Probabilistically checkable proofs

Madhu Sudan’

MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA

ABSTRACT

Can a proof be checked without reading it? That certainly
seems impossible, no matter how much reviewers of mathe-
matical papers may wish for this. But theoretical computer
science has shown that we can get very close to this objec-
tive! Namely random consistency checks could reveal errors
in proofs, provided one is careful in choosing the format in
which proofs should be written. In this article we explain
this notion, constructions of such probabilistically checkable
proofs, and why this is important to all of combinatorial
optimization.

Categories and Subject Descriptors

F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic; F.0 [Theory of Computation]: Gen-
eral

General Terms
Algorithms, Theory, Verification

Keywords

Randomness, Logic, Compuational Complexity, Combinato-
rial Optimization

1. INTRODUCTION

The task of verifying a mathematical proof is extremely
onerous, and the problem is compounded when a reviewer
really suspects a fatal error in the proof but still has to find
an explicit one so as to convincingly reject a proof. Is there
any way to simplify this task? Wouldn’t it be great if it
were possible to scan the proof cursorily (i.e., flip the pages
randomly, reading a sentence here and a sentence there) and

*Research supported in part by NSF Awards CCR-0726525
and CCR-0829672. The views expressed in this article are
those of the author and not endorsed by NSF.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

be confident that if the proof was buggy you would be able
to find an error by such a superficial reading?

Alas, the current day formats of proofs don’t allow such
simple checks. It is possible to build a “proof” of any “as-
sertion” (in particular ones that are not true) with just one
single error, which is subtly hidden. Indeed, if you think
back to the “proofs” of “1 = 2” that you may have seen in
the past, they reveled in this flaw of current proof systems.

Fortunately this shortcoming of proofs is not an inherent
flaw of logic. Over the past two decades, theoretical com-
puter scientists have come up with novel formats for writing
proofs of mathematical assertions. Associated with these
formats are probabilistic algorithms that reviewers could
(should?) use to verify the proofs. A reviewer using such
a verification algorithm would be spared from reading the
entire proof (and indeed will only read a “constant number
of bits of the proof” - a notion we will elaborate on, and
explain later). Any researcher who has a proof of a theorem
can rewrite the proof in the prescribed format and offer it
to the reviewer, with the assurance that the reviewer will be
convinced of this new proof. On the other hand if someone
claims a faulty assertion to be a theorem, and offers any
proof (whether in the new format or not), the reviewer will
discover an error with overwhelming probability.

In what follows we will attempt to formalize some of the
notions that we have been using in a casual sense above.
The central notion that will emerge is that of a “Probabilis-
tically Checkable Proof (PCP)”. Existence of such formats
and verification algorithms often runs contrary to our in-
tuition. Nevertheless they do exist, and in Section 4 we
discuss two different approaches that have been used thus
far to construct such PCPs.

PCPs are arguably fascinating objects. They offer a cer-
tain robustness to the logical process of verification that may
not have been suspected before. While the process of prov-
ing and verifying theorems may seem of limited interest (say,
only to mathematicians), we stress that the notion of a “con-
vincing” argument/evidence applies much more broadly in
all walks of life. PCPs introduce the fascinating possibility
that in all such cases, the time taken to assess the validity
of the evidence in supporting some claims, may be much
smaller than the volume of the evidence. In addition to
this philosophical interest in PCPs, there is a very different
(and much more concrete) reason to study PCPs. It turns
out that PCPs shed light in the area of combinatorial op-
timization. Unfortunately this light is “dark™ The ability
to construct PCPs mostly says that for many optimization
problems where we knew that optimal solutions were (NP-

)hard to find, even near-optimal solutions are hard to find.
We discuss these connections soon after we discuss the defi-
nitions of PCPs; in Section 3.

2. DEFINITIONS

We start by formalizing what we mean by “theorems”,
“proofs”, a “format” for proving them, and what it means
to “change” such a format, i.e., what changes are allowed,
and what qualities should be preserved. Hopefully, in the
process we will also manage to establish some links between
the topic of this article and computer science.

To answer these questions we go to back to the essentials
of mathematical logic. A system of logic attempts to clas-
sify “assertions” based on their “truth value”, i.e., separate
true theorems from false assertions. In particular, theorems
are those assertions that have “proofs”. In such a system
every sentence, including theorems, assertions, and proofs,
is syntactically just a finite string of letters from a finite
alphabet. (Without loss of generality the alphabet may be
binary i.e., {0,1}.) The system of logic prescribes some ax-
ioms and some derivation rules. For an assertion to be true,
it must be derivable from the axioms by applying a sequence
of derivation rules. A proof of an assertion A may thus be a
sequence of more and more complex assertions ending in the
assertion A, with each intermediate assertion being accom-
panied with an explanation of how the assertion is derived
from previous assertions, or from the axioms. The exact set
of derivation rules used and the complexity of a single step
of reasoning may vary from one logical system to another,
but the intent is that eventually all logical systems (based
on the same axioms) should preserve two essentials aspects:
The set of theorems provable in any given system of logic
should be the same as in any other. Furthermore, proofs
should be “easy” to verify in each.

This final attempt to abstract the nature of a logical sys-
tem leaves us with the question: What is “easy”? It is this
aspect that led to the development of Turing and Church’s
work on the Turing machine. They ascribed “easiness” to
being a mechanical process, as formalized by the actions of
some Turing machine. Modern computational complexity is
a little more careful with this concept. The task of verifi-
cation of a proof should not only be “mechanical”, but also
“efficient”, i.e., should be polynomial time computable. This
leads to the following abstract notion of a system of logic:
A system of logic is given by a polynomial time verification
algorithm (or simply verifier) V(-,-), that takes two inputs,
an assertion A and some evidence E and produces a Boolean
verdict “accept/reject”. If V(A, E) = accept then and F is a
proof of A. If A is an assertion such that there exists some
E such that V(A, E) = accept, then A is a theorem. In con-
trast to the notion that a proof is easy to verify, our current
state of knowledge suggests that proofs may be hard to find,
and this is the essence of the theory of NP-completeness [11,
27, 25]. Indeed the question “is NP=P?” is equivalent to the
question “can every theorem be proved efficiently, in time
polynomial in the length of its shortest proof?”.

In what follows we will fix some system of logic, i.e., some
verifier Vp and consider other verifiers that are equivalent to
this verifier. In such cases, when the set of theorems does
not change, but the “proofs” may, we call the new system a
“proof system”. So, a proof system V would be equivalent
to Vp if the following conditions hold:

Completeness If A is a theorem (in Vp), then A is a theo-
rem in V. Furthermore there is a proof of A in V' that
is at most a polynomial factor longer than its proof in
Vo.

Soundness If A is not a theorem (in V5) then A is not a
theorem in V.

By allowing different verifiers, or proof systems, for the
same system of logic, one encounters many different ways
in which theorems can be proved. As an example, we show
how the NP-completeness of the famous problem 3SAT al-
lows one to produce formats for proofs that “localize” er-
rors in erroneous proofs. Recall that an instance of 3SAT
is a logical formula ¢ = C1 A --- A C), where Cj is the dis-
junction of 3 literals (variables or their complement). The
NP-completeness of 3SAT implies the following: Given any
assertion A and integer N, there is a 3CNF formula ¢ (of
length bounded by a polynomial in N) such that ¢ is satisfi-
able if and only if A has a proof of length at most N (in Vj).
Thus the deep logical question about the truth of A seems
to reduce to a merely combinatorial question about the sat-
isfiability of ¢. The natural evidence for the satisfiability of
¢ would be an assignment and this is what we refer to as a
“format” for proofs. The advantage of this format is that in
order to reject an “erroneous proof”; i.e., an assignment x
that fails to satisfy ¢, one only needs to point to one clause
of ¢ that is not satisfied and thus only point to the three
bits of the proof of x that this clause depends on to reveal
the error. Thus errors are easily localized in this format.

Can one go further and even “find” this error efficiently?
This is where probabilistically checkable proofs come in. In
what follows we will attempt to describe verifiers that can
verify proofs of satisfiability of 3CNF formulae (noticing that
by the discussion above, this is as general as verifying proofs
of any mathematical statement in any formal system).

2.1 Probabilistically checkable proofs

We start by formalizing the notion of the number of bits
of a proof that are “read” by the verifier. In order to do so,
we allow the verifier to have random access (oracle access)
to a proof. So while the proof may be a binary string = =
(m[1]...7[f)) € {0,1}%, the verifier gets to “read” the ith bit
of ™ by querying an “oracle” for the ith bit of 7 and get =i
in response, and this counts as one query.

Probabilistically checkable proofs are motivated by the
question: “how many bits of queries are really essential to
gain some confidence into the correctness of a theorem”? It
is easy to argue that if the verifier hopes to get away by
querying only a constant number of bits of the proof, then
it can not hope to be deterministic (else a constant time
brute force search would find a proof that the verifier would
accept). So we will allow the verifier to be probabilistic, and
also it to make mistakes (with low probability). This leads
us to the notion of a PCP verifier.

DEFINITION 2.1. A PCP verifier of query complexity ¢(n),
and gap e(n) is a probabilistic algorithm V that, given as
input an assertion A € {0,1}", picks a random string R €
{0, 1}*, makes oracle queries to a proof oracle 7 : {1,...,£} —
{0,1} and produces an accept/reject verdict,

Running time V always runs in time polynomial in n.

Query complexity V makes g(n) queries into the proof m.

Proof size ¢ grows polynomial in n.

Completeness If A is a true assertion, then there exists a
proof w that the verifier accepts on every random string

R.

Soundness, with gap €(n) If A is not true, then for every
proof 7, the probability, over the choice of the random-
ness R, that the verifier accepts at most 1 — €(n).

The above definition associates two parameters to a PCP
verifier, query complexity and gap. The query complexity
is the number of bits of the proof that the verifier “reads”.
The gap is related to the “error” probability of the verifier,
i.e., the probability of accepting false assertions. The larger
the gap, the smaller the error. Since the definition above
introduces several notions and parameters at once, let us
use a couple of simple examples to see what is really going
on.

The classical proof of satisfiability, takes a formula of
length n, on upto n variables and gives a satisfying assign-
ment. The classical verifier, who just reads the entire assign-
ment and verifies that every clause is satisfied, is also a PCP
verifier. Its query complexity g(n) is thus equal to n. Since
this verifier makes no error, its gap is given by €(n) = 1.

Now consider a probabilistic version of this verifier who
chooses to verify just one randomly chosen clause of the
given 3CNF formula. In this case the verifier only needs
to query three bits of the proof and so we have ¢(n) = 3.
How about the gap? Well, if a formula is not satisfiable,
then at least one of the upto n clauses in the formula will
be left unsatisfied by every assignment. Thus once we fix a
proof 7, the probability that the verifier rejects is least 1/n,
the probability with which the verifier happens to choose
a clause that is not satisfied by the assignment 7. This
corresponds to a gap of €(n) = 1/n. (Unfortunately, there
do exist (many) unsatisfiable 3CNF formulae which have as-
signments that may satisfy all but one clause of the formula.
So the gap of the above verifier is really ©(1/n).)

Thus PCP verifiers are just extensions of “classical ver-
ifiers” of proofs. Every classical verifier is a PCP verifier
with high query complexity and no error (i.e., high gap),
and can be converted into one with low (constant!) query
complexity with high error (tiny gap). Indeed a smooth
tradeoff between the parameters can also be achieved easily.
To reduce the error (increase the gap) of a PCP verifier with
query complexity g and gap €, we could just run this verifier
several, say k, times on a given proof, and reject if it ever
finds an error. The new query complexity is now kq and if
the theorem is not true then the probability of detecting an
error is now (1 — e)k. The new error is approximately 1 — ke
if kK < 1/e and thus the gap goes up by a factor of roughly
k.

The fundamental question in PCP research was whether
this tradeoff was essential, or was it possible to get high gap
without increasing the number of queries so much. The PCP
theorem states that such proof systems can be constructed!

THEOREM 2.2 (PCP THEOREM [4, 3, 12]). 8SAT has
a PCP wverifier of constant query complezity, and constant
positive gap.

There are two distinct proofs of this theorem in the liter-
ature and both are quite non-trivial. In Section 4 we will
attempt to give some idea of the two proofs. But before that

we will give a brief history of the evolution of the notion of a
PCP, and one of the principal applications of PCPs in com-
puter science. The exact constants (in the query complexity
and gap) are by now well-studied and we will comment on
them later in the concluding section.

2.2 History of definitions

The notion of a PCP verifier appears quite natural given
the objective of “quick and dirty” verification of long proofs.
However, historically, the notion did not evolve from such
considerations. Rather the definition fell out as a byproduct
of investigations in cryptography and computational com-
plexity, where the notion of a PCP verifier was one of many
different elegant notions of probabilistic verification proce-
dures among interacting entities. Here we attempt to use
the historic thread to highlight some of these notions (see
[18] for a much more detailed look into these notions). We
remark that in addition to leading to the definition of PCPs,
the surrounding theory also influences the constructions of
PCP verifiers — indeed one may say that one may have
never realized that the PCP theorem may be true, had it
not been for some of the prior explorations!

Interactive Proofs.

The first notion of a probabilistic proof system to emerge
in the literature was that of an interactive proof. This emerged
in the works of Goldwasser, Micali and Rackoff [20], and
Babai and Moran [7]. An interactive proof consists of an
interaction between two entities (or agents), a “prover” and
a “verifier”. The prover wishes to convince the verifier that
some theorem A is true. The verifier is again probabilistic
and runs in polynomial time, and should be convinced if the
assertion is true and should reject any interaction with high
probability if the assertion is not true.

The goal here was not to improve on the efficiency with
which, say, proofs of 3-satisfiability could be checked. In-
stead the goal was to enhance the class of assertions that
could be verified in polynomial time. A non-mathematical,
day-to-day, example of an interactive proof would be that of
distinguishing between two drinks. Imagine convincing your
spouse or friend that buying an expensive bottle of wine,
brand X, is really worth it. They may counter with a cheap
bottle, brand Y, that they claim tastes exactly the same.
You insist that they taste quite different, but it is hard to
prove your point with any written proof. But this is some-
thing we could attempt to prove interactively, by a blind
taste test. You can ask your spouse/friend to challenge you
with a random glass of wine and if by tasting you can tell
which brand it is, you manage to convince your partner that
you may have a point — the two drinks do taste different.
By repeating this test many times, you partner’s conviction
increases. Interactive proofs attempt to such capture phe-
nomena and more. Indeed, this very example is converted to
a very mathematical one by Goldreich, Micali and Wigder-
son [19], who use a mathematical version of the above to
give proofs that two graphs are distinguishable, i.e., they
are not isomorphic. (This is a problem for which we don’t
know how to give a polynomially long proof.)

The initial interest in Interactive Proofs came from two
very different motivations. Goldwasser, Micali, and Rackoff
were interested in the “knowledge” revealed in multiparty in-
teractions, from the point of view of maintaining secrets. To
understand this concept, they first needed to define interac-

tive protocols and interactive proofs; and then a formal mea-
sure of the knowledge complexity of this interaction. They
noted that while interaction may reveal many bits of “in-
formation” (in the sense of Shannon [34]) to the interacting
players, it may reveal little knowledge. For example, the
interactive proof above that brand X is distinguishable from
brand Y reveals no more “knowledge” than the bare fact
that they are distinguishable. It doesn’t, for example, tell
you what features are present in one brand and not in the
other, etc.

Babai and Moran’s motivation was more oriented towards

computational complexity of some number-theoretic and group-

theoretic problems. They were able to present interactive
proofs with just one rounds of interaction between verifier
and the prover for a number of problems not known to be
in NP (i.e, not reducible to satisfiability). The implication,
proved formally in later works, was that such problems may
not be very hard computationally.

The theory of interactive proofs saw many interesting dis-
coveries through the eighties, and then culminated in a sur-
prising result in 1990 when Shamir [33], based on the work
of Lund, Fortnow, Karloff and Nisan [28], showed the set
of assertions that could be proved interactively were exactly
those that could be verified by a polynomial space bounded
verifier.

Multi-Prover- & Oracle-Interactive Proofs.

Part of the developments in the 1980s led to variations on
the theme of interactive proofs. One such variation that be-
came significant to the development of PCPs was the notion
of a “Multi-prover Interactive Proof” (MIP) discovered by
Ben-Or, Goldwasser, Kilian and Wigderson [8]. Ben-Or et
al. were trying to replace some cryptographic assumptions
(along the lines of statements such as “RSA is secure”) in ex-
isting interactive proofs with non-cryptographic ones. This
led them to propose the study of the setting where the proof
comes from a pair of provers who, for the purpose of the ver-
ification task, are willing to be separated and quizzed by the
verifier. The hope is that the verifier can quiz them on re-
lated facts to detect inconsistency on their part. This limits
the prover’s ability to cheat and Ben-Or et al. leveraged this
to create protocols where they reveal little knowledge about
the proof when trying to prove their assertion to the veri-
fier. (Some of the information being leaked in single-prover
protocols was occuring because the prover needed to prove
its honesty, and this information leakage could now stop.)

Fortnow, Rompel and Sipser [16] tried to study the power
of multiprover interactions when the number of provers in-
creased from two to three and so on. They noticed that
more than two provers doesn’t enhance the complexity of
the assertions that could be proved to a polynomial time
verifier. Key to this discovery was the notion of an “Oracle-
Interactive Proof”. This is yet another variation in the
theme of interactive proofs where the prover is “semi-honest”.
Specifically, the prover behaves as an oracle - it prepares
a table of answers to every possible question that may be
asked by the verifier and then honestly answers any sequence
of questions from the verifier according to the prepared set
of answers. (In particular, even if the history of questions
suggests that a different answer to the latest question may
increase the probability that the verifier accepts, the ora-
cle does not change its mind at this stage.) Fortnow et
al. noted that Oracle-Interactive-Proofs simulate any (poly-

nomial) number of provers, and are in turn simulated by
2-prover proof systems with just one round of interaction
(i.e., the verifier asks each of the two provers one question
each, without waiting for any responses from the provers,
and then the provers respond).

Subsequent to Shamir’s result on the power of IP (sin-
gle prover interactive proofs), Babai, Fortnow, and Lund [6]
gave an analogous characterization of the power of MIP.
They showed that the set of assertions that can be proved
in polynomial time to a probabilistic verifier talking to two
provers is the same as the set of assertions that could be
verified in exponential time by a deterministic (classical)
verifier. Thus the interaction with multiple provers reduced
verification time from exponential to a polynomiall

Holographic proofs, PCPs.

In subsequent work, Babai, Fortnow, Levin and Szegedy [5]
noticed that the notion of an oracle-interactive-proof was not
very different from the classical notion of a proof. If one con-
siders the table implied by the oracle prover and writes it
down explicitly, one would get a very long string (potentially
exponentially long in the running time of the verifier), which
in effect was attempting to prove the assertion. In the result
of [6], this oracle-based proof is not much longer than the
classical proof (both have length exponential in the length of
the assertion), but the oracle proof was much easier to check
(could be checked in polynomial time). This led Babai et al.
to name such proofs holographic (small pieces of the proof
reveals its correctness/flaws). Babai et al. focussed on the
computation time of the verifier and showed (in some careful
model of verification) that every proof could be converted
into a holographic one of slightly superlinear size, where the
holographic one could be verified by the verifier in time that
was some polynomial in the logarithm of the length of the
proof.

Around the same time, with a very different motivation
that we will discuss in the next section, Feige, Goldwasser,
Lovasz, Safra, and Szegedy [15] implicitly proposed the con-
cept of a probabilistically checkable proof with the emphasis
now being on the query complexity of the verifier (as op-
posed to the computation time in holographic proofs). The
notion of PCP was finally explicitly defined by Arora and
Safra [4].

We stress that the theory of PCPs inherits much more
than just the definition of PCPs from the theory of interac-
tive proofs. The results, techniques, and even just the way
of thinking, developed in the context of interactive proofs
played a major role in the development of the PCP theo-
rem. In particular, the notion of 2-player 1-round interactive
proof and their equivalence to oracle-interactive proofs and
hence PCPs plays a significant role in this theorem and we
will use this notion to explain the proofs from a high-level
in Section 4.

3. IMPLICATIONS TO COMBINATORIAL
OPTIMIZATION

The notion of theorems and proofs have shed immense
light on the complexity of combinatorial optimization. Con-
sider a prototypical problem, namely graph coloring, i.e., the
task of coloring the vertices of an undirected graph with the
minimum number of possible colors so that the endpoints of
every edge have distinct colors. The seminal works of Cook,

Levin, and Karp [11, 27, 25] show that this task is as hard as
finding a proof of some given theorem. In other words, given
an assertion A and estimate N on the length a proof, one
can construct a graph G on O(N?) vertices with a bound
K, such that G has a coloring with K or fewer colors if and
only if A has a proof of length at most N. Furthermore,
given a K-coloring of G, one can reconstruct a proof of A in
time polynomial in N. Thus, unless we believe that proofs
of theorems can be found in time polynomial in the length
of the shortest proof (something that most mathematicians
would find very surprising) we should also believe that graph
coloring can not be solved in polynomial time.

Of course, graph coloring is just one example of a combi-
natorial optimization problem that was shown by the theory
of NP-completeness to be as hard as the task of theorem-
proving. Finding large independent sets in graphs, finding
short tours for travelling salesmen, packing objects into a
knapsack are all examples of problems for which the same
evidence of hardness applies (see [17] for many more exam-
ples). The NP-completeness theory unified all these prob-
lems into the same one, equivalent to theorem proving.

Unfortunately, a somewhat more careful look into the
different problems revealed many differences among them.
This difference became apparent when one looked at their
“approximability”. Specifically, we say that an algorithm A
solves a (cost) minimization problem II to within some ap-
proximation factor a(n) if on every input z of length n, A(x)
outputs a solution whose cost is no more than a(n) factor
larger than the minimum cost solution. For (profit) maxi-
mization problems, approximability is defined similarly: An
a(n) approximation algorithm should produce a solution of
cost at least the optimum divided by a(n). Thus a(n) > 1
for every algorithm A and problem II.

The NP-completeness theory says that for the optimiza-
tion problems listed above find a l-approximate solution
(i-e., the optimum one) is as hard as theorem proving. How-
ever, for some NP-complete minimization problems, it may
be possible to find a solution of cost, say, at most twice the
optimum in polynomial time for every input. Indeed this
happens for the travelling salesman problem on a metric
space (a space where distances satisfy triangle inequality).
If one finds a minimum cost spanning tree of the graph and
performs a depth-first-traversal of this tree, one gets a “tour”
that visits every node of the graph at least once and has a
cost of at most twice the cost of the optimum travelling
salesperson tour. (This tour may visit some vertices more
than once, but such extra visits can be short-circuited. The
short-circuiting only produces a smaller length tour, thanks
to the triangle inequality.) Thus the travelling salesman
problem with triangle inequalities (A-TSP) admits a poly-
nomial time 2-approximation algorithm. Does this imply
that every optimization problem admits a 2-approximation
algorithm? Turns out that not even a /n-approximation al-
gorithm is known for graph coloring. On the other hand the
knapsack problem has a (1+ €)-approximation algorithm for
every positive €, while the same is not known A-TSP. Thus
while the theory of NP-completeness managed to unify the
study of optimization problems, the theory of “approxima-
bility” managed to fragment the picture. Till 1990 however
it was not generally known if the inability to find better
approximation algorithms was for some inherent reason, or
was it merely our lack of innovation. This is where the PCP
theory came in to the rescue.

In their seminal work, Feige et al. [15], came up with a
startling result. They showed that the existence of a PCP
verifier as in the PCP Theorem (note that their work pre-
ceded the PCP Theorem in the form stated here, though
weaker variants were known) implied that if the indepen-
dent set size in a graph could be approximated to within
any constant factor then NP would equal P! Given a PCP
Verifier V' and an assertion A, they constructed, in polyno-
mial time, a graph G = Gv, 4 with the property that every
independent set in G corresponded to a potential “proof” of
the truth of A, and the size of the independent set is pro-
portional to the probability with which the verifer would
accept that “proof”. Thus if A were true, then there would
be a large independent set in the graph of size, say K. On
the other hand, if A were false, every independent set would
be of size at most (1 — ¢)K. Thus the gap in the accep-
tance probability of the verifier turned into a gap in the size
of the independent set. A 1/(1 — €¢/2)-approximation algo-
rithm would either return an independent set of size greater
than (1 — ¢/2)K, in which case A must be true, or an inde-
pendent set of size less than (1 — €) K in which case we may
conclude that A is false. Thus a 1/(1 — ¢/2)-approximation
algorithm for independent sets suffices to get an algorithm
to decide truth of assertions, which is an NP-complete task.

The natural next question is whether the connection be-
tween independent set approximation and PCPs is an iso-
lated one — after all different problems do behave very dif-
ferently with respect to their approximability, so there is no
reason to believe that PCPs would also yield inapproxima-
bility results for other optimization problems. Fortunately,
it turns out that PCPs do yield inapproximability results for
many other optimization problems. The result of Feige et
al. was followed shortly thereafter by that of Arora et al. [3]
who showed that a broad collection of problems, there were
non-trivial limits to the constant factor to which they were
approximable, unless NP=P. (In other words, for each prob-
lem under consideration they gave a constant a > 1 such
that the existence of an a-factor approximation algorithm
would imply NP=P.) This collection was the so-called MAX
SNP-hard problems. The class MAX SNP had been dis-
covered earlier by Papadimitriou and Yannakakis [30] and
their work and subsequent works had shown that a varied
collection of problems including the MAX CUT problem in
graphs, Vertex Cover problem in graphs, Max 3SAT (an
optimization version of 3SAT where the goal is to satisfy
as many clauses as possible), A-TSP, Steiner trees in met-
ric spaces, the shortest superstring problem were all MAX
SNP-hard. Subsequently more problems were added to this
set by Lund and Yannakakis [29] and Arora, Babai, Stern
and Sweedyk [1]. The combined effect of these results was
akin to that of Karp’s work [25] in NP-completeness. They
suggested that the theory of PCPs was as central to the
study of approximability of optimization problems, as NP-
completeness was to the exact solvability of optimization
problems. Over the years there have been many success-
ful results deriving inapproximability results from PCP ma-
chinery for a wide host of problems (see surveys by [2, 26]
for further details). Indeed the PCP machinery ended up
yielding not only a first cut at the approximability of many
problems, but even very tight analyses in many cases. Some
notable results here include the following;:

e Hastad [22] showed that Max 3SAT does not have an
a-approximation algorithm for o < 8/7. This is tight

by a result of Karloff and Zwick [24] that gives an 8/7
approximation algorithm.

e Feige [14] gave a tight inapproximability result for the
Set Cover problem.

e Hastad [21] shows that the clique size in n-vertex graphs
can not be approximated to within a factor of n' ¢ for
any positive e.

Again, we refer the reader to some of the surveys for more
inapproximability results [2, 26]. for further details).

4. CONSTRUCTIONS OF PCPS: A BIRD’S
EYE VIEW

We now give a very high level view of the two contrast-
ing approaches towards the proof of the PCP theorem. We
stress that this is not meant to give insight, but rather a
sense of how the proofs are structured. To understand the
two approaches we find it useful to work with the notion of
2-prover one round proof systems. While the notion is the
same as the one defined informally in Section 2, here we de-
fine the verifier more formally, and introduce the parameter
corresponding to query complexity in this setting.

DEFINITION 4.1 (2IP VERIFIER, ANSWER SIZE, GAP).
A 2IP verifier of answer size a(n), and gap €(n) is a proba-
bilistic algorithm V who, on input an assertion A € {0,1}",
picks a random string R € {0,1}*, makes one query each to
two provers Pr, P> : {1,...,¢} — {0,1}" and produces an ac-
cept /reject verdict, denoted V172 (A; R), with the following
restrictions, when A € {0,1}":

Running time V always runs in time polynomial in n.
Answer size The prover’s answers are each a(n) bits long.

Prover length The questions to the provers are in the range
{1,...,¢(n)} where £(n) is a polynomial in n.

Completeness If A is a true assertion, there exist provers
Py, Py such that 74 (A; R) always accepts.

Soundness, with gap €(n) If A is not true, then for every
pair of provers Pi, P> the probability, over the choice
of the randomness R, that V172 (A; R) outputs accept
is at most 1 — €(n).

The definition is (intentionally) very close to that of a
PCP verifier, so let’s notice the differences. Rather than
one proof oracle, we now have two provers. But each is
asked only one question, so effectively they are oracles! In
PCPs, the response to a query is one bit long, but now the
responses are a(n) bits long. On the other hand in PCPs, the
verifier is allowed to make g(n) queries to the proof oracle,
while here the verifier is only allowed one query each. Nev-
ertheless PCP verifiers and MIP verifiers are closely related.
In particular, the following proposition is really simple from
the definitions.

PROPOSITION 4.2. If 8SAT has a 2IP verifier of answer
size a(n) and gap €(n), then 3SAT has a PCP verifier with
query complezity 2 - a(n) and gap e(n).

The PCP verifier simply simulates the 2IP verifier, with
each query to the provers being simulated by a(n) queries
to the proof oracle.

Thus to prove the PCP theorem it suffices to give a 2IP
verifier with constant gap and constant answer size. We
start with the approach of Arora et al. [4].

4.1 Reducing answer size

The initial proofs of the PCP theorem approached their
goal by holding the gap to be a constant, while allowing the
2IP verifier to have (somewhat) long answer sizes. Key to
this approach were some alphabet reduction lemmas initi-
ated in the work of [4]. Here we state two from [3], that
suffice for our purposes.

LEMMA 4.3 ([3]). There exists a constant § > 0 such
that if 8SAT has a 2IP verifier with answer size a(n) and
gap €, then 3SAT also has a 2IP verifier with answer size
(log a(n))?* and gap ¢ 4.

LEMMA 4.4 ([3]). There exist constants ¢ < oo and T >
0 such that if 3SAT has a 2IP verifier with answer size
a(n) = o(logn) and gap €, then 3SAT also has a 2IP verifier
with answer size ¢ and gap € - T.

Both lemmas above offer (pretty severe) reductions in an-
swer sizes. Below, we show how they suffice to get the PCP
theorem. Of course, the technical complexity is all hid-
den in the proofs of the two lemmas, which we will not
be able to present. We simply mention that these lem-
mas are obtained by revisiting several popular “algebraic
error-correcting codes” and showing that they admit query
efficient probabilistic algorithms for “error-detection” and
“error-correction”. The reader is referred to the original pa-
pers [4, 3] for further details.

PrOOF OF THEOREM 2.2. We start by noting that the
classical (deterministic) verifier for 3SAT is also a 2IP veri-
fier with answer size n and gap 1. Applying Lemma 4.3 we
then get it thus has a 2IP verifier with answer size (logn)?
and gap 6. Applying Lemma 4.3 again we now see that is
also has a 2IP verifier with answer size (log(logn))? and gap
62. Since a(n) = o(logn) we can now apply Lemma 4.4 to
see that it has a 2IP verifier with answer size ¢ and gap
62.7. By Proposition 4.2 we conclude that 3SAT has a PCP
verifier with query complexity 2c and gap §°7. [

4.2 Amplifying error

We now turn to the new, arguably simpler, proof due to
Dinur [12] of the PCP theorem. Since we are hiding most of
the details behind some of the technical lemmas, we won’t be
able to completely clarify the simplicity of Dinur’s approach.
However we will be able to at least show how it differs right
from the top level.

Dinur’s approach to the PCP theorem is an iterative one.
and rather than working with large answer sizes, this proof
works with small gaps (during intermediate stages).

The approach fixes a “generalized graph k-coloring” prob-
lem as the problem of interest and fixes a canonical 2IP ver-
ifier for this problem. It starts by observing that 3SAT can
be transformed to this generalized graph 3-coloring prob-
lem. It then iteratively transforms this graph into a differ-
ent one, each time increasing the “gap of the instance”. The
final instance ends up being one that where the canonical

2IP verifier either accepts with probability 1, or rejects with
constant probability (depending on whether the original in-
stance is satisfiable or not), which is sufficient for the PCP
theorem. We go into some more details of this approach
below, before getting into the heart of the process which is
the single iteration.

A generalized graph k-coloring problem has as an instance
agraph G = (V, E) and constraint functions 7 : {1,...,k}x
{1,...,k} — {accept,reject} for every edge e € E. The
canonical 2IP verifier for in instance expects as provers two
oracles giving x1,x2 : V — {1,...,k} and does one of
the following: With probability 1/2 it picks a random edge
e = (u,v) € E queries for xi(u) and x2(v) and accepts iff
me(x1(u), x2(v)) = accept. With probability 1/2 it picks a
random vertex u € V and queries for x1(u) and x2(u) and
accepts if and only if x1(u) = x2(v). Note that the canonical
2IP verifier has answer size [log, k]|. An instance is satis-
fiable if the canonical 2IP verifier accepts with probability
one. An instance is e-unsatisfiable if the probability that the
verifier rejects is at least e.

Key to Dinur’s iterations are transformations among gen-
eralized graph coloring problems that play with the gap and
the answer size (i.e., # of colors allowed) of the 2IP verifiers.
Since these transformations are applied many times to some
fixed starting instance it is important that the transforma-
tions do not increase the problem size by much and Dinur
insists that they only increase them by a linear factor. We
define this notion formally below.

DEFINITION 4.5. A transformation T that maps instances

of generalized graph k-coloring to generalized graph K -coloring

is a (k, K, B3, e0)-linear-transformation if it satisfies the fol-
lowing properties:

e T(G) has size linear in the size of G.

e T(QG) is satisfiable if G is satisfiable.

e T(G) is min{fB-¢, €o }-unsatisfiable if G is e-unsatisfiable.

Note that the parameter 3 above may be greater than 1
or smaller; and the effect in the two cases is quite different.
If 8 > 1 then the transformation increases the gap, while if
[< 1 then the transformation reduces the gap. As we will
see below, Dinur’s internal lemmas play with effects of both
kinds (combining them in a very clever way).

The key lemma in Dinur’s iterations do not play with the
answer size and simply increase the gap and may be stated
as below.

LEMMA 4.6 (GAP AMPLIFICATION LEMMA). There ez-
ists a constant eg > 0 such that there exists a polynomial-
time computable (3,3, 2, €o)-linear-transformation T

Before getting a little into the details of the proof of this
lemma, let us note that it suffices to prove the PCP theorem.

PrROOF OF THEOREM 2.2. We describe a 2IP verifier for
3SAT. The verifier acts as follows. Given a 3CNF formula ¢
of length n, it first applies the standard reduction from 3SAT
to 3-coloring to get an instance G of (generalized) graph 3-
coloring which is 3-colorable iff ¢ is satisfiable. Note that
this instance is 1/m-unsatisfiable for some m = O(n). The
verifier then iteratively applies the transformation 7' to Go
£ = logm times. lLe., it sets G; = T(Gi—1) fori = 1,..., L.
Finally it simulates the canonical 2IP verifier on input Gy.

If ¢ is satisfiable, then so is G; for every 4, and so the
canonical 2IP verifier accepts with probability 1. If ¢ is
unsatisfiable then G; is min{2*-1/m, o }-unsatisfiable and so
Gy is ep-unsatisfiable. Finally note that since each iteration
increases the size of G; only by a constant factor, the final
graph Gy is only polynomially larger than ¢, and the entire
process only requires polynomial time.

Note that the 2IP verifier thus constructed has answer size
[log, 3] = 2 bits. Its gap is €. The conversion to a PCP
verifier leads to one that has query complexity of 4 bits and
gap €0 > 0. [

We now turn to the magical gap-amplifying lemma above.
Dinur achieves this lemma with two sub-lemmas, where the
game between answer size and gap becomes clear.

LEMMA 4.7 (GAP-INCREASE). For every k, 31 < oo, there
exists a constant K < oo and €1 > 0 such that a (k, K, 81, €1)-
linear-transformation T exists.

Note that a large 51 > 1 implies the transformation en-
hances the unsatisfiability of an instance. The Gap-Increase
lemma is claiming that one can enhance this unsatisfiability
by any constant factor for an appropriate price in the answer
size. The next lemma trades off in the other direction, but
with a clever and critical switch of quantifiers.

LEMMA 4.8 (ANSWER-REDUCTION). For every k there
ezists a constant B2 > 0 such that for every K < oo a
(K, k, B2, 1)-linear-transformation T> exists.

The constant B2 obtained from the lemma is quite small
(very close to 0). But for this price in gap-reduction we
can go from large answer sizes to small ones, and the price
we pay in the unsatisfiability is independent of K! This
allows us to combine the two lemmas to get the powerful
gap amplification lemma as follows.

PROOF OF LEMMA 4.6. Fix k = 3. Let 82 and T> be as
in Lemma 4.8. Apply Lemma 4.7 with 8, = 2/, and let
K, ¢; and T be as guaranteed by Lemma 4.7. Let T'(G) =
T5(T1(G)). Then, it can be verified that T'is a (k, k, 2, B2-€1)-

linear-transformation. [

Finally we comments on the proofs of Lemmas 4.7 and 4.8.
We start with the latter. The crux here is the independence
of B2 and K. A reader who attempts to use standard re-
ductions, from say k-coloring to K-coloring would realize
that this is non-trivial to achieve. But if one were to ignore
the linear-size restriction, the PCP literature already gave
such transformations before. In particular Lemma 4.4 above
gives such a transformation provided K = 2°0°8™ When
specialized to the case K = O(1) the reduction also turns
out to be a linear one.

Lemma 4.7 is totally novel in Dinur’s work. To get a sense
of this lemma, let us note that its principal goal is to reduce
the error of the 2IP verifier and so is related to the standard
question in the context of randomized algorithms: that of
error-reduction. In the context of randomized algorithms
this is well-studied. If one starts with any randomized al-
gorithm to compute some function and say it produces the
right answer with probability 2/3 (and errs with probability
1/3), then one can reduce the error by running this algo-
rithm many times and outputting the most commonly seen
answer. Repetition m times reduces the error to 2= m),

One could view a 2IP verifier as just another randomized
procedure and attempt to repeat the actions of the verifier
m times to reduce its error. This leads to two problems.
First the natural approach increases the number of rounds
of communication between the verifier and the prover to m-
rounds and this is not allowed (by our definitions, which
were crucial to the complementary lemma). A less natural,
and somewhat optimistic, approach would be to repeat the
random coin tosses 2IP verifier m times, collect all the ques-
tions that it would like to ask the, say, first prover and send
them together in one batch (and similarly with the second
prover). Analysis of such parallel repetition of 2IP verifiers
was known to be a non-trivial problem [16, 32], yet even
such an analysis would only solve the first of the problems
with the “naive” approach to error-reduction. The second
problem is that the transformation does not keep the size of
the transformed instance linear in size and this turns out to
be a fatal. Dinur manages to overcome this barrier by bor-
rowing ideas from “recycling” of randomness [10, 23], which
suggests approaches for saving on this blowup of the instance
size. Analyzing these approaches is non-trivial, but Dinur
manages to do so, with a relatively clean (and even rea-
sonably short) proof. The reader is pointed to the original
paper [12] for full details, and to a more detailed survey [31]
for information on the context.

5. CONCLUSIONS

The goal of this writeup was to mainly highlight the no-
tion of a probabilistically checkable proof, and its utility in
computational complexity. Due to limitations on space and
time, we were barely able to scratch the surface. In par-
ticular we did not focus on the explicit parameters and the
tightest results known. The literature on PCPs is rich with
a diversity of parameters, but we chose to focus on only two:
The query complexity and the gap. The tradeoff between
the two is already interesting to study and we mention one
tight version, which is extremely useful in “inapproximabil-
ity” results. Hastad [22] shows that the query complexity in
the PCP theorem can be reduced to 3 bits, while achieving
a gap arbitrarily close to 1/2. So a verifier confronted with
a fallacious assertion can read just 3 bits of the proof, and
would find an error with probability (almost) one-half!

One of the somewhat strange aspects of PCP research has
been that even though the existence of PCPs seems to be
a “positive” statement (verification can be very efficient),
its use is mostly negative (to rule out approximation algo-
rithms). One may wonder why the positive aspect has not
found a use. We suggest that positive uses might emerge as
more and more of our life turns digital, and we start worry-
ing not only about the integrity of the data, but some of the
properties they satisfy, i.e., we may not only wish to store
some sequence of bits x, but also preserve the information
that P(x) = y for some program P that took x as an input.

One barrier to such uses is the current size of PCPs. PCP
proofs, even though they are only polynomially larger than
classical proofs; they are much larger, and this can be a
prohibitive cost in practice. The good news is that this pa-
rameter is also improving. An optimistic estimate of the

size of the PCP proof in the work of [22] might be around

6
1'%, where n is the size of the classical proof! But recent re-

sults have improved this dramatically since and current best
proofs [9, 12] work with PCPs of size around O(n(logn)°™)

(so the constant in the exponent has dropped from 10° to
1+ o(1). Thus far this reduction in PCP size has come at
the price of increased query complexity, but this concern is
being looked into by current research and so a positive use
of PCPs may well be seen in the near future.

Acknowledgments

I would like to thank the anonymous reviewers for their valu-
able comments, and for detecting (mathematical!) errors in
the earlier version of this manuscript (despite the fact that
this article is not written in the probabilistically checkable
proof format).

6. REFERENCES

[1] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The
hardness of approximate optima in lattices, codes and
systems of linear equations. Journal of Computer and
System Sciences, 54(2):317-331, April 1997.

[2] S. Arora and C. Lund. Hardness of approximations. In
D. S. Hochbaum, editor, Approximation Algorithms
for NP-Hard Problems. PWS, 1995.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM,
45(3):501-555, May 1998.

[4] S. Arora and S. Safra. Probabilistic checking of proofs:
A new characterization of NP. Journal of the ACM,
45(1):70-122, January 1998.

[5] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy.
Checking computations in polylogarithmic time. In
Proceedings of the 23rd ACM Symposium on the
Theory of Computing, pages 21-32, New York, 1991.
ACM Press.

[6] L. Babai, L. Fortnow, and C. Lund. Non-deterministic
exponential time has two-prover interactive protocols.
Computational Complezity, 1(1):3-40, 1991.

[7] L. Babai and S. Moran. Arthur-Merlin games: a
randomized proof system, and a hierarchy of
complexity class. Journal of Computer and System
Sciences, 36(2):254-276, April 1988.

[8] M. Ben-Or, S. Goldwasser, J. Kilian, and
A. Wigderson. Multi-prover interactive proofs: How to
remove intractability. In Proceedings of the 20th
Annual ACM Symposium on the Theory of
Computing, pages 113-131, 1988.

[9] E. Ben-Sasson and M. Sudan. Short PCPs with
poly-log rate and query complexity. In Proceedings of
the 37th Annual ACM Symposium on Theory of
Computing, pages 266-275, New York, 2005. ACM
Press.

[10] A. Cohen and A. Wigderson. Dispersers, deterministic
amplification, and weak random sources (extended
abstract). In IEEE Symposium on Foundations of
Computer Science, pages 14—19, 1989.

[11] S. A. Cook. The complexity of theorem-proving
procedures. In Proceedings of the 3rd ACM
Symposium Theory of Computing, pages 151158,
Shaker Heights, Ohio, 1971.

[12] 1. Dinur. The PCP theorem by gap amplification. In
Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, pages 241-250, New York, 2006.

[20]

[21]

[22]

[23]

[24]

31]

ACM Press. Preliminary version appeared as an
ECCC Technical Report TR05-046.

I. Dinur and O. Reingold. Assignment testers:
Towards a combinatorial proof of the PCP-theorem.
In Proceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science, pages 155-164,
Loc Alamitos, CA, USA, 2004. IEEE Press.

U. Feige. A threshold of Inn for approximating set
cover. Journal of the ACM, 45(4):634-652, 1998.

U. Feige, S. Goldwasser, L. Lovész, S. Safra, and

M. Szegedy. Interactive proofs and the hardness of
approximating cliques. Journal of the ACM,
43(2):268-292, 1996.

L. Fortnow, J. Rompel, and M. Sipser. On the power
of multi-prover interactive protocols. Theoretical
Computer Science, 134(2):545-557, 1994.

M. R. Garey and D. S. Johnson. Computers and
Intractability. Freeman, 1979.

O. Goldreich. Modern Cryptography, Probabilistic
Proofs and Pseudorandomness, volume 17 of
Algorithms and Combinatorics. Springer-Verlag, 1998.
O. Goldreich, S. Micali, and A. Wigderson. Proofs
that yield nothing but their validity or all languages in
NP have zero-knowledge proof systems. Journal of the
ACM, 38(1):691-729, July 1991. Preliminary version
in IEEE FOCS, 1986.

S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186-208, February
1989.

J. Hastad. Clique is hard to approximate within n to
the power 1-epsilon. Acta Mathematica, 182:105-142,
1999.

J. Hastad. Some optimal inapproximability results.
Journal of the ACM, 48:798-859, 2001.

R. Impagliazzo and D. Zuckerman. How to recycle
random bits. In IEEE Symposium on Foundations of
Computer Science, pages 248-253, 1989.

H. Karloff and U. Zwick. A 7/8-approximation
algorithm for max 3sat? In FOCS ’97: Proceedings of
the 38th Annual Symposium on Foundations of
Computer Science (FOCS ’97), pages 406-415,
Washington, DC, USA, 1997. IEEE Computer Society.
R. M. Karp. Reducibility among combinatorial
problems. Complezity of Computer Computations, (R.
Miller, J. Thatcher eds.), pages 85-103, 1972.

S. Khot. Guest column: inapproximability results via
long code based pcps. SIGACT News, 36(2):25-42,
2005.

L. A. Levin. Universal search problems. Problemy
Peredachi Informatsii, 9(3):265-266, 1973.

C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan.
Algebraic methods for interactive proof systems.
Journal of the ACM, 39(4):859-868, October 1992.

C. Lund and M. Yannakakis. On the hardness of
approximating minimization problems. Journal of the
ACM, 41(5):960-981, September 1994.

C. Papadimitriou and M. Yannakakis. Optimization,
approximation, and complexity classes. Journal of
Computer and System Sciences, 43:425-440, 1991.

J. Radhakrishnan and M. Sudan. On DinurSs proof of

(32]
(33]

(34]

the PCP theorem. Bulletin (New Series) of the
American Mathematical Society, 44(1):19-61, January
2007.

R. Raz. A parallel repetition theorem. SIAM Journal
on Computing, 27(3):763-803, 1998.

A. Shamir. IP = PSPACE. Journal of the ACM,
39(4):869-877, October 1992.

C. E. Shannon. A mathematical theory of
communication. Bell System Technical Journal,
27:379-423, 623—656, 1948.

