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Abstract

A basic goal in Property Testing is to identify a minimal
set of features that make a property testable. For the case
when the property to be tested is membership in a binary lin-
ear error-correcting code, Alon et al. [2] had conjectured
that the presence of a single low weight code in the dual,
and “2-transitivity” of the code (i.e., the code is invariant
under a 2-transitive group of permutations on the coordi-
nates of the code) suffice to get local testability. We refute
this conjecture by giving a family of error correcting codes
where the coordinates of the codewords form a large field
of characteristic two, and the code is invariant under affine
transformations of the domain. This class of properties was
introduced by Kaufman and Sudan [13] as a setting where
many results in algebraic property testing generalize. Our
result shows a complementary virtue: this family also can
be useful in producing counterexamples to natural conjec-
tures.

1 Introduction

Property testing is interested in the task of testing, in very
little time, if a “massive” function f satisfies some property
P . Specifically, if the function f maps a finite set D to a
finite range R and is given as an oracle, and if the property
P is specified by a family of functions F which satisfy the
property, then the field tries to produce probabilistic tests
that accepts f ∈ F while rejecting f that is far from F with
constant probability. The goal is typically to design tests
that make constant number of queries (independent of |D|)
into f .

The first modern-day property test was given by Blum,
Luby and Rubinfeld [8]. (One can count the classical polls
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as folklore tests for the “majority is in favor” property.)
Property testing also played a central role in results on
multiprover interactive proofs [6, 5, 10] and PCPs [4, 3]
etc. Property testing was formalized in Rubinfeld and Su-
dan [16]. Most early properties were algebraic in nature and
led to tests for membership in “error-correcting codes”. A
systematic study of property testing was started by Goldre-
ich, Goldwasser, and Ron [11] who expanded its scope to
combinatorial and graph-theoretic properties. Today a vast
collection of properties are known to be locally testable very
efficiently. In particular, for graph theoretic properties the
class of properties that can be tested with constant number
of queries is now almost fully understood [1, 9].

In terms of testing membership in error-correcting codes
however, the knowledge is not very complete. Some at-
tempts to remedy this were proposed by Alon et al. [2] who
suggested that properties that satisfy sufficiently rich “in-
variance” conditions (along with some other obviously nec-
essary conditions) may be testable. In particular Alon et
al. made a formal conjecture (which we call the AKKLR-
conjecture) that the property of membership in a “binary
error-correcting code that is 2-transitive and has a small
weight vector in its dual” may be testable with O(1) local-
ity. (We formalize their statement below). In their work [2]
they supported this conjecture by showing that it holds for
the particular case of families of small degree polynomials
over finite fields.

In this work, we refute their conjecture. We show a fam-
ily of error-correcting codes which satisfy nice invariance
properties and yet do not have very local tests. (See Con-
jecture 4 and Theorem 6 below.)

Our counterexample comes from the family of “affine-
invariant” properties, whose study was introduced by Kauf-
man and Sudan [13]. Affine-invariant families form natu-
ral generalizations of the class of low-degree multivariate
polynomials over finite fields. [13] show that this class of
families were locally testable for some choices of the pa-
rameters giving some weak confirmation of the AKKLR-
conjecture. In this work we use other settings of param-
eters to give a counterexample to the AKKLR conjecture



also, thus complementing the results of [13]. Together these
works highlight the power of affine-invariant families in il-
lustrating the power and limitations of property testing in an
algebraic/coding-theoretic context.

2 Preliminaries and Results

We will use Fq to denote the finite field of cardinality q. For
a finite set x←D will denote a random variable distributed
uniformly over D. We will mostly be interested in Boolean
functions over D. We will use F2 (the finite field on 2 el-
ements) to denote the range. We use {D → F2} to denote
the set of all functions from the set D to F2.

2.1 Distance, Local Testability, Con-
straints, and Characterizations

For a finite set D and functions f, g : D → F2, we define
the (normalized Hamming) distance between f and g, de-
noted δ(f, g), to be Prx←D[f(x) 6= g(x)]. For a function
f : D → F2 we let the weight of f , denoted wt(f), be
the number of x ∈ D such that f(x) 6= 0. For a fam-
ily of functions F ⊆ {D → F2}, define δ(f,F) to be
ming∈F{δ(f, g)}. We say f is δ-far from F if δ(f,F) > δ
and δ-close otherwise.

The central goal of this paper is to analyze the local testa-
bility of the property of membership in a given ensemble
of families F = {Fn}n with Fn ⊆ {Dn → F2}, where
|Dn| → ∞ as n→∞.

Definition 1 (k-local test) For integer k and reals ε2 >
ε1 ≥ 0 and δ > 0, a (k, ε1, ε2, δ)-local test for a property
F is a probabilistic algorithm that, given oracle access to a
function f ∈ F , queries f on k locations (probabilistically,
possibly adaptively), and accepts f ∈ F with probability at
least 1− ε1, while accepting functions f that are δ-far from
F with probability at most 1− ε2.

Given an ensemble of families F = {Fn}n, we say F is
k-locally testable if there exist 0 ≤ ε1 < ε2 and δ > 0 such
that for for every n, Fn is (k, ε1+o(1), ε2−o(1), δ)-locally
testable (where the o(1) term goes to zero as n→∞).

While eventually our main theorem gives a property (fam-
ily) that is not even testable according to the definition
above, our proof first rules out a more restrictive class of lo-
cal tests, called “non-adaptive”, “perfect” tests. We define
these notions next. A tester is non-adaptive if the sequence
of queries it makes is independent of the function f that is
being tested (and depends only on the randomness of the

tester). A tester for a property F ⊂ {D → F2} is perfect if
it accepts every function f ∈ F with probability 1.

For a special class of properties called “linear” properties,
the existence of a k-local test implies the existence of a non-
adaptive, perfect k-local test as shown by Ben-Sasson et
al. [7]. We describe this result next.

A property F = {Fn ⊂ {Dn → F2}} is linear if for
every pair f, g ∈ Fn it is the case that f + g ∈ Fn (where
(f + g)(x) = f(x) + g(x)( mod 2)).

Theorem 2 ([7, Theorem 3.3]) Let F = {Fn}n be a lin-
ear property that is k-locally testable. Then F is k-locally
testable by a non-adaptive, perfect, tester. Specifically, if
Fn is (k, ε1, ε2, δ)-locally testable, then Fn is (k, 0, ε2 −
ε1, δ)-locally testable by a non-adaptive tester.

Theorem 2 will be very useful in presenting our counterex-
ample to the AKKLR conjecture.

2.2 Linear Codes, Duals, 2-Transitivity
and the Conjecture

We now move towards describing the conjecture by Alon et
al. [2] on the testability of certain class of properties. The
properties considered in [2] are for membership in linear
codes and so we define these next.

A property given by a family of functions F ⊆ {D →
F2} is linear if for every f, g ∈ F it is the case that f +
g ∈ F . For linear properties, a natural way to test them is
through “low-weight” functions in their “dual”. To define
this notion, we let f · g =

∑
x∈D f(x) · g(x) denote the

inner product of f and g. (Here and later the summation and
product are done over the field F2.) For a linear property F ,
its dual, denoted F⊥, is the family of functions {g : D →
F2 | g · f = 0,∀f ∈ F}. One way (and by the results
of Ben-Sasson et al. [7], essentially the only way) to test
a linear property is to pick a function g ∈ F⊥ of weight at
most k and verify that f ·g = 0. It is thus natural to examine
the structure of the dual F⊥ to study the testability of F .

Definition 3 (2-Transitivity) The automorphism group of
a family F ⊆ {D → F2}, denoted Aut(F), is the set

{π : D → D | π is a permutation andf ∈ F ⇒ f◦π ∈ F}.

(It is easy to verify that this set is a group under composition
of functions.)

A group G of permutations mapping D to D is is 2-
transitive if for every x, x′, y, y′ ∈ D such that x 6= y



and x′ 6= y′, there exists π ∈ G such that π(x) = x′ and
π(y) = y′.

Abusing notation slightly, we say that F is 2-transitive if
Aut(F) is 2-transitive.

We are now ready to state the AKKLR-conjecture

Conjecture 4 ([2]) For every d ∈ N, there exists k =
k(d) < ∞ such that the following holds: Let F = {Fn}n
be an ensemble of properties such that for every n,

1. F⊥n has a non-zero function of weight at most d, and

2. Fn is 2-transitive.

Then F is k-locally testable.

We refute this conjecture here.

Theorem 5 For every k ≤ ∞, there is an ensemble of do-
mains {Dn}n and an ensemble of properties F = {Fn}n
such that the following hold:

1. For every n, F⊥n has a non-zero function of weight at
most 8.

2. For every n, Fn is 2-transitive.

3. F is not k-locally testable.

As pointed out earlier, we plan to prove this theorem by
ruling out a restrictive class of tests that are non-adaptive
and perfect and then using Theorem 2. However to use their
theorem we need to ensure that our property is linear. The
following theorem gives the more technical result that we
show.

Theorem 6 For every k ≤ ∞, there is an ensemble of do-
mains {Dn}n and an ensemble of properties F = {Fn}n
such that the following hold:

1. F is linear.

2. For every n, F⊥n has a non-zero function of weight at
most 8.

3. For every n, Fn is 2-transitive.

4. F is not k-locally testable by a non-adaptive, perfect
tester.

Note that Theorem 5 follows immediately by combining
Theorem 6 and Theorem 2. So, in the rest of the paper,
we focus on Theorem 6.

2.3 The Counterexample

Our counterexample family comes from a broad class of
properties introduced by Kaufman and Sudan [13]. These
are the class of “affine-invariant” families defined below.

Let F be some finite field and let K be a finite extension
(field) of F. For integer n, let F be a property of functions
from Kn to F. Then F is said to be affine invariant if for
every affine map A : Kn → Kn and every f ∈ F , it is the
case that f ◦A ∈ F .

Proposition 7 For every field K and integer n, the set of
affine permutations from Kn → Kn is 2-transitive.

Proof: It suffices to prove that for every x1, x2, y1, y2 ∈ Kn

with x1 6= x2 and y1 6= y2, there exists an affine permuta-
tion A : Kn → Kn such that A(x1) = y1 and A(x2) = y2.
Let A be given by A(x) = Mx + b where M ∈ Kn×n and
b ∈ Kn. The condition that it be a permutation implies M
should be non-singular; and satisfy M(x1−x2) = y1− y2,
while b = y1 −Mx1. It is easy to see that a non-singular
M satisfying M(x1 − x2) = y1 − y2 exists.

It follows that every affine-invariant family is 2-transitive.
This gives a rich family of families to examine and to seek
sufficient conditions for testability. Of particular interest to
us are functions formed by applying the Trace map from K
to F, defined below.

Definition 8 Let F = Fq and K = Fqs be finite fields.
Then the Trace function Tr = TrK,F : K → F is given
by Tr(x) = x + xq + xq2

+ · · ·xqs−1
.

A fairly rich class of affine-invariant families can be con-
structed by starting with a carefully chosen set of monomi-
als over n variables with coefficients from K, and then tak-
ing their Trace and then closure under addition and affine
transformations.

We get our family similarly. We start with simple fields F =
F2 and K = F2s . We fix n to 1 (there are good reasons to
do so). We then consider monomials of the form x2i+1 and
take a moderate sized subset of these and take their traces
and affine closures. The resulting family is described below.

For positive integers k < s, let

F∗k,s =
{

f : F2s → F2 | ∃β, β0, . . . , βk ∈ F2n s.t.
f(x) = Tr(β + β0x +

∑k
i=1 βix

2i+1)

}
.

In the following section we confirm that for every k, s, the
family F∗k,s is affine-invariant (and hence 2-transitive) —



see Lemma 10. We also show the basic property thatF∗k,s ⊆
F∗k+1,s. We also show that this containment is strict if k <
bs/2c. Both properties are straightforward to show.

We then define a class of functions that we call “RM(2) =
RMs(2)”. These functions are essentially what are known
as Reed-Muller functions of order 2 (for instance, in [2]).
(Note that our definition may be somewhat different from
theirs. We won’t relate our definition to theirs, but work in
a self-contained manner with our definition.) We show that
RMs(2) contains F∗k,s for every k. By our definition the
duals of these RM(2) families always contain functions of
weight 8. As a result we get that the familiesF∗k,s satisfy the
low-dual-weight condition of the AKKLR conjecture. We
also note that these functions have large pairwise distance,
i.e., for every f 6= g ∈ RM(2), δ(f, g) ≥ 1/7.

This leads us to the central question: Do these families have
local testers? We show that this is not the case. This part
of our analysis is novel. We show that any function in the
dual of F∗k,s of weight at most k is also a word in the dual
of RM(2). We then use this to conclude that F∗k,s has no
k-local tests (Lemma 16).

Putting these results together we immediately get a proof of
Theorem 6 (see Section 3.4).

3 Proof of Main Theorem

3.1 Basic properties of F∗k,s

We start with the simple claim that F∗k,s is linear.

Lemma 9 For every k, s, F∗k,s is linear.

Proof: Follows from the definition of F∗k,s and the fact that
the Trace function is linear, i.e., Tr(x+y) = Tr(x)+Tr(y).

Next we show the affine invariance of F∗k,s.

Lemma 10 For every k, s, F∗k,s is affine-invariant.

Proof: Fix an affine transformation A : F2s → F2s given by
A(x) = ax + b for a, b ∈ F2s . Fix also f ∈ F∗k,s given by

f(x) = Tr(c + b0x +
∑k

i=1 bix
2i+1) for some bi, c ∈ F2s ,

0 ≤ i ≤ k. We need to show that f ◦A ∈ F∗k,s.

Note that (f ◦ A)(x) = f(ax + b) = Tr(c + b0(ax +
b) +

∑k
i=1 bi(ax + b)2

i+1). By the linearity of the Trace
function, we have (f ◦ A)(x) = Tr(c) + Tr(b0(ax +
b)) +

∑k
i=1 Tr(bi(ax + b)2

i+1). By the linearity of F∗k,s

(Lemma 9), it suffices to prove that each individual sum-
mand is in F∗k,s.

This is verified easily for Tr(c) as well as Tr(b0(ax+b)) =
Tr(b0ax) + Tr(b0b). We thus turn to the term Tr(bi(ax +
b)2

i+1). We have

Tr(bi(ax + b)2
i+1)

= Tr(bi(ax + b)2
i

(ax + b))

= Tr(bi(a2i

x2i

+ b2i

)(ax + b))

= Tr(bi(a2i+1x2i+1 + a2i

bx2i

+ ab2i

x + b2i+1))

= Tr(bia
2i+1x2i+1) + Tr(bia

2i

bx2i

)

+Tr(biab2i

x) + Tr(bib
2i+1))

The first, third, and fourth terms in the final expression
above are again syntactically in the class F∗k,s. For the

second term, note that it is of the form Tr(βx2i

) =
Tr(β2x2i+1

) = · · · = Tr(β2s−i

x2s

) = Tr(β2s−i

x) and
thus Tr(βx2i

) ∈ F∗k,s also. Using the linearity of F∗k,s we

thus conclude that Tr(bi(ax + b)2
i+1) ∈ F∗k,s and this suf-

fices to conclude that f ◦A ∈ F∗k,s.

Lemma 11 For every k < s − 1, F∗k,s ⊆ F∗k+1,s. If k <
bs/2c then F∗k,s ( F∗k+1,s.

Proof: The proof of the first containment follows from the
definition. The second part can be derived from, for in-
stance, [15, Chapter 9, Theorem 7]. For the sake of com-
pleteness we include a proof here.

We claim that for distinct 1 ≤ i, j < s/2, the func-
tions Tr(x2i+1) and Tr(x2j+1) have disjoint support, when
viewed as polynomials of degree at most 2s − 1. This
suffices, since it implies that the function Tr(x2k+1) 6∈
F∗k − 1, s. We prove the claim below.

Note that the function Tr(x2i+1) has support on the mono-
mials xd for d = 2i+` + 2`( mod 2s − 1) and sim-
ilarly Tr(x2j+1) is supported by the monomials xd for
d = 2j+m + 2m( mod 2s − 1) (here we use the phrase
mod non-conventionally to refer to the unique integer in
[2s−1] from the equivalence class). Suppose for contradic-
tion that 2i+` + 2` = 2j+m + 2m( mod 2s − 1). Then, by
mutliplying both sides by 2s−` and reducing modulo 2s−1,
we see that we have 2i + 1 = 2j+m′

+ 2m′
( mod 2s − 1)

(where m′ = m + s − `). Now we consider two cases: If
m′ ≤ s/2, then the unique integer between 1 and 2s − 1
equal to 2j+m′

+ 2m′
( mod 2s − 1) is 2j+m′

+ 2m′
. But

then 2j+m′
+ 2m′ 6= 2i + 1 unless m′ = 0 and i = j

(violating distinctness of i and j). In the other case, if



m′ > s/2, then the unique integer in [2s − 1] equal to
2m′

+ 2j+m′
> 2s/2 > 2i + 1. So again the modular

equivalence can not hold. This proves the claim, and thus
the lemma.

3.2 Reed-Muller of Order 2 Family

We now define a family of codes that contain all the families
F∗k,s that we are investigating and help understand its limita-
tions. These are the family of Reed-Muller codes of order 2.
For our purpose we define this family as follows. First, for
points x0, x1, . . . , x` ∈ F2s , define A(x0;x1, . . . , x`) to be
the affine subspace generated by x1, . . . , x` through x0. I.e.,
A(x0;x1, . . . , x`) = {x0 +

∑`
i=1 aixi|a1, . . . , a` ∈ F2}.

Now we define RMs(2) to be

RMs(2) =
{

f : F2s → F2|∀x0, x1, x2, x3 ∈ F2s

,∑
z∈A(x0;x1,x2,x3)

f(z) = 0

}
.

We first note the obvious fact that RMs(2) has weight 8
functions in its dual.

Proposition 12 For s ≥ 3, RMs(2)⊥ contains weight 8
functions.

Proof: Follows immediately from the definition. Let
x1, x2, x3 be F2-independent elements of F2s . Then
A(0, x1, x2, x3) consists of exactly 8 elements of F2s . Let
g(z) = 1 if z ∈ A(0, x1, x2, x3) and g(z) = 0 otherwise.
Then g is a weight 8 codeword and for every f ∈ RMs(2)
we have that f · g = 0.

We now show that RMs(2) contains F∗k,s for every k.

Proposition 13 For every k < s, F∗k,s ⊆ RMs(2).

Proof: Using the linearity of the Trace func-
tion (Tr(x + y) = Tr(x) + Tr(y)) we
note that it suffices to show that every f ∈
{Tr(β),Tr(β0x),Tr(β1x

21+1, . . . ,Tr(βkx2k+1)} sat-
isfies the “RM(2)” constraint:

∑
z∈A(x0;x1,x2,x3)

f(z) = 0
for every x0, x1, x2, x3 ∈ F2s .

For f = Tr(β) and f = Tr(β0x) this is straight-
forward, since f(x + y) = f(x) + f(y) and so the∑

z∈A(x0;x1,x2,x3)
f(z) = 8f(x0) + 4f(x1) + 4f(x2) +

4f(x3) = 0 (since we are performing the arithmetic mod-
ulo 2).

Now consider Tr(βx2i+1). We will show that∑
z∈A(x0;x1,...,x3)

z2i+1 = 0. It then follows that

∑
z Tr(βz2i+1) = Tr(β(

∑
z z2i+1)) = Tr(0) = 0. Note

further that (x + y)2
i+1 = x2i+1 + y2i+1 + x2i

y + y2i

x.
Using this expansion we have:∑
z∈A(x0;x1,...,x3)

z2i+1

=
∑

w∈A(x0;x1,x2)

w2i+1 + (w + x3)2
i+1

=
∑

w∈A(x0;x1,x2)

(wx2i

3 + w2i

x3 + x2i+1
3 )

= x2i

3

∑
w∈A(x0;x1,x2)

w + x3

∑
w∈A(x0;x1,x2)

w2i

+ 0

= x2i

3 (4x0 + 2x1 + 2x2) + x3(4x2i

0 + 2x2i

1 + 2x2i

2 )
= 0

Propositions 12 and 13 give us the following.

Corollary 14 For every s > 3 and k < s, F∗⊥k,s contains
weight 8 codewords.

Finally we show that members of the Reed Muller family
are far apart from each other. While a careful examination
would probably yield a better bound on this distance, here
we get a weaker bound, with a simpler argument.

Proposition 15 For every f 6= g ∈ RMs(2), δ(f, g) ≥
1/7.

Proof: Consider any function f ∈ RMs(2) and let h be
such that δ(f, h) < 1/14. We claim that h uniquely spec-
ifies f : In particular the algorithm: Pick x1, x2, x3 at ran-
dom and output

∑
z∈A(x;x1,x2,x3)−{x} h(z), outputs f(x)

with probability at least 1 − 7δ(f, h) > 1/2 and thus de-
fines f uniquely.

We thus conclude that there can not exist f, g ∈ RM(2)
such that δ(f, g) < 1/7.

3.3 Key Lemma

Finally we move to the main lemma of the paper. The goal
of this section is to prove the following lemma.

Lemma 16 (Main Lemma) Suppose g ∈ (F∗k,s)
⊥ has

weight t ≤ k. Then g ∈ RM(2)⊥.



To prove this lemma we first state three useful sub-lemmas,
which yield the main lemma easily. We prove the sub-
lemmas later.

The sub-lemmas refer to a positive integer m and the set
U = {(i, j)|0 ≤ i < j ≤ m or i = j = 0}. Note that
|U | = 1 +

(
m+1

2

)
. We also use b0 to denote the zero of F2s .

Lemma 17 Let a1, . . . , at ∈ F2s be such that∑t
i=1 f(ai) = 0 for every f ∈ F∗k,s. Further, sup-

pose there exists g ∈ RM(2) such that
∑t

i=1 g(ai) 6= 0.
Then there exists m ≤ t, F2-linearly independent
elements b1, . . . , bm ∈ F2s , and a non-zero vector
〈λij〉(i,j)∈U ∈ F|U |2 such that

∑
(i,j)∈U λijf(bi + bj) = 0,

for every f ∈ F∗k,s.

Lemma 18 Suppose b1, . . . , bm ∈ F2s are F2-linearly in-
dependent elements, and 〈λij〉(i,j)∈U ∈ F|U |2 is a non-
zero vector such that

∑
(i,j)∈U λijf(bi + bj) = 0 for ev-

ery f ∈ F∗k,s. Then there exists a non-empty set E ⊆
{(i, j)|1 ≤ i < j ≤ m} such that for every d ∈ [k] it is

the case that
∑

(i,j)∈E

(
b2d

i bj + b2d

j bi

)
= 0.

Finally we show that the conclusion of the previous lemma
implies that m > k + 1.

Lemma 19 Suppose b1, . . . , bm ∈ F2s are F − 2-linearly
independent elements and suppose E ⊆ {(i, j)|1 ≤ i <
j ≤ m} is a non-empty set such that for every d ∈ [k],∑

(i,j)∈E

(
b2d

i bj + b2d

j bi

)
= 0. Then m > k + 1.

We first show that Lemma 16 follows from the three sub-
lemmas.

Proof: (of Lemma 16) Let h ∈ (F∗k,s)
⊥ and suppose h 6∈

RM(2)⊥. We wish to show t > k. (We actually show
t > k + 1, but we state the weaker bound for notational
simplicity.)

Let a1, . . . , at ∈ F2s be the points such that h(ai) =
1. By definition of (F∗k,s)

⊥ we have that 0 =∑
x∈F2s

f(x)h(x) =
∑t

i=1 f(ai). Since h 6∈ RM(2)⊥,
there must exist a function g ∈ RM(2) such that∑t

i=1 g(ai) 6= 0. Using Lemma 17 we get that there ex-
ist m ≤ t, linearly independent points b1, . . . , bm ∈ F2s ,

and a non-zero vector 〈λij〉(i,j)∈U ∈ F(m+1
2 )+1

2 such that∑
(i,j)∈U λijf(bi + bj) = 0 for every f ∈ F∗k,s, where

b0 = 0. Applying Lemma 18 we get that there exists a non-
empty set E ⊆ {(i, j)|1 ≤ i < j ≤ m} such that for every
d ∈ [k] we have

∑
(i,j)∈E

(
b2d

i bj + b2d

j bi

)
= 0. Applying

Lemma 19 we then get that m > k and thus t ≥ m > k as
desired.

We now turn to proving the three sub-lemmas. Again the
crucial result here is Lemma 19 and the other two are just
to pin the problem down.

Proof: (of Lemma 17) Let b1, . . . , bm be the largest linearly
independent subset of points among a1, . . . , at and let g ∈
RM(2) be the function satisfying

∑t
i=1 g(ai) 6= 0.

We first claim that for every function f ∈ F∗k,s at least one
of the following must hold: (1) f(0) 6= g(0), or (2) there
exists i ∈ [m] such that f(bi) 6= g(bi), or (3) there exist
(i, j) ∈ [m] × [m] such that f(bi + bj) 6= g(bi + bj). To
see this claim, assume otherwise, for some f ∈ F∗k,s. Note
that we can prove, by induction on the size of the set S, that
for every set S ⊆ [m] we have f(

∑
i∈S bi) = g(

∑
i∈S bi).

Indeed, this is obviously true for |S| ≤ 2. Now consider a
set S = T ∪ {i, j} where i, j 6∈ T . Let b =

∑
`∈T b`. Now

note that

f(b + bi + bj)
= f(0) + f(b) + f(bi) + f(bj) + f(b + bi)

+ f(b + bj) + f(bi + bj)
= g(0) + g(b) + g(bi) + g(bj) + g(b + bi)

+ g(b + bj) + g(bi + bj)
= g(b + bi + bj),

where the first and third inequalities follow from the fact
that both f, g ∈ RM(2) while the middle equality is by
induction. But then, we have that f and g agree on the en-
tire subspace, which contradicts the fact that

∑t
i=1 f(ai) 6=∑t

i=1 g(ai). Hence our claim must be true.

Consider the set V = {〈f(bi+bj)〉(i,j)∈U |f ∈ F∗k,s}. V is a

linear subspace of F(m+1
2 )+1

2 sinceF∗k,s is a linear subspace;

but V 6= F(m+1
2 )+1

2 (since in particular 〈g(bi +bj)〉(i,j)∈U 6∈
V . Thus there must be a non-trivial constraint 〈λij〉(i,j)∈U

such that every vector x ∈ V satisfies
∑

(i,j)∈U λijxij = 0.

This yields the lemma.

Proof: (of Lemma 18) We use the basis functions to estab-
lish this lemma. Let b0, b1, . . . , bm and 〈λij〉i,j be as given.

This proof also relies on the linearity of the the Trace func-
tion, and the additional fact that Tr(ax) = 0 for every
x ∈ F2s if and only if a = 0. (This is easily seen since
Tr(ax) is a non-zero polynomial of degree 2s−1 in x, if
a 6= 0.)

First consider the constant function 1 = Tr(β) for some
β ∈ F2s . Since Tr(β) ∈ F∗k,s we have

∑
i,j λij =∑

i,j λijTr(β) = 0, and thus λ00 =
∑

(i,j)∈U−(0,0) λij .

Next we consider the functions Tr(β0x) ∈ F∗k,s.
We have 0 =

∑
i,j λijTr(β0(bi + bj)) =



Tr
(
β0

∑
i,j λij(bi + bj)

)
. Using the aforementioned

property of the Trace function, we have that the above iden-
tity holds for every β0 ∈ F2s only if

∑
i,j λi,j(bi + bj) = 0.

Let τi =
∑

j<i λji +
∑

j>i λij . (For simplicity of no-
tation below, we will assume λij = λji.) Then we have
0 =

∑
i,j λij(bi + bj) =

∑m
i=0 τibi =

∑m
i=1 τibi (where

the last equality follows from b0 = 0). But b1, . . . , bm are
linearly independent over F2 and τi, λij ∈ F2, so the only
way

∑m
i=1 τibi = 0 is if τi = 0 for every i. Thus we get

λ0i =
∑

j 6=0 λji for every i ∈ [m]

Finally we consider Tr(βdx
2d+1) ∈ F∗k,s for d ∈

[k]. We have 0 =
∑

i,j λijTr
(
βd(bi + bj)2

d+1
)

=

Tr
(
βd

∑
i,j λij(bi + bj)2

d+1
)

. Again, we have that
the above identity holds for every βd ∈ F2s only if∑

i,j λi,j(bi + bj)2
d+1 = 0. Expanding (x + y)2

d+1 as

x2d+1 + y2d+1 + x2d

y + xy2d

, we get

0 =
∑
i,j

λij

(
b2d+1
i + b2d+1

j + b2d

i bj + bib
2d

j

)
=

m∑
i=1

τib
2d+1
i +

∑
1≤i<j≤m

λij(b2d

i bj + bib
2d

j )

=
∑

(i,j)∈E

(b2d

i bj + bib
2d

j ),

where E = {(i, j)|1 ≤ i < j ≤ m s.t. λij 6= 0} as required
for the lemma statement. The only remaining issue is to
show that E 6= ∅.

We claim that if E = ∅ we have λij = 0 for every i, j.
For i, j ≥ 1 this follows from the definition of E. For
i 6= 0 and j = 0 this follows from the identity above
that λ0i =

∑
j 6=0 λji = 0. For i = j = 0, we also have

λ00 =
∑

(i,j)∈U−(0,0) λij = 0. But this contradicts the hy-

pothesis that 〈λij〉 6= 0, and so we conclude E 6= ∅.

Proof: (of Lemma 19) This is the crux of our analysis and
uses a mix of linear and polynomial algebra arguments. As-
sume for contradiction that m ≤ k + 1.

Recall we are given that for every d ∈ [k]
∑

(i,j)∈E(b2d

i bj +
bibj2d) = 0. Note further that we also trivially have this
condition for d = 0, since

∑
(i,j)∈E(b2d

i bj + bibj2d) =∑
(i,j)∈E(bibj + bibj) =

∑
(i,j)∈E 0.

For i ∈ [m], let ρi =
∑
{j|(i,j) or (j,i)∈E} bj . Then we can

rewrite
∑

(i,j)∈E(b2d

i bj + bibj2d) as
∑m

i=1 ρib
2d

i and so we

have, for every d ∈ {0, 1, . . . , k} as
∑m

i=1 ρib
2d

i = 0.

Consider the m × m matrix A = (aij) with aij = b2i−1

j .
Then the previous paragraph implies that A · ρ = 0 for the

column vector ρ = 〈ρ1, . . . , ρm〉. (In particular, we have
that the ith entry of A · ρ equals

∑m
j=1 b2i−1

j ρj which is 0
for every i ∈ {1, . . . , k + 1} ⊇ {1, . . . ,m}.)

Next we note that ρ 6= 0. This is true since for at least one
i ∈ [m] the summation

∑
{j|(i,j) or (j,i)∈E} bj sums over a

non-empty set of indices j (since E 6= ∅). But now the
linear independence of b1, . . . , bm over F2 implies that the
summation, and hence ρi, is non-zero.

We conclude that the matrix A is singular. We now use this
fact to infer that A has a non-zero vector in its left kernel,
i.e., there exists a non-zero row vector λ = 〈λ1, . . . , λm〉
such that λA = 0. But now consider the polynomial
Λ(x) =

∑m
i=1 λix

2i−1
. Using this notation, we have

λA = 〈Λ(b1), . . . ,Λ(bm)〉. Thus the condition λA = 0
implies that Λ(bj) = 0 for every j ∈ {1, . . . ,m}.

But now, we have that Λ(x) is a non-zero polynomial (since
λ is a non-zero vector), of degree at most 2m−1. Further-
more Λ is a linearized polynomial and satisfies Λ(x + y) =
Λ(x) + Λ(y). This implies that Λ(bS) = 0 for every
S ⊆ [m], where bS =

∑
i∈S bi. The linear independence of

b1, . . . , bm furthermore implies that the bS’s are all distinct
and thus we get that Λ is a non-zero polynomial of degree
at most 2m−1 with 2m distinct roots, yielding the desired
contradiction.

3.4 Putting it together

We now use the main lemma of the previous subsection to
claim that membership in F∗k,s is not testable with a strong
k-local test (i.e. non-adaptive, one sided error). This part
is more or less standard and follows, for instance, from the
methods in [7]. We include the full details for completeness.

We first summarize our arguments from the previous section
in a slightly more convenient form.

Lemma 20 Fix a1, . . . , at ∈ F2s . For f : F2s → F2

let π(f) = πa1,...,at
(f) = 〈f(a1), . . . , f(at)〉 be the pro-

jection of f to a1, . . . , at. Let V ⊆ Ft
2 be the set V =

{π(f)|f ∈ F∗k,s}, and let W = {π(f)|f ∈ RMs(2)}. If
t ≤ k, then V = W .

Proof: We first note that V and W are linear subspaces of
Ft

2. This follows from the fact that F∗k,s and RM(2) are
linear spaces. Since F∗k,s ( RM(2), it also follows that
V ⊆ W . Suppose V 6= W . Then it follows, by linear
algebra, that there exist vectors u, w ∈ Ft

2 such that u·v = 0
for every v ∈ V , u ·w 6= 0 and w ∈W . Since w ∈W there
exists h ∈ RM(2) such that w = π(h). Let a′1, . . . , a

′
t′

be the subsequence of a1, . . . , at corresponding to indices



i such that ui 6= 0. Then we have
∑t′

i=1 h(a′i) = 1 while∑t′

i=1 f(a′i) = 0 for every f ∈ F∗k,s. By Lemma 16 we
have t ≥ t′ > k.

We can now prove Theorem 6.

Proof: (of Theorem 6) For every n, the domain Dn = F2n .
For notational consistency with the earlier proofs, we switch
to using s = n. For every s, the family of functions we work
with is Fs = F∗k,s.

First note, by Corollary 14 that for every s, Fs has a non-
zero function in its dual of weight 8. Next, by Lemma 10
we also have that Fs is affine invariant and thus (by Propo-
sition 7) 2-transitive. It remains to show that F is not k-
locally testable. Assume F is t-locally testable, i.e., for all
sufficiently large s there is a one-sided error, non-adaptive,
tester T = Ts that accepts every member of Fs while re-
jecting all functions at distance at least, say, 1/7 from Fs

with positive probability. We argue below that this can not
happen if t ≤ k and s > 2k + 1.

Suppose t ≤ k. Fix the coins of T to some string R and
let a1, . . . , at ∈ F2s be the queries of the tester T on ran-
dom string R. Let π, V and W be as in the statement of
Lemma 20. Since the tester makes one-sided error, it fol-
lows that it must accept every pattern in V (i.e., accepts ev-
ery function f such that π(f) ∈ V ). By Lemma 20 we have
V = W and so the tester accepts every element of RM(2)
also on random string R. Thus we get that every element
of RM(2) is accepted with probability one by the tester T .
Since RM(2) 6= F∗k,s for k < bs/2c (Lemma 11) there
exists a function h ∈ RM(2) − F∗k,s that is accepted with
probability one. Furthermore, by the distance of RM(2)
(Proposition 15) and the fact that F∗k,s ⊆ RM(2), we have
that δ(h,F∗k,s) ≥ 1/7. We conclude that the tester T ac-
cepts functions at distance 1/7 from F∗k,s with probability

one violating the requirement above.

4 Conclusions

In the context of “sublinear time algorithms” it is natural
to ask: How does the locality lower bound on the test scale
with the complexity of the property being tested? Of course,
a related question is: How should one measure the complex-
ity of a property being tested?

A crude measure of the complexity (though certainly an up-
per bound) is the size of the domain. In our case, the using
k = Ω(s) and the lower bound on the locality of the test for
F∗k,s is Ω(s) = Ω(log n) (where n = 2s is the domain size).

But a more refined measure of the complexity of a property
being tested is the logarithm of the number of functions hav-
ing a given property. ForF∗k,s this number is ks. For natural
and in particular, for linear, properties, it is easy to see that
this measure gives an asymptotic upper bound on the local-
ity of property testing (and indeed we would argue that this
test is really not local).

Compared against this refined measure, our lower bounds
are actually within polynomial factors of the upper bound,
which is a more accurate reflection of the tightness (or
looseness) of our analysis.

Moving on to the quest for general understanding of prop-
erty testing, our results do not shed as much light on testa-
bility as we would hope. They actually rule out even lo-
cal “characterizations” of the family F∗k,s. (Informally, a
characterization is a definition of a family in terms of lo-
cal constraints satisfied by its members. See [13, Definition
2.1] for a formal definition.) While this is interesting in the
coding theoretic setting, a more interesting property testing
question is: Does 2-transitivity and the existence of a local
characterization could imply property tests? We feel that
examining this question in the context of affine-invariant
functions would be very illuminating.

Finally, with respect to the specific family we use as the
counterexample, it is conceivable that a simpler family
might have led to a counterexample to, namely, the fam-
ily F?

k,s = {Tr(β + β0x + βkx2k+1)|β, β0, βk ∈ F2s}.
However, we were unable to give a non-trivial lower bound
(or non-trivial upper bounds) on the locality of the charac-
terizations/tests for F?

k,s. Resolving this question could be
useful in a more general study as well.
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[5] László Babai, Lance Fortnow, Leonid A. Levin, and
Mario Szegedy. Checking computations in polyloga-
rithmic time. In Proceedings of the 23rd ACM Sympo-
sium on the Theory of Computing, pages 21–32, New
York, 1991. ACM Press.
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