., q(δ)
is a constant, and ε(δ) is linear in δ).

A code is informally self-correctable, if it is possible to recover any specified coordinate of a codeword
of C given oracle access to a slightly corrupted version of the codeword. Formally, a code C is q-
self-correctable if there exists constants τ > 0 and ε < 1

2 and a probabilistic algorithm SC called
the corrector such that given oracle access to a word v ∈ {0, 1}n that is τ -close to some codeword
c ∈ C, and any index i ∈ {1, . . . , n}, SCv(i) computes ci with probability 1− ε.

Self-correction is closely related to the more popular notion of locally decodable codes. Local
decodability is a property of the encoding function used to encode messages and requires the
message to be locally decodable from a corrupted codeword. Specifically, an encoding function
E : {0, 1}k → {0, 1}n is q-locally decodable if there exist exists constants τ > 0 and ε < 1

2 and
a probabilistic decoding algorithm D such that, given oracle access to a word v ∈ {0, 1}n that is
τ -close to E(m) for some message m ∈ {0, 1}k and an index i ∈ {1, . . . , k}, Dv(i) computes mi

with probability 1 − ε. Self-correction is a property merely of the set of codewords (i.e., the set
C = {E(m)|m ∈ {0, 1}k}) and while it guarantees decodability of every bit of the codeword it
makes no statements about the message bits (since these are not even defined). However it is easy
to see that E is q-locally decodable if the code CE = {(m, E(m))|m} is q-self-correctible. This
relation suggests that self-correction is a somewhat stronger property,

Local testability and self-correctability of codes have been examined implicitly every since the
seminal work of Blum, Luby and Rubinfeld [6] which shows that Hadamard codes2 are locally-
testable and self-correctable. The general notion of locally testable codes is implicit in [1] and was
systematically studied in [9]. Locally decodable codes were implicit in [1] and were formally defined

1In this paper, Z+ denotes the set of non-negative integers and (0, 1] the half-open interval of reals greater than
0 and at most 1.

2Strictly speaking [6] only show that “Reed-Muller codes of order 1” are locally testable, and this is a strict
subclass of Hadamard codes. The entire class of Hadamard codes is shown to be locally testable by the results of
[11].

1

in Katz and Trevisan [10]. Due to the central nature of these notions in works on Probabilistically
Checkable Proofs, and Private Information Retrieval Schemes there has been a lot of work on these
notions in the past few years. By now, a broad family of codes have been shown to be testable and
self-correctable. And recently there has been much activity in constructing very efficient codes that
are locally testable (see, for example, [9, 3, 4, 5, 8]) and efficient codes that are locally-decodable
[2, 14].

Our interest in these properties is not motivated by the efficiency of the codes, but rather by the
generality of analysis techniques. All the properties under consideration (decodability, testability
and self-correctability) are known to be quite fragile. For instance, a code C may be testable,
but subcodes C ′ of C (i.e., C ′ ⊆ C) may turn out not to be testable. A code C may be locally
decodable for some encoding functions but may not be decodable under other encoding schemes.
A code C may be self-correctible, but if one adds just one more bit of redundancy to the encoding
(thus |C ′| = |C|, C ′ ⊆ {0, 1}n+1 and C ′ projected to the first n coordinates equals C), then the new
code need not be self-correctible. Given this fragility, it is understandable that codes with such
properties have been constructed quite carefully in the past, even if the efficiency of the parameters
is not the prime concern.

Our Results: In this paper we describe results which are contrary to the descriptions above. We
do so by considering a restricted class of codes: specifically linear, sparse codes, chosen at random.
Recall that a code C is said to be linear if for every x, y ∈ C it is the case that x + y is also in
C, where x + y denotes the sum of x and y viewed as vectors in Fn

2 . We show that when a sparse
linear code is chosen at random, then it is very likely to be locally decodable and self-correctible.

We derive our results by showing that every “sparse”, linear code of “large-distance” is testable
and self-correctable. To be precise, say that C ∈ {0, 1}n is f(n)-sparse if |C| ≤ f(n). Our main
theorem on local testability shows that every polynomially sparse code of distance 1

2−n−γ is locally
testable.

Theorem 1.1 For every t < ∞ and γ > 0 there exists a constant k such that the following holds:
If C ⊆ {0, 1}n is nt-sparse and δ(C) ≥ 1

2 − n−γ, then C is strongly k-locally testable.

To derive this result, we first focus on a subclass of codes where the distance between codewords
is sandwiched tightly between 1

2 − n−γ and 1
2 + n−γ . We say that a code C ⊆ {0, 1}n is said to

be ε-biased if it satisfies 1
2 − ε ≤ δ(x, y) ≤ 1

2 + ε for every pair x 6= y ∈ C. (ε-bias refers to the
same concept as defined in [13], though the description there is different. Our notion of ε-bias is
also a generalization of the notion of almost orthogonal codes in [11]; almost-orthogonal codes are
O(n−1/2)-biased codes.) For ε-biased codes we also derive a complementary “self-correction” result.

Theorem 1.2 For every t < ∞ and γ > 0 there exists a constant k = kt,γ < ∞ such that the
following holds: If C ⊆ {0, 1}n is nt-sparse and n−γ-biased, then C is k-self-correctable.

If a code C has small bias and is sparse, then so is C ′ consisting of the coordinates of C and a few
additional coordinates that are linear functions of the previous coordinates. Using this observation
we can use the above result on self-correction to show that sparse, low-bias encodings are locally
decodable. (See Corollary 4.6.)

2

Since a random linear code with nt-codewords is very likely to be O(log n/
√

n)-biased, we im-
mediately get that sparse random linear codes are locally testable and self-correctible with high
probability. (See Theorem 7.2.)

It turns out that our results above do not cover the self-correctibility of even the Hadamard code
and/or the dual-BCH code. These codes are not small-biased. Indeed they have the “all-ones”
vector as codewords, making their bias as bad as they could possibly be. However we note that
these codes are derived from n−γ-biased codes by “closing them under complements”. Specifically
for a code C, and vector v, let C + v denote the set {x + v|x ∈ C}, and let C||v denote the linear
span of C and v, i.e, the set C ∪ (C + v). Formally, say that a code C is complementation-closed if
C = C ′||1n for some code C ′. We show the following simple extension of Theorem 1.2 which allows
use to extend our testing and self-correction results also for the familiar versions of the Hadamard
and dual-BCH codes.

Theorem 1.3 For every t and γ > 0, there exists k such that the following hold: Let C = C ′||1n,
be an nt-sparse complementation-closed code with distance 1

2 − n−γ. Then C is k-locally testable
and k-self-correctable.

Techniques: Our techniques build upon those of Kaufman and Litsyn [11] who analyze the local-
testability of dual-BCH codes, which form a special family of codes that satisfy the conditions of
Theorem 1.2. Their technique revolves around the analysis of the “weight distribution” of the code
C (i.e., the distribution of the weight of a randomly chosen codeword of C) and then using the
MacWilliams transform (an extension of the Fourier transform) to analyze a natural tester for the
code. They then employ known facts about the weight distribution of the dual-BCH codes to derive
their results. When testing a word v ∈ {0, 1}n for membership in C, their analysis relies on the
ability to relate the number of codewords of a given weight k in the dual of the code C with the
number of codewords in the dual of the code C||v. (Recall this is the code consisting of the linear
span of C and v.)

Our contributions to this technique is three-fold. First we simplify (and slightly generalize) their
analysis in the context of small-biased codes (see Theorem 5.5). We don’t use any special properties
of the weight distribution other than the most “obvious ones” (the number of codewords is small,
and all except the zero codeword have weight very close to n/2). Our principal tool here is the
Johnson bound which bounds the number of codewords in any ball of small radius. By reducing
the proof to such simple elements, we are now able to get to a broader class of codes including
randomly chosen codes (for the first time).

Next, we observe that the resulting understanding of the dual of sparse, small-biased, linear codes
is so good, that we can pin down the weight distribution of C⊥ almost precisely, to within a 1+o(1)
multiplicative factor. Making this observation explicit allows us to immediately build and analyze
self-correctors for all sparse, small-biased, linear codes. Our analysis shows that the natural local
tester for these codes has a roughly “pairwise-independent” distribution of queries and so can be
used to recover all coordinates with high probability. Such a result is quite novel in the context of
self-correcting in that most previous self-correctors were built for structured codes, whose design
already allowed for self-correction algorithms. Here we prove it is an “inevitable” consequence of
basic properties (distance and density) of the code.

3

Third, we strengthen the techniques above to cover the case of codes whose bias is not necessarily
small. Technically this poses a significant challenge in that we no longer have the ability to pin
down the weight distribution of the dual of C precisely and so the previous techniques seem to fail.
We overcome the challenge by first considering codes of “moderate” bias (say, 1/3-biased codes)
of large distance. In this case we give crude approximations, to within O(1) factors, of the weight
distribution of the dual of C. However we show that we can still relate the number of codewords
of in the dual of C||v to those in the dual of C quite precisely and thus deriving an analysis for the
natural test.

Our final testing theorem is then derived by viewing every code as a small “extension” of a
moderately-biased code. We note that every large-distance code C can be written as C = C ′||v
where C ′ has moderate bias. We then show how to derive local tests for C from local tests for C ′

(see Lemma 6.7), which allows us to get local tests for all sparse codes of large distance.

Conclusions and Future Work: Our work produces the first analysis for local testability and
correctability of random codes. While much of the analysis of the local test is directly based on the
prior work of Kaufman and Litsyn [11], our proofs are more self-contained and simpler, and the
results are significantly more general. (The only non-trivial fact we seem to be using are bounds on
the roots of the Krawtchouk polynomials. All other facts can be proved by elementary means.) The
simplicity of the proof offers hope that by further understanding of the Krawtchouk polynomials,
one can prove testing and correcting results for denser classes of codes, and this seems to be an
important but challenging open problem. Indeed, right now, even generalizing the result to get
self-correctors for general (non-biased) sparse codes of relative distance 1

2 − n−γ is open.

Organization of this paper: Section 2 describes the natural tester and self-correctors for the
codes considered in this paper. Section 3 lays out our analysis approach, using the MacWilliams
Identities, and states some basic properties about sparse codes. Section 4 analyzes the self-corrector
for n−γ-biased codes. Section 5 analyzes the local test for n−γ-biased codes. Section 6 presents a
strong local tester and self-corrector for complementation closed codes. This section also analyzes
the local testability of general (non-biased) sparse codes. Section 7 mentions some implications
for random codes, showing that sparse random codes are testable and correctible, while less sparse
codes are not so.

2 Preliminaries and Overview of main results

The linearity of a code leads to a natural test and self-correction algorithm for the code. We
describe these algorithms below. Most of the rest of the paper is devoted to analyzing these
natural algorithms for sparse, low-biased codes (though in Section 6 we discuss some slightly more
general codes).

We start with some standard notions and notations: For a positive integer n let [n] denote the
set {1, . . . , n}. For a word y ∈ {0, 1}n we let the weight of y, denoted wt(y), be the quantity
|{i ∈ [n] | yi = n}| = δ(y, 0n) · n. For a code C ⊆ {0, 1}n, let [C]k denote the codewords of C
of weight k, i.e., [C]k = {x ∈ C | wt(x) = k}. For C ⊆ {0, 1}n, 0 ≤ k ≤ n and i ∈ [n], let
[C]k,i = {y ∈ [C]k|yi = 1}.

4

For vectors x, y ∈ {0, 1}n let 〈x, y〉 =
∑n

i=1 xiyi(mod2). For a linear code C, the dual of C is the
C⊥ = {y ∈ {0, 1}n | 〈x, y〉 = 0 ∀x ∈ C}. Straightforward linear-algebra yields that if C is a linear
code of dimension ` (i.e., |C| = 2`), then C⊥ is a linear code of dimension n− `.

For a finite set S, we let Z ∈U S denote the random variable chosen uniformly from S.

The Self Corrector: We start by describing the canonical k-self-correction algorithm for a binary
linear code.

• k-self-corrector SCv
k(i)

/* with oracle access to v ∈ {0, 1}n satisfying δ(x, v) < 1
2k for x ∈ C */.

– Pick y ∈U [C⊥]k,i.

– Output
∑

{j∈[n]−{i} | yj=1} vj .

It is straightforward to see that the self-corrector makes k−1 queries into v. The harder part of the
analysis is to show that the algorithm above correctly recovers xi for every i, with high probability
over its random choices. Indeed it is not clear that the self-corrector does anything. For all we
know [C⊥]k, and hence [C⊥]k,i, may well be empty.

In Section 3, we will prove first that the set if C is sparse and small biased then [C⊥]k is indeed
non-empty (see Lemma 3.5). In fact, we get very tight estimates on the size of this set. This section
introduces notions and techniques needed in the rest of the paper as well.

We then go on to analyze the self-corrector in Section 4. The crucial issue here is to prove that for
every i, the set [C⊥]k,i is non-empty and that the set of locations probed by the algorithm above
is roughly uniform. Since the code C, and hence C⊥ are not really under our control, this has to
be proven for every code of the given parameters.

The Local Tester: We now describe the canonical k-local test Tk associated with a linear code
C.

• k-local tester T v
k () /* with oracle access to v ∈ {0, 1}n.

– Pick y ∈U [C⊥]k.

– Accept if and only if 〈y, v〉 = 0.

It is easy to see that the test makes exactly k queries into v and accepts codewords of C with
probability 1. The hard part of the analysis is to show that the test rejects non-codewords of C
with noticeable probability. We do so in Section 5, for sufficiently large odd integer k provided C
has small-bias. The resulting testing theorem (Theorem 5.5) is stated and proved in Section 5).
When the code C is complementation closed however, C⊥ has no codewords of odd weight. We
extend our analysis to this setting by showing (in Section 6.1) that for sufficiently large even integer
k, the canonical k-local test Tk is a strong k-local test for C. In Section 6.2, we consider codes
of moderate bias (but large distance), and show that the canonical tests give local tests in this
setting. This allows us to get (non-canonical) local tests for all sparse linear codes of large distance
in Section 6.3.

5

3 Duals of sparse codes contain low weight codewords

Our approach (following [11]) is to use the “MacWilliams Transform” to estimate the size of [C⊥]k.

For a code C and integer i ∈ {0, . . . , n} let BC
i = |[C]i| denote the number of codewords of weight i.

We refer to the vector 〈BC
0 , . . . , BC

n 〉 as the weight distribution of C. The MacWilliams Identities
show that the weight distribution of C⊥ can be computed from the weight distribution of C.
Specifically the relationship is as given below:

Theorem 3.1 (MacWilliams Identity, see e.g., [7]) For a linear binary code C of length n,
BC⊥

j = 1
|C|
∑n

i=0 BC
i Pj(i), where Pj(i) = Pn

j (i) =
∑j

`=0(−1)`
(
i
`

)(
n−i
j−`

)
is the Krawtchouk polynomial

of degree j.

In our case, we do not know the weight distribution of C, but we know a few things about it,
which suffice to estimate the weight distribution of C⊥. The following proposition summarizes our
knowledge of the weight distribution of C and follows easily from the sparsity and the bias of the
code.

Proposition 3.2 The following hold for every nt-sparse C of with distance δ(C) ≥ 1
2 − n−γ.

1. BC
0 = 1.

2. BC
i = 0 for i ∈ {1, . . . , n

2 − n1−γ}.

3.
∑n

i=0 BC
i ≤ nt.

4. If C is n−γ-biased then BC
i = 0 for i ∈ {n

2 + n1−γ , . . . , n}.

The following proposition summarizes our knowledge of the Krawtchouk Polynomials, which is
needed to translate the knowledge of the weight distribution of C into information about the
weight distribution of C⊥.

Proposition 3.3 The following properties hold for Krawtchouk polynomials:

1. Pk(0) =
(
n
k

)
.

2. For every x, we have Pk(x) = (−1)kPk(n− x).

3. [12, Equation (70)] Pk(·) has k real roots that lie between n/2−
√

kn and n/2 +
√

kn.

4. For i ∈ [n], the following bounds hold

0 ≤ Pk(i) ≤ (n− 2i)k/k! if 0 ≤ i ≤ n/2−
√

kn

|Pk(i)| ≤ kk/2nk/2/k! if n/2−
√

kn ≤ i ≤ n/2 +
√

kn

Pk(i) ≤ 0 if n/2 +
√

kn ≤ i ≤ n and k is odd

5. Pk(i− 1)− Pk(i) = Pk−1(i) + Pk−1(i− 1).

6

6. For i > n/2 +
√

kn, Pk(i) is decreasing in i for odd k, and increasing in i for even k.

Proof: Parts (1) and (2) follow from the definition of Pk(i). Part (3) is from [12, Equation
(70)]. Part (4) follows from Part (3) and the definition of Pk(i) by applying elementary facts about
polynomials. Part (5) is from [12, Equation (17)]. Part (6) follows from Part (5) and the fact that
Pk−1(i) is positive in the given range for odd k and negative for even k.

We show next that the above already suffice to get a close estimate on BC⊥
k , the number of

codewords in C⊥ of weight k. Before doing so, we encapsulate a simple fact about sparse codes
that will be used repeatedly in this paper: Roughly it states that the middle terms in the expression
“ 1
|C|
∑n

i=0 BC
i Pk(i)”, for BC⊥

k , contribute a negligible amount compared to the first term. Though
our principal concern at the moment are small-biased, sparse, codes; we prove the claim more
generally, for any sparse set S ⊆ {0, 1}n.

Claim 3.4 For every γ > 0 and c, t < ∞ if k ≥ (t+c+1)/γ, then for any nt-sparse set S ⊆ {0, 1}n,

the following holds: |
∑n

2
+n1−γ

i=n
2
−n1−γ BS

i Pk(i)| = o(n−c) · Pk(0). Furthermore, if k is odd, we have∑n
i=n

2
−n1−γ BS

i Pk(i) = o(n−c) · Pk(0).

Proof: The proof is straightforward. Let α = 1− γ. We have:

|

n
2
+nα∑

i=n
2
−nα

BS
i Pk(i)| ≤

n
2
+nα∑

i=n
2
−nα

BS
i |Pk(i)|

≤ max
n
2
−nα≤i0≤n

2
+nα

{|Pk(i0)|}

n
2
+nα∑

i=n
2
−nα

BS
i

≤ 2nk·α

n
2
+nα∑

i=n
2
−nα

BS
i (Using Proposition 3.3, Part (4))

≤ 2nk·α
n∑

i=0

BS
i

≤ 2nk·α|S|
= o(n−c)nk = o(n−c)Pk(0)

where the last line uses the fact that k ≥ (t+c+1)/γ. The first part of the claim follows immediately.
The second part then follows from the fact that Pk(i) < 0 for every i ∈ {n

2 + n1−γ , . . . , n}.

Lemma 3.5 Let C be an nt-sparse, code with δ(C) ≥ 1
2 − n−γ. Then for every c, t, γ, there exists

a k0 such that for every odd k ≥ k0 BC⊥
k ≤ Pk(0)

|C| · (1 + o(n−c)). If C is n−γ-biased then for every

(odd and even) k ≥ k0 it is the case that BC⊥
k = Pk(0)

|C| · (1 + θ(n−c)).

Remark: Here and later we use the notation f(n) = g(n) + θ(h(n)) to imply that for every ε and
for sufficiently large n g(n)− ε · h(n) ≤ f(n) ≤ g(n) + ε · h(n).

7

Proof: By the MacWilliams Identities (Theorem 3.1) we have:

BC⊥
k =

1
|C|

n∑
i=0

BC
i Pk(i)

=
Pk(0)
|C|

+
1
|C|

n∑
i=1

BC
i Pk(i)

=
Pk(0)
|C|

+
1
|C|

n∑
i=n

2
−n1−γ

BC
i Pk(i) (Using Proposition 3.2, Part (2))

We can now use Claim 3.4 to see that the latter summation is upper bounded by o(n−c).Pk(0)/|C|.
The first part of the lemma then follows. For the second part, where C is n−γ-biased, we see that

BC⊥
k =

Pk(0)
|C|

+
1
|C|

n∑
i=n

2
−n1−γ

BC
i Pk(i)

=
Pk(0)
|C|

+
1
|C|

n
2
+n1−γ∑

i=n
2
−n1−γ

BC
i Pk(i) (Using Proposition 3.2, Part (4))

=
Pk(0)
|C|

+ θ(n−c)
Pk(0)
|C|

(Using Claim 3.4),

which yields the second part of the lemma statement.

4 Analysis of the self-corrector

We start by proving that the self-corrector of Section 2 works correctly. Specifically we prove
Theorem 1.2 by showing that for sufficiently large k, the Self-Corrector SCk of Section 2 correctly
computes xi on input i and oracle access to v ∈ {0, 1}n that is δ-close to x ∈ C, provided δ < 1

2k .

To analyze the self-corrector, we study the distribution of the bits yi, yj when y is a randomly
chosen codeword of C⊥ of weight k. Now, if the codewords of [C⊥]k had been uniformly chosen
from the vectors of weight k, then yi and yj would be almost 2-wise independent (but not exactly
so, since we are sampling two items without replacement from a universe of size n). We show below
that the distribution of yi, yj is almost the same when y is chosen uniformly from [C⊥]k, for any
sparse code C of low bias. (see Lemma 4.3).

To understand the distribution of yi, we need to approximate the size of the set [C⊥]k,i. (Recall that
[C⊥]k,i = {y ∈ [C⊥]k|yi = 1}.) We do so by looking at the code C−i which is the code C with the
ith coordinate punctured. In other words, C−i = {π−i(x)|x ∈ C}, where π−i : {0, 1}n → {0, 1}n−1

is the projection function π−i(y1, . . . , yn) = (y1, . . . , yi−1, yi+1, . . . , yn). The following proposition
explains the relevance of this projection to [C⊥]k,i.

Proposition 4.1 Let π−1
−i (y1, . . . , yi−1, yi+1, . . . , yn) = (y1, . . . , yi−1, 0, yi+1, . . . , yn) and π−1

−i (S) =
{π−1

−i (y)|y ∈ S}. Then [C⊥]k,i = [C⊥]k−π−1
−i ([(C

−i)⊥]k), and thus |[C⊥]k,i| = |[C⊥]k|− |[(C−i)⊥]k|.

8

Proof: Note that if y ∈ C⊥ with yi = 0 then π−i(y) ∈ (C−i)⊥. So we have {π−i(y)|y ∈ C⊥, yi =
0} ⊆ (C−i)⊥ and we claim that actually (C−i)⊥ = {π−i(y)|y ∈ C⊥, yi = 0}. This is easy to see
by counting. On the one hand, |(C−i)⊥| = 2n−1/|C−i| = 2n−1/|C| = 1

2 |C
⊥| (where the equality

|C−i| = |C| uses the fact that the (non-normalized) Hamming distance of C is at least 2). On the
other hand, |{π−i(y)|y ∈ C⊥, yi = 0}| ≥ 1

2 |C
⊥| since at least half the vectors in C⊥ must have the

ith coordinate set to 0.

It immediately follows that [C⊥]k,i = [C⊥]k − π−1
−i ([(C

−i)⊥]k).

Extending our notation to consider codes punctured twice, let π−{i,j} denote the projection to all
coordinates except i and j, and let C−{i,j} denote the projection of the code C by π−{i,j}. Let
[C⊥]k,{i,j} = {y ∈ [C⊥]k|yi = yj = 1}. Then, we get:

Proposition 4.2 For every i 6= j, [C⊥]k,{i,j} = [C⊥]k − π−1
−i ([(C

−i)⊥]k) − π−1
−j ([(C

−j)⊥]k) +
π−1
−{i,j}([(C

−{i,j})⊥]k). Thus |[C⊥]k,{i,j}| = |[C⊥]k| − |[(C−i)⊥]k| − |[(C−j)⊥]k|+ |[(C−{i,j})⊥]k|.

Proof: Follows from Proposition 4.1 applied to C−j , and by inclusion-exclusion.

Armed with the facts above, and our knowledge of the weight distribution of duals of sparse small-
biased codes, it is easy to prove the following lemma.

Lemma 4.3 For every γ > 0 and c, t < ∞ there exists k such that for sufficiently large n the
following holds: Let C ⊆ {0, 1}n be an nt-sparse n−γ-biased linear code. Then for every i 6= j ∈ [n],
the probability that yj = 1 for a randomly chosen vector y ∈ [C⊥]k,i is (k − 1)/(n− 1) + θ(n−c).

Proof: Note that the quantity we are interested in is the ratio |[C⊥]k,{i,j}|/|[C⊥]k,i|. By
Propositions 4.1 and 4.2 it suffices to get good estimates on |[C⊥]k|, |[(C−i)⊥]k|, |[(C−j)⊥]k|, and
|[(C−{i,j})⊥]k|. Fortunately, this is easy, since C, C−i, C−j and C−{i,j} are all nt-sparse, n−γ-
biased, codes. The only difference is their lengths, which are n, n− 1, n− 1 and n− 2 respectively.
Applying Lemma 3.5 to these in turn, we find that there exists a k such that

|[C⊥]k| =
(

n

k

)
+ θ(nk−(c+2))

|[(C−i)⊥]k| =
(

n− 1
k

)
+ θ(nk−(c+2))

|[(C−j)⊥]k| =
(

n− 1
k

)
+ θ(nk−(c+2))

and |[(C−{i,j})⊥]k| =
(

n− 2
k

)
+ θ(nk−(c+2)).

By Proposition 4.1, we have |[C⊥]k,i| =
(
n−1
k−1

)
+ θ(nk−(c+2)) and, by Proposition 4.2, we have

|[C⊥]k,{i,j}| =
(
n−2
k−1

)
+θ(nk−(c+2)). We conclude that |[C⊥]k,{i,j}|/|[C⊥]k,i| = (k−1)/(n−1)+θ(n−c).

We now state and prove our main lemma, which immediately implies the correctness of the self-
corrector SCk.

9

Lemma 4.4 For every t < ∞, γ > 0 there exists a k = kt,γ < ∞ such that the following holds: Let
C be an nt-sparse, n−γ-biased code. Let v ∈ {0, 1}n be δ-close to x ∈ C. Then for every i ∈ [n],
Pr[SCv

k(i) 6= xi] ≤ kδ + θ(1/n).

Proof: Pick k large enough to be able to apply Lemma 4.3 for c = 2. Thus, for random y ∈ [C⊥]k,i

and j 6= i, we have Pry[yj = 1] ≤ (k − 1)/(n− 1) + θ(n−2) ≤ k/n + θ(n−2).

Let E = {j ∈ [n]|vj 6= xj}. We have |E| ≤ δn. Now consider y ∈U [C⊥]k,i and let Sy = {j ∈
[n] − {i}|yj = 1}. If Sy ∩ E = ∅, we have SCv

k(i) = xi. Thus it suffices to bound the probability
Sy ∩ E 6= ∅ from above. We bound this by |E| ·maxj∈E{Pry[yj = 1]} ≤ kδ + θ(n−1).

Theorem 1.2 now follows, for k as given by Lemma 4.4, where the parameter τ in the definition of
the self-corrector (the fraction or errors that can be tolerated can be chosen to be less than 1

2k and
the error probability ε being kτ + o(1/n).

4.1 Local Decodability of Sparse Codes

In this section we consider a “low-biased” linear encoding function E : {0, 1}t log n → {0, 1}n

and show that it is locally decodable with high probability. By linear encoding we mean that
E(m) = A · m for some matrix A ∈ {0, 1}n×(t log n). Low-biased implies that the code C =
{E(m)|m ∈ {0, 1}t log n} is n−γ-biased for some γ > 0. Local decodability of E follows easily
from the following proposition.

Proposition 4.5 Let E be a linear map and C = {E(m)|m ∈ {0, 1}t log n} be an n−γ-biased code.
Let C ′ be the linear code C ′ = {(m,E(m))|m ∈ {0, 1}t log n}. Then C ′ is nt-sparse, O(n−γ)-biased,
and given oracle access to a word v ∈ {0, 1}n such that δ(v,E(m)) ≤ δ, one can get oracle access
to a word ṽ ∈ {0, 1}t log n+n that is (δ + t

n log n)-close to the codeword (m,E(m)) ∈ C ′.

Proof: All parts are immediate. For the last part, we use an oracle for ṽ = (0t log n, v). By
Theorem 1.2, the code C ′ above is self-correctible and so E is locally-decodable, and so we get:

Corollary 4.6 For every t < ∞ and γ > 0 there exists a k such that the following holds. Let E
be an n−γ-biased linear encoding mapping {0, 1}t log n to {0, 1}n. Then E is k-locally decodable.

5 Analysis of the local test

The results of the previous sections show that C⊥ does have many low-weight codewords and
that they suffice to give good local error-correction algorithms for C. Yet they do not even imply
that the low-weight codewords of C⊥ specify C uniquely. For all we know the set of vectors
{x ∈ {0, 1}n|〈x, y〉 = 0 ∀y ∈ [C⊥]k} may be a superset of C. In this section we show that
this does not happen. The low weight codewords of C⊥ completely define C in the sense that
C = {x|〈x, y〉 = 0 ∀y ∈ [C⊥]k} for some constant k. Furthermore, we show that the canonical
tester of Section 2 rejects words at large distance from the code with high probability.

To derive these results, we fix a word v ∈ {0, 1}n that does not belong to C and attempt to
understand two structures. First we consider the linear code C||v = C ∪ (C + v) where C + v =

10

{x + v|x ∈ C}. We then turn to the new set of words C + v which form a coset of the code C and
attempt to understand it. Together these sets help us understand the performance of the test of
Section 2.

To see how these sets become relevant, we start with a simple proposition relating the probability
that the test test T v

k rejects to the code C||v.

Proposition 5.1

Rejk(v) = 1−
B

(C||v)⊥

k

BC⊥
k

.

Proof: The proposition follows from the fact that the test T v
k accepts on random choice y ∈ [C⊥]k

if and only if y ∈ [(C||v)⊥]k (since the latter containment happens if and only if 〈v, y〉 = 0).

In what follows we show that Rejk(v) > 0 if v 6∈ C. In fact, we show the stronger result that
Rejk(v) = Ω(δ(v, C)).

Lemma 5.2 For every c, t < ∞ and γ > 0 there exists a k0 such that the following hold: Let C be
an nt-sparse code of distance δ(C) ≥ 1

2−n−γ. Let v ∈ {0, 1}n\C be δ-far from C (i.e., δ(v, C) = δ).
Then, for odd k ≥ k0,

B
(C||v)⊥

k ≤
(
1− δ/2 + o(n−c)

)
· Pk(0)
|C|

.

Proof: We prove the lemma using two “sublemmas” (Lemmas 5.3 and 5.4) stated and proved
below, which bound some technical terms that will appear in this proof.

Let γ′ = γ/2. We prove the lemma for k0 = max{k1, k2, 400} where k1 is chosen to be big enough
so that Claim 3.4 applies, and k2 is the constant given by Lemma 3.5, for t, c and γ′.

Using the MacWilliams Identities (Theorem 3.1) we have

B
(C||v)⊥

k =
1

|C||v|

n∑
i=0

B
(C||v)
i Pk(i)

=
1

2|C|

n∑
i=0

BC
i Pk(i) +

1
2|C|

n∑
i=0

BC+v
i Pk(i) (Since (C||v) = C ∪ C + v)

=
1
2
BC⊥

k +
1

2|C|

n∑
i=0

BC+v
i Pk(i).

By Lemma 3.5 we have that BC⊥
k ≤ Pk(0)

|C| · (1 + o(n−c)) and so to prove the lemma it suffices to
show that

1
|C|

n∑
i=0

BC+v
i Pk(i) ≤ (1− δ + o(n−c)) · Pk(0)

|C|
.

Since C+v is an nt-sparse code of distance 1
2−n−γ , by Claim 3.4 we have

∑n
i=n

2
−n1−γ′ B

C+v
i Pk(i) =

o(n−c · Pk(0)). It suffices to prove that
n
2
−n1−γ′∑
i=0

BC+v
i Pk(i) ≤ (1− δ + o(n−c)) · Pk(0).

11

We now know that BC+v
i = 0 for every i = {0, n

2 − n1−γ′ − δn} except possibly for i = δn. If
δn < n

2 − n1−γ′ − δn we are within the “unique” decoding radius and so BC+v
δn = 1. Thus we have

n
2
−n−γ′∑
i=0

BC+v
i Pk(i) ≤ Pk(δn) +

b∑
i=a

BC+v
i Pk(i),

where a = max{n
2 − n1−γ′ − δn, δn} and b = n

2 − n1−γ′ In Lemma 5.3 below we show the first
term is at most (1 − δ)k · Pk(0). In Lemma 5.4 below we show the second term is 12Pk(0) ·(
min{(1− 2δ)k−2, (4δ)k−2}+ n−(k−2)γ′

)
. We thus conclude that

n
2
−n−γ′∑
i=0

BC+v
i Pk(i) ≤ Pk(0) ·

(
(1− δ)k + 12 min{(1− 2δ)k−2, (4δ)k−2}+ o(n−c)

)
.

We claim that the expression (1−δ)k+12 min{(1−2δ)k−2, (4δ)k−2} ≤ 1−δ for every 0 ≤ δ ≤ 1
2 . For

δ ≤ 1
100 and k ≥ 6, we have that (1−δ)k+12·(4δ)k−2 ≤ 1−(k/2)δ+12(4δ)2 ≤ 1−3δ+2δ ≤ 1−δ. For

1
100 ≤ δ ≤ 1

2 and k ≥ 400, we have (1−δ)k ≤ 1
4 and 12(1−2δ)k−2 ≤ 1

4 . So (1−δ)k +12(1−2δ)k−2 ≤
1
2 ≤ 1− δ. The lemma now follows.

We now present the “sublemmas”.

Lemma 5.3 For every k, for sufficiently large n (i.e., n ≥ nk) and for every δ < 1/2, Pk(δn) ≤
(1− δ)k · Pk(0).

Proof: We consider two cases on the value of δ.

If δ ≤ 1
2k , we claim that Pk(δn) ≤

(
n−δn

k

)
. To see this let i = δn and T` =

(
i
`

)(
n−i
k−`

)
, so that

Pk(i) =
∑k

`=0(−1)`T`. We note that under the restriction on δ, we have T` ≥ T`+1 for every ` and
so the alternating sum

∑k
`=0(−1)`T` can be upper bounded by its first term T0 =

(
n−i
k

)
. It is now

elementary to see that T0 ≤ (1− δ)kPk(0).

For the case that δ ≥ 1
2k we use the fact (from Proposition 3.3, Part (4)) that Pk(δn) ≤ (1 −

2δ)knk/k!. Writing nk/k! =
(
n
k

)
+ O(nk−1), we get Pk(δn) ≤ (1 − 2δ)k(Pk(0) + O(nk−1)). For

sufficiently large n it is easy to see that this is at most (1− δ)k · Pk(0) for every δ ≥ 1
2k .

Lemma 5.4 Let k, t, γ be constants. Let γ′ ≤ γ/2. For sufficiently large n, let D be an nt-sparse
code of distance at least 1

2−n−γ. Let δ ≤ 1
2 , and let a = max{n

2 −n1−γ′−δn, δn} and b = n
2 −n1−γ′.

Then
b∑

i=a

Pk(i)BD
i = 12Pk(0) ·

(
min{(1− 2δ)k−2, (4δ)k−2}+ n−(k−2)γ′

)
.

Proof: The crux of this proof is the Johnson bound which says that the number of codewords in
a ball of radius i ≤ n/2−n1−γ/2 is at most 2n2/(n− 2i)2, for a code of (relative) distance 1

2 −n−γ .

Let mi = 2n2/(n− 2i)2. Then, by the Johnson bound we have that
∑i

j=0 BD
i ≤ mi for every i ≤ b.

We first note that
b∑

i=a

Pk(i)BD
i ≤ 1

k!

b∑
i=a

(n− 2i)kBD
i ≤ 1

k!
(n− 2a)kma +

1
k!

b∑
i=a+1

(n− 2i)k · (mi −mi−1).

12

(The last inequality follows from the elementary fact that for non-negative numbers x1, . . . , x`, y1, . . . , y`

and z1 ≥ z2 ≥ · · · ≥ z` ≥ 0, if
∑i

j=1 xi ≤
∑i

j=1 yi for every i ∈ [`], then
∑`

i=1 xizi ≤
∑`

i=1 yizi. We
apply this fact to xi = BD

i and yi = mi −mi−1 and zi = (n− 2i)k.)

We thus turn to upper bounding 1
k!(n− 2a)kma + 1

k!

∑b
i=a+1(n− 2i)k · (mi−mi−1). Looking at the

first term, we have

(n− 2a)k/k!ma ≤ (n− 2a)k/k! · (2n2)/(n− 2a)2 = 2n2(n− 2a)k−2/k!

To analyze the second term, note that mi −mi−1 ≤ 8n2/(n − 2i)3. A straightforward calculation
now yields 1

k!

∑b
i=a+1(n− 2i)k · (mi −mi−1) ≤ 4n2

k! (n− 2a)k−2. Thus, we have

1
k!

b∑
i=a+1

(n− 2i)k · (mi −mi−1) ≤ 1
k!

b∑
i=a+1

(n− 2i)k · 8n2/(n− 2i)3

≤ 8n2

k!

b∑
i=a+1

(n− 2i)k−3

≤ 8n2

k!
(b− a)(n− 2a)k−3

≤ 4n2

k!
(n− 2a)k−2.

Thus we conclude that
∑b

i=a Pk(i)BD
i ≤ 6n2(n− 2a)k−2/k!. Substituting the given expression for

a, and using the crude bound nk/k! ≤ 2Pk(0) we get

b∑
i=a

Pk(i)BD
i ≤ 12Pk(0) ·min{(1− 2δ)k−2, (4δ)k−2 + (2n1−γ′)k−2}.

We are now ready to state and prove our main testing theorem for small-biased codes.

Theorem 5.5 For every t < ∞ and γ > 0 there exists a constant k = kt,γ < ∞ such that the
following holds: If C ⊆ {0, 1}n is nt-sparse and n−γ-biased, then C is strongly k-locally testable.

Proof: Given t and γ, let k be an odd integer greater than k0 as given by Lemma 5.2 for
c = 2. We claim that the tester Tk has the required properties. As observed in Section 2 the
test makes k queries and accepts codewords of C. By Proposition 5.1, for v 6∈ C it rejects with
probability (exactly) 1 − B

(C||v)⊥

k /BC⊥
k . Let δ = δ(v, C). By Lemma 5.2, we have B

(C||v)⊥

k ≤
Pk(0)
|C| · (1 − δ/4 + o(n−2)), while by Lemma 3.5 we have BC⊥

k = Pk(0)
|C| · (1 + θ(n−2)). Thus the

rejection probability is at least δ/4− o(n−2). Using δ ≥ 1
n , we thus get that for sufficiently large n,

the rejection probability is at least δ/8. We thus have that Tk satisfies the definition of a k-local
strong tester with ε′ = 1

8 .

13

6 Extensions to non-small-biased codes

In this section we first extend the results (easily) to the class of complementation-closed codes.
We then consider a class of “moderately-biased” high distance codes, and give a weak tester for
such codes. Finally, we give a generic reduction from testing high-distance codes (of arbitrary bias)
to high-distance codes of moderate bias. This gives us a weak tester for all sparse codes of large
distance.

6.1 Testing and Correcting Complementation-Closed Codes

Recall that here we consider codes of the form C = C ′||1n and show how to test and correct them.
The analysis is a straightforward modification of the analyses of Sections 3, 4 and 5. The main
difference now is that C⊥ has no odd weight codewords! But we also know that BC

i = BC
n−i and

also B
(C||v)
i = B

(C||v)
n−i for every v ∈ {0, 1}n. This allows use to study only the “bottom” half of

sums in the MacWilliams Identities and then conclude that the top half behaves similarly. (E.g.,∑n
i=0 BC

i Pk(i) = 2
∑n/2

i=0 BC
i Pk(i) etc.)

Specifically, we get the following variation of Lemma 3.5.

Lemma 6.1 For every c, t, γ, there exists a k0 such that for every even k ≥ k0, BC⊥
k = 2 · Pk(0) ·

(1 + θ(n−c)).

Using this lemma we can now prove Lemma 4.4 for the class of complementation-closed codes as
well, and thus get a self-corrector for such codes. To get a local tester, we prove the following
variation of Lemma 5.2.

Lemma 6.2 For every c, t < ∞ and γ > 0 there exists a k0 such that the following hold: Let C
be an nt-sparse n−γ-biased code. Let v ∈ {0, 1}n \ C be δ-far from C (i.e., δ(v, C) = δ). Then, for
even k ≥ k0,

B
(C||v)⊥

k ≤
(
1− δ/2 + o(n−c)

)
·BC⊥

k .

The analysis of the local test follows, and thus we get Theorem 1.3.

6.2 Testing moderate-bias codes

Before moving on to general sparse, high-distance codes, we consider the case where a code does
not have codewords of weight greater than say, 5

6 (while the distance of the code is still very close
to half, specifically, δ(C) ≥ 1

2 − n−γ). We start with a simple, but weak analysis, for a local test
for such codes.

Lemma 6.3 For every γ > 0, t there exist functions q : (0, 1] → Z+ and ε : (0, 1] → (0, 1], with
q(δ) = O(log 1

δ) and ε(δ) = Ω(δ), such that the following holds: If C is a 1/3-biased, nt-sparse code
of distance 1

2 − n−γ, then C is (weakly) (q, ε)-locally testable.

14

Proof: Fix the parameter δ > 0 and let w ∈ {0, 1}n satisfy δ(w,C) ≥ δ. As usual we look at the
quantities BC⊥

k and B
(C||w)⊥

k for sufficiently large odd integer k. By Lemma 5.2 we have that for
sufficiently large odd k ≥ kγ,t,

B
(C||w)⊥

k ≤ (1− δ/2− θ(n−c)) · Pk(0)/|C|.

We now turn to bounding BC⊥
k from below. (The following is just a minor modification of the proof

of Lemma 5.2.) As usual we have

BC⊥
k =

1
|C|

n∑
i=0

BC
i Pk(i)

=
Pk(0)
|C|

+
1
|C|

n/2+n1−γ∑
i=n/2−n1−γ

BC
i Pk(i) +

1
|C|

5
6
n∑

i=n/2+n1−γ

BC
i Pk(i)

=
Pk(0)
|C|

· (1 + θ(n−c)) +
1
|C|

5
6
n∑

i=n/2+n1−γ

BC
i Pk(i) (Using Claim 3.4)

We thus turn to lower bounding the final term
∑ 5

6
n

i=n/2+n1−γ BC
i Pk(i) above. Note that this term

may be negative and we wish to prove it is not “too” negative. Below we’ll upper bound the absolute
value of this summation. Let τ be such that the weight of the maximum weight codeword in C is (1−
τ)n. Note that τ ≥ 1/6. Then |

∑ 5
6
n

i=n/2+n1−γ BC
i Pk(i)| ≤ |Pk((1 − τ)n)| + |

∑n−a
i=n/2+n1−γ BC

i Pk(i)|
where a = max{(τn, n/2−n1−γ − τn)}. Using the fact that |Pk(i)| = |Pk(n− i)|, we find thus that

|
∑ 5

6
n

i=n/2+n1−γ BC
i Pk(i)| ≤ Pk(τn) +

∑b
i=a BC

i Pk(i) where b = n
2 − n1−γ . We are now in a position

to apply Lemmas 5.3 and 5.4. By Lemma 5.3, we see that the first term is at most (1− τ)k ·Pk(0),
while by Lemma 5.4, the second term is at most 12Pk(0) ·

(
(1− 2τ)k−2 + n−(k−2)γ

)
. Using τ ≥ 1

6

and setting k = Ω(log 1
δ), we get that |

∑ 5
6
n

i=n/2+n1−γ BC
i Pk(i)| ≤ Pk(0) ·

(
δ
10 + θ(n−c)

)
. We conclude

that for such a choice of k, BC⊥
k ≥ Pk(0)

|C| ·
(
1− δ

10 − θ(n−c)
)
.

Putting the bounds on BC
k and B

(C||w)
k together, and applying Proposition 5.1, we find that the

canonical test Tk, is a (O(log 1
δ),Ω(δ))-local test for C.

We now give a more complicated analysis, but now yielding a strong local test for moderate codes.

Lemma 6.4 For every t < ∞, γ > 0 there exists a k = kt,γ < ∞ such that the following holds: If
C is a 1/3-biased, nt-sparse code of distance 1

2 − n−γ, then C is strongly k-locally testable.

Proof: As usual we use a canonical tester Tk for a sufficiently large (but constant, given t and γ)
odd integer k. Below we argue that such a test rejects non-codewords with probability proportional
to their distance from the code.

Let w ∈ {0, 1}n be such that δ(w,C) = δ. For an appropriate choice of k, we wish to bound the
quantity 1−B

(C||w)⊥

k /BC⊥
k . While in previous analyses, we bounded the two quantities separately,

this time we will work with the two quantities together.

15

Let b = n
2 + n1−γ . First note that as usual we have

BC⊥
k =

Pk(0)
|C|

· (1 + θ(n−c)) +
1
|C|

·

(
n∑

i=b

Pk(i) ·BC
i

)
.

Note that the final term above is negative for odd k, and so poses a problem in our analysis. In
this proof, we overcome this obstacle by showing that a similar negative contribution occurs in the
expression for B

(C||w)⊥

k . We have

B
(C||w)⊥

k ≤
BC⊥

k

2
+

Pk(0)
2|C|

· (1− δ + θ(n−c)) +
1

2|C|

n∑
i=b

Pk(i) ·BC+w
i .

By Proposition 5.1 the rejection probability, which we’ll denote by ρ, is lower bounded by

ρ ≥ 1−B
(C||w)⊥

k /BC⊥
k

≥ 1− 1
2
− Pk(0)

2|C| ·BC⊥
k

· (1− δ + θ(n−c)) +
1

2|C| ·BC⊥
k

n∑
i=b

Pk(i) ·BC+w
i

Let α =
Pn

i=b Pk(i)·BC+w
i

Pk(0) and β =
Pn

i=b Pk(i)·BC
i

Pk(0) . (Note both quantities are negative!) Then we have

ρ ≥ 1
2
− Pk(0)

2|C| ·BC⊥
k

· (1− δ + θ(n−c)) +
1

2|C| ·BC⊥
k

n∑
i=b

Pk(i) ·BC+w
i

=
1
2
− 1− δ + θ(n−c) + α

2(1 + θ(n−c) + β)

=
1 + θ(n−c) + β − 1 + δ + θ(n−c)− α

2(1 + θ(n−c) + β)

≥ δ + β − α + θ(n−c)
2

Using Lemma 6.5 below with ε = 1
2 , we get β−α ≥ − δ

2 and thus ρ ≥ δ/4+ θ(n−c). For sufficiently
large n (using say c = 1) we get ρ ≥ δ/8, thus showing that for odd k, the test Tk is a strong k-local
test for ε′ = 1/8.

The following lemma bounds the expression encountered in the proof of the previous lemma.

Lemma 6.5 For every t < ∞, γ, ε > 0, there exists a k0 = kt,γ,ε such that the following holds for
every odd k ≥ k0: Let C be an nt-sparse, 1

3 -biased code of distance δ(C) ≥ 1
2−n−γ. Let w ∈ {0, 1}n

and δ > 0 be such that δ(w,C) = δn. Then

n∑
i=b

Pk(i) ·BC
i −

n∑
i=b

Pk(i) ·BC+w
i ≥ −ε · δ · Pk(0),

where b = n
2 + n1−γ.

16

Proof: Without loss of generality, we assume that wt(w) = δ · n. (If not, we can work with
some w̃ ∈ C + w with weight δn, since C||w̃ = C||w.) We also assume that γ < 1

2 . If not we prove
the lemma for some b′ = n

2 + k
√

n and ε′ = ε/2. We can then easily lower bound the difference∑b′

i=b Pk(i) ·BC
i −

∑b′

i=b Pk(i) ·BC+w
i by −ε/2δPk(0) using Claim 3.4, thus yielding the lemma (for

k = kt,γ′,ε′).

Let S1 = {x ∈ C | b + δn ≤ wt(x) ≤ 5
6n} and let S2 = {x ∈ C | b ≤ wt(x) < b + δn}. Since Pk(i)

is negative for the range of interest, we have

n∑
i=b

Pk(i) ·BC
i −

n∑
i=b

Pk(i) ·BC+w
i ≥

∑
x∈S1

(Pk(wt(x))− Pk(wt(x + w))) +
∑
x∈S2

Pk(wt(x).

Let T1 =
∑

x∈S1
(Pk(wt(x))−Pk(wt(x+w))) denote the first term above, and let T2 =

∑
x∈S2

Pk(wt(x))
denote the latter quantity. We bound the two in order.

First consider the term Pk(wt(x))− Pk(wt(x + w)) for some x ∈ S1. Let i = wt(x). Then we have
wt(x + w) ≥ i− δn and so Pk(wt(x + w)) ≤ Pk(i− δn) (using Proposition 3.3, Part (6)). Thus

Pk(wt(x))− Pk(wt(x + w)) ≥ Pk(i)− Pk(i− δn)

=
i∑

j=i−δn+1

Pk(j)− Pk(j − 1)

=
i∑

j=i−δn+1

−(Pk−1(j) + Pk−1(j − 1)) (Using Proposition 3.3, Part (5))

≥ (−2δn) · Pk−1(i) (Using Proposition 3.3, Part (6))

We thus get that T1 ≥ (−2δn) ·
∑

x∈S1
Pk−1(wt(x)) = (−2δn) ·

∑ 5
6
n

i=b+δn Pk−1(i)BC
i . Using the

fact that Pk−1(i) = Pk−1(n − i), we get that
∑ 5

6
n

i=b+δn Pk−1(i)BC
i =

∑n
2
−δn−n1−γ

i= 1
6
n

Pk−1(i)BC′
i ,

where C ′ = C + 1n. This last term can be bounded using Lemmas 5.3 and 5.4 and we get∑ 5
6
n

i=b+δn Pk−1(i)BC
i ≤ ((5/6)k + 12(2/3)k−2 + θ(n−c)) · Pk−1(0). Plugging it back into our bound

for T1, we get T1 ≥ (−2δn) · ((5/6)k + 12(2/3)k−2 + θ(n−c)) · Pk−1(0). Using the crude bound
nPk−1(0) ≤ 2kPk(0) (which holds for n ≥ 2k), we get that T1 ≥ −ckδPk(0) for ck = 4k((5/6)k +
12(2/3)k−2) + θ(n−c). Picking k, n sufficiently large, we can ensure ck ≤ ε/2 and so we have
Tk ≥ −ε/2 · δ · Pk(0).

We now move to the second term T2 =
∑b+δn

i=b Pk(i)BC
i . This part can be analysed as in the proof of

Lemma 5.4 to get that T2 ≥ −(12(4δ)k−2 + θ(n−c)) ·Pk(0). Again, by picking k, n to be sufficiently
large, we can set T2 ≥ −ε/2 · δ · Pk(0). Putting the two terms together, we get the lemma.

6.3 Testing general codes

Next we move to the task of building tests for general codes C based on tests for slightly-biased
codes. We do so with a generic reduction that shows that if a code C is locally testable, then so is
the code C||v for any v ∈ {0, 1}n.

17

Definition 6.6 Given linear test T for C, and v ∈ {0, 1}n we define tests T
(1)
v and T

(2)
v for the

code C||v as follows:

T
(1)
v : Given oracle access to w ∈ {0, 1}n, accept if Tw accepts or Tw+v accepts.

T
(2)
v : Let S ⊆ C⊥ be the “tests” of T . Fix a canonical y0 ∈ S such that 〈y0, v〉 = 1 if such a y0

exists. Pick random y ∈ S as drawn by the test T . If 〈y, v〉 = 0 then accept iff 〈y, w〉 = 0. If
〈y, v〉 = 1 then accept iff 〈y + y0, w〉 = 0.

We remark that even if T is a canonical test, T
(1)
v and T

(2)
v are not (or at least need not be)

canonical. However they are both good tests, as shown below.

Lemma 6.7 If C is (q, ε)-locally testable with the linear test T , then the following hold:

1. T
(1)
v is a (2q, ε2)-test for C||v.

2. T
(2)
v is a (2q, ε)-test for C||v.

In particular, if T is a strong test, then so are T
(1)
v and T

(2)
v .

Proof: For Part (1), note first that T
(1)
v does accept every word w ∈ C||v with probability 1.

On the other hand if δ(w,C||v) = δ > 0 then we have δ(w,C) ≥ δ and δ(w + v, C) ≥ δ. Thus
the probability that T would reject w is at least ε(δ). Independently the probability that T would
reject w + v (on independent random coins) is also at least ε(δ) and so the probability that T

(1)
v

rejects w is at least ε2(δ).

For Part (2), first note again that T
(2)
v does accept every word w ∈ C||v with probability 1. To

see this consider a random choice y ∈ S of the test T . For w ∈ C, we have 〈y, w〉 = 〈y0, w〉 = 0
and so 〈y + y0, w〉 = 0 as well, so the test accepts in all cases. For w ∈ C + v ⇔ w + v ∈ C, if
〈y, v〉 = 0 then 〈y, w〉 = 〈y, w + v〉 = 0 and the test accepts. On the other hand, if 〈y, v〉 = 1, then
〈y + y0, w〉 = 〈y + y0, w + v〉+ 〈y + y0, v〉 = 0 + 〈y + y0, v〉 = 〈y, v〉+ 〈y0, v〉 = 1 + 1 = 0 and so the
test accepts in this case too. Thus we move to the soundness analysis of this test.

For this part, let p0 denote the probability that the test T picks a y such that 〈y, v〉 = 0. Fix
w ∈ {0, 1}n such that δ(w,C||c) ≥ δ. Let q0 denote the probability that the test T picks y such
that 〈y, v〉 = 0 and 〈y, w〉 = 1. Let q1 denote the probability that the test T picks y such that
〈y, v〉 = 1 and 〈y, w〉 = 0. Let q2 denote the probability that the test T picks y such that 〈y, v〉 = 1
and 〈y, w〉 = 1.

We claim first that the probability that the test T
(2)
v rejects w is at least q0+min{q1, q2}. To see this,

consider the case when 〈w, y0〉 = 0. If the test picks y such that 〈y, v〉 = 0 and 〈y, w〉 = 1, then it
surely rejects and this happens with probability at least q0. On the other hand if 〈y, v〉 = 〈y, w〉 = 1
then 〈y + y0, w〉 = 〈y, w〉 + 〈y0, w〉 = 1 + 0 = 1 and again the test rejects. This event is mutually
exclusive of the previous one and happens with probability q2. Thus in this case the test rejects
with probability at least q0 + q2. Similarly, in the case 〈w, y0〉 = 1, we see that the test rejects with
probability at least q0 + q1, yielding the claim.

18

But now we note that since δ(w,C) ≥ δ, it must be that T rejects w with probability at least ε(δ).
But this probability is exactly q0 +q2. Similarly, since δ(w+v, C) ≥ δ, we have that the probability
that T rejects w + v is at least ε(δ). The probability that T rejects w + v on the other hand is
at least q0 + q1: The first quantity is the probability that 〈y, v〉 = 0 and 〈y, w + v〉 = 〈y, w〉 = 1
while the second is the probability that 〈y, v〉 = 1 and 〈y, w + v〉 = 1 (where the 〈y, w + v〉 = 1 iff
〈y, v〉 = 0). We conclude thus that q0 + min{q1, q2} ≥ ε(δ).

The proof of Theorem 1.1 now follows easily.

Proof: [Theorem 1.1] Suppose C is 1
3 -biased, then the theorem follows from Lemma 6.4. Suppose

C is not 1
3 -biased. Then let v ∈ C be such that δ(0, v) = 1 − τ > 5

6 . Let C ′ a linear subcode of
C−{v} such that C = C ′||v. Then C ′ is nt-sparse, has distance 1

2−n−γ (inheriting these properties
from C). Most importantly, we note that C ′ is also moderately small-biased. To see this consider
a codeword w of C ′ of weight (1− ε) · n. Then δ(v, w) ≤ τ + ε. Since τ ≤ 1/6, it must be the case
ε ≥ 1

3 − n−γ ≥ 1
6 (for sufficiently large n). We conclude that C ′ has no codewords of weight more

that 5/6 · n making it a (1/3)-biased code. We can now apply Lemma 6.4 to conclude that C ′ is
strongly locally testable, and thus by Lemma 6.7, C = C ′||v is also strongly locally testable.

7 On Sparse Random Codes

In this section we show that random linear codes with O(nt) codewords are self-correctible and
testable with high probability, and that random linear encodings are locally decodable with high
probability.

In contrast we point out that codes with quasi-polynomially many codewords are not locally
testable, by showing they have no small weight codewords in their dual.

The first part follows immediately from the following easy fact.

Proposition 7.1 Let E : {0, 1}t log n → {0, 1}n be a random linear map chosen by picking A ∈U

{0, 1}n×(t log n) and letting E(m) = A · m. Let C = {E(m)|m ∈ {0, 1}t log n}. Then with high
probability C is O(log n/

√
n)-biased.

We conclude with the following theorem (which follows easily from Theorem 1.2, Theorem 5.5, and
Corollary 4.6).

Theorem 7.2 For every t < ∞ there exists a constant k = kt < ∞ such that a randomly chosen
linear encoding (chosen by picking its t log n basis vectors uniformly from {0, 1}n with replacement)
is k-locally decodable, with probability tending to 1. Furthermore, the image of the encoding is
k-locally testable and k-self-correctible, with probability tending to 1.

Conversely we have:

Proposition 7.3 For every t, if C ⊆ {0, 1}n is a random linear code of size 2(log n)t
, then C⊥ has

distance Ω((log n)t−1) with high probability, and so can not be tested with o((log n)t−1) queries.

19

Proof: Let k = (log n)t. Let C ⊆ {0, 1}n be a randomly chosen linear code with 2k codewords.
Specifically C is chosen by picking a generator matrix G ⊆ {0, 1}k×n uniformly at random and
letting C = {xG|x ∈ {0, 1}k}. The claim that C⊥ has distance greater than ` = Ω((log n)t−1) is
equivalent to saying that every subset of ` columns of G are linearly independent, or equivalently
no subset of ` or fewer columns of G add up to zero. The probability that a specific (non-empty)
subset sums to zero is at most 2−k. By the union bound, the probability that there exists a subset
of fewer than ` columns that sum to zero is at most

∑`
i=0

(
n
i

)
2−k which goes to zero if ` � k

log n .
The proposition follows.

Acknowledgments

We would like to thank Oded Goldreich for suggesting that random codes may be testable using
the techniques of [11], and for endless inspiration and enthusiasm. We are grateful to Simon Litsyn
for many valuable discussions and encouragement. We would like to thank Swastik Kopparty for
helpful discussions.

References

[1] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in
polylogarithmic time. In Proceedings of the 23rd ACM Symposium on the Theory of Computing,
pages 21–32, New York, 1991. ACM Press.

[2] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean Francois Raymond. Breaking the
o(n1/(2k−1)) barrier for information-theoretic private information retrieval. In Proceedings of
the 43rd IEEE Symposium on Foundations of Computer Science (FOCS), 2002.

[3] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, pages 1–10, New York, 2004. ACM Press.

[4] Eli Ben-Sasson, Oded Goldriech, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short
PCPs verifiable in polylogarithmic time. In Proceedings of the Twelfth Annual IEEE Confer-
ence on Computational Complexity, pages 120–134, June 12–15 2005.

[5] Eli Ben-Sasson and Madhu Sudan. Short PCPs with poly-log rate and query complexity. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 266–275,
New York, 2005. ACM Press.

[6] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

[7] Gerard Cohen, Iiro Honkala, Simon Litsyn, and Antoine Lobstein. Covering Codes. North-
Holland Mathematical Library, 54. North-Holland, Amsterdam, 1997.

[8] Irit Dinur. The PCP theorem by gap amplification. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, pages 241–250, New York, 2006. ACM Press. Preliminary
version appeared as an ECCC Technical Report TR05-046.

20

[9] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science,
Vancouver, Canada, 16-19 November 2002.

[10] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In STOC ’00: Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pages 80–86, New York, NY, USA, 2000. ACM Press.

[11] T. Kaufman and S. Litsyn. Almost orthogonal linear codes are locally testable. In Proceedings
of the Forty-sixth Annual Symposium on Foundations of Computer Science, pages 317–326,
2005.

[12] Ilia Krasikov and Simon Litsyn. On Binary Krawtchouk Polynomials, volume 56 of DIMACS
series in Discrete Mathematics and Theoretical Computer Science, pages 199–212. American
Mathematical Society, Providence, 2001.

[13] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and appli-
cations. SIAM Journal on Computing, 22(4):838–856, 1993.

[14] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. In Pro-
ceedings of the 39th Annual ACM Symposium on Theory of Computing, page (to appear).
ACM Press, 2007.

21

