
Limits of Local Algorithms
over Sparse Random Graphs

[Extended Abstract]
∗

David Gamarnik
†

MIT
gamarnik@mit.edu

Madhu Sudan
Microsoft Research
madhu@mit.edu

ABSTRACT
Local algorithms on graphs are algorithms that run in par-
allel on the nodes of a graph to compute some global struc-
tural feature of the graph. Such algorithms use only local
information available at nodes to determine local aspects
of the global structure, while also potentially using some
randomness. Research over the years has shown that such
algorithms can be surprisingly powerful in terms of com-
puting structures like large independent sets in graphs lo-
cally. These algorithms have also been implicitly consid-
ered in the work on graph limits, where a conjecture due
to Hatami, Lovász and Szegedy [17] implied that local algo-
rithms may be able to compute near-maximum independent
sets in (sparse) random d-regular graphs. In this paper we
refute this conjecture and show that every independent set
produced by local algorithms is smaller that the largest one
by a multiplicative factor of at least 1/2 + 1/(2

√
2) ≈ .853,

asymptotically as d→∞.
Our result is based on an important clustering phenom-

ena predicted first in the literature on spin glasses, and re-
cently proved rigorously for a variety of constraint satisfac-
tion problems on random graphs. Such properties suggest
that the geometry of the solution space can be quite intri-
cate. The specific clustering property, that we prove and
apply in this paper shows that typically every two large in-
dependent sets in a random graph either have a significant
intersection, or have a nearly empty intersection. As a re-
sult, large independent sets are clustered according to the
proximity to each other. While the clustering property was
postulated earlier as an obstruction for the success of lo-
cal algorithms, such as for example, the Belief Propagation
algorithm, our result is the first one where the clustering
property is used to formally prove limits on local algorithms.
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1. INTRODUCTION
Local algorithms are decentralized algorithms that run

in parallel on nodes in a network using only information
available from local neighborhoods to compute some global
function of data that is spread over the network. Local algo-
rithms have been studied in the past in various communities.
They arise as natural solution concepts in parallel and dis-
tributed computing (see, e.g., [21, 19]). They also lead to
efficient sub-linear algorithms — algorithms that run in time
significantly less than the length of the input — and [26, 25,
16, 27] illustrate some of the progress in this direction. Fi-
nally local algorithms have also been proposed as natural
heuristics for solving hard optimization problems with the
popular Belief Propagation algorithm (see for instance [29,
23]) being one such example. In this work we study the per-
formance of a natural class of local algorithms on random
regular graphs and show limits on the performance of these
algorithms.

1.1 Motivation
The motivation for our work comes from the a notion of

local algorithms that has appeared in a completely different
mathematical context, namely that of the theory of graph
limits, developed in several papers, including [8], [7], [20], [6],
[5], [12], [17]. In the realms of this theory it was conjectured
that every “reasonable” combinatorial optimization problem
on random graphs can be solved by means of some local al-
gorithms. To the best of our knowledge this conjecture for
the first time was formally stated in Hatami, Lovász and
Szegedy in [17, Conjecture 7.13], and thus, from now on,
we will refer to it as Hatami-Lovász-Szegedy (or HLS) con-
jecture, though informally it was posed by Szegedy earlier,
and was referenced in several papers, including Lyons and
Nazarov [22], and Csoka and Lippner [11]. In the concrete
context of the problem of finding largest independent sets
in sparse random regular graphs, the conjecture is stated as
follows. Let Td,r be a rooted d-regular tree with depth r.



Namely, every node including the root, has degree r, except
for the leaves, and the distance from the root to every leaf
is r. Consider a function fr : [0, 1]Td,r → {0, 1} which maps
every such tree whose nodes are associated with real values
from [0, 1] to a “decision” encoded by 0 and 1, where the de-
cision is a function of the values associated with the nodes
of the tree. In light of the fact that in a random d-regular
graph Gd(r) the typical node has depth-r neighborhood iso-
morphic to Td,r, for any constant r, such a function fr can
be used to generate (random) subsets I of Gd(r) as follows:
associate with every node of Gd(r) a uniform random values
from [0, 1] (independently for each node) and apply function
fr to each node. The set of nodes for which fr produces
value 1 defines I, and is called ”i.i.d. factor”. It is clear
that fr essentially describes a local algorithm for producing
sets I (sweeping issue of computability of fr under the rug).
The HLS conjecture postulates the existence of a sequence
of fr, r = 1, 2, . . ., such that the set I thus produced is an in-
dependent subset of Gd(r) and asymptotically achieves the
largest possible value as r → ∞. Namely, largest indepen-
dent subsets of random regular graphs are i.i.d. factors. The
precise connection between this conjecture and the theory of
graph limits is beyond the scope of this paper. Instead we re-
fer the reader to the relevant papers [17],[12]1. The concept
of i.i.d. factors appears also in one of the open problem by
David Aldous [2] in the context of coding invariant processes
on infinite trees.

It turns out that an analogue for the HLS conjecture is in-
deed valid for another important combinatorial optimization
problem - the matching problem. Lyons and Nazarov [22]
established it for the case of bi-partite locally Td,r-tree-like
graphs, and Csoka and Lippner established this result for
general locally Td,r-tree-like graphs. Further, one can mod-
ify the framework of i.i.d. factors by encapsulating non-Td,r
type neighborhoods, for example by making fr depend not
only on the realization of random uniform in [0, 1] values, but
also on the realization of the graph-theoretic neighborhoods
around the nodes. Some probabilistic bound on a degree
might be needed to make this definition rigorous (though
we will not attempt this formalization in this paper). In
this case one can consider, for example, i.i.d. factors when
neighborhoods are distributed as r generations of a branch-
ing process with Poisson distribution, and then ask which
combinatorial optimization problems defined now on sparse
Erdös-Rényi graphs G(n, d/n) can be solved as i.i.d. factors.
Here G(n, d/n) is a random graph on n nodes with each of
the

(
n
2

)
edges selected with probability d/n, independently

for all edges, and d > 0 is a fixed constant. In this case it is
possible to show that when c ≤ e, the maximum independent
set problem on G(n, d/n) can be solved nearly optimally by
the well known Belief Propagation (BP) algorithm with con-
stantly many rounds. Since the BP is a local algorithm, then
the maximum independent set on G(n, d/n) is an i.i.d. fac-
tor, in the extended framework defined above. (We should
note that the original proof of Karp and Sipser [18] of the
very similar result, relied on a different method.) Thus, the
framework of local algorithms viewed as i.i.d. factors is rich
enough to solve several interesting combinatorial optimiza-
tion problems.

1We also remark that the language used in [17] is quite dif-
ferent from ours. Other works, e.g., [22] however do use
langauge similar to ours in describing this conjecture.

Nevertheless, in this paper we refute the HLS conjecture in
the context of maximum independent set problem on ran-
dom regular graphs Gd(n). Specifically, we show that for
large enough d, with high probability as n→∞, every inde-
pendent set producible as an i.i.d. factor is a multiplicative
factor γ < 1 smaller than the largest independent subset
of Gd(n). We establish that γ is asymptotically at most
1
2

+ 1

2
√
2

(though we conjecture that the result holds simply

for γ = 1/2, as we discuss in the body of the paper).

1.2 Techniques
Our result is proved in two steps. First we show that large

independent sets in random regular graphs are somewhat
clustered. Next we show that solutions of natural algorithms
are not clustered. We elaborate on the two parts below.

Clustering is a powerful (though fairly simple to estab-
lish in our case) phenomenon associated with the solutions
of some combinatorial optimization problems on random
graphs. Roughly it states that such solutions are clustered
in some natural topology associated with the solution space.
(We will describe the precise version we care about shortly.)
Such phenomena were first conjectured in the theory of spin
glasses and later confirmed by rigorous means. Initially, this
clustering property was discussed in terms of so-called over-
lap structure of the solutions of the Sherrington-Kirkpatrick
model [28]. Later works highlighted this phenomenon in the
context of random K-SAT problem. In particular, in inde-
pendent works Achlioptas, Coja-Oghlan and Ricci-Tersenghi
[1], and Mezard, Mora and Zecchina [24] proved this phe-
nomenon rigorously. We do not define the random K-SAT
problem here and instead refer the reader to the aforemen-
tioned papers. What these results state is that in certain
regimes, the set of satisfying assignments, with high proba-
bility, can be clustered into groups such that two solutions
within the same cluster agree on a certain minimum num-
ber of variables, while two solutions from different clusters
have to disagree on a certain minimum number of variables.
In particular, one can identify a certain non-empty interval
[z1, z2] ⊂ [0, 1] such that no two solutions of the random
K-SAT problem agree on precisely z fraction of variables
for all z ∈ [z1, z2]. One can further show that the onset
of clustering property occurs when the density of clauses to
variables becomes at least 2K/K, while at the same time
the formula remains satisfiable with high probability, when
the density is below 2K log 2. Interestingly, the known algo-
rithms for finding solutions of random instances of K-SAT
problem also stop working around the 2K/K threshold. It
was widely conjectured that the onset of the clustering phase
is the main obstruction for finding such algorithms. In fact,
Coja Oghlan [9] showed that the BP algorithm, which was
earlier conjectured to be a good contender for solving the
random instances of K-SAT problems, also fails when the
density of clauses to variables is at least 2K logK/K, though
Coja-Oghlan’s approach does not explicitly rely on the clus-
tering property, and one could argue that the connection
between the clustering property and the failure of the BP
algorithm is coincidental.

Closer to the topic of this paper, the clustering property
was also recently established for independent sets in Erdös-
Rényi graphs by Coja-Oghlan and Efthymiou [10]. To de-
scribe their result, we first note a well-known fact that the
largest independent subset of G(n, d/n) has size approxi-
mately (2 log d/d)n, when d is large (see the next section for



precise details). In [10] it is shown that the set of indepen-
dent sets of size at least approximately (log d/d)n (namely
those within factor 1/2 of the optimal), are also clustered.
Namely, one can split them into groups such that intersec-
tion of two independent sets within a group has a large car-
dinality, while intersection of two independent sets from dif-
ferent groups has a small cardinality. One should note that
algorithms for producing large independent subsets of ran-
dom graphs also stop short factor 1/2 of the optimal, both
in the case of sparse and in the dense random graph cases, as
exhibited by the well-known Karp’s open problem regarding
independent subsets of G(n, 1/2) [3].

This is almost the result we need for our analysis with
two exceptions. First, we need to establish this clustering
property for random regular as opposed Erdös-Rényi graphs.
Second, and more signficanlty, the result in [10] applies to
typical independent sets and does not rule out the possibility
that there exist two independent sets with some “interme-
diate” intersection cardinality, though the number of such
pairs is insignificant compared to the total number of inde-
pendent sets. For our result we need to show that, without
exception, every pair of “large” independent sets has either
large or small intersection. We indeed establish this, but at
the cost of losing additional factor 1/(2

√
2). In particular,

we show (see Theorem 2.6) that for large enough d, with
high probability as n → ∞, every two independent subsets
of Gd(n) with cardinality asymptotically (1 + β)(log d/d)n,
where 1 ≥ β > 1

2
+ 1

2
√
2

either have intersection size at

least (1+z)(log d/d)n or at most (1−z)(log d/d)n, for some
z < β. The result is established using a straightforward
first moment argument: we compute the expected number
of pairs of independent sets with intersection lying in the
interval [(1− z)(log d/d)n, (1 + z)(log d/d)n], and show that
this expectation converges to zero exponentially fast. We re-
mark that even though our conclusion is somewhat stronger
than that of previous clustering results, our proof of the
clustering phenomenon is extremely simple.

With this result at hand, the refutation of the HLS conjec-
ture is fairly simple to derive. We prove (see Theorem 2.7)
that if local algorithms can construct independent sets of
size asymptotically (1 + β)(log d/d)n, then, by means of a
simple coupling construction, we can construct two inde-
pendent sets with intersection size z for all z in the interval
[(1 + β)2(log d/d)2n, (1 + β)(log d/d)n], clearly violating the
clustering property. The additional factor 1/(2

√
2) is an ar-

tifact of the analysis, and hence we believe that our result
holds for all β ∈ (0, 1]. Namely, no local algorithm is capable
of producing independent sets with size larger than factor
1/2 of the optimal, asymptotically in d. We note again that
this coincides with the barrier for known algorithms. It is
noteworthy that our result is the first one where algorithmic
hardness derivation relies directly on the the geometry of the
solution space, viz a vi the clustering phenomena, and thus
the connection between algorithmic hardness and clustering
property is not coincidental.

The remainder of the paper is structured as follows. We
introduce some basic material and the HLS conjecture in
the next section. In the same section we state our main
theorem — non-validity of the conjecture (Theorem 2.5).
We also state two secondary theorems, the first describing
the overlap structure of independent sets in random graphs
(Theorem 2.6) - the main tool in the proof of our result, and
the second describing overlaps that can be found if local al-

gorithms work well (Theorem 2.7). We prove our main the-
orem easily from the two secondary theorems in Section 3.
We prove Theorem 2.7 in Section 4. We omit the proof of
Theorem 2.6 from this version.

2. PRELIMINARIES AND MAIN RESULT
For convenience, we repeat here some of the notions and

definitions already introduced in the first section.

Basic graph terminology.
All graphs in this paper are understood to be simple undi-

rected graphs. Given a graph G with node set V (G) and edge
set E(G), a subset of nodes I ⊂ V (G) is an independent set
if (u, v) /∈ E(G) for all u, v ∈ I. A path between nodes
u and v with length r is a sequence of nodes u1, . . . , ur−1

such that (u, u1), (u1, u2), . . . , (ur−1, v) ∈ E(G). The dis-
tance between nodes u and v is the length of the shortest
path between them. For every positive integer value r and
every node u ∈ V (G), BG(u, r) denotes the depth-r neigh-
borhood of u in G. Namely, BG(u, r) is the subgraph of G
induced by nodes v with distance at most r from u. When
G is clear from context we drop the subscript. The degree
of a vertex u ∈ V (G) is the number of vertices v such that
(u, v) ∈ E(G). The degree of a graph G is the maximum
degree of a vertex of G. A graph G is d-regular if the degree
of every node is d.

Random graph preliminaries.
Given a positive real d, G(n, d/n) denotes the Erdös-Rényi

graph on n nodes [n] , {1, 2, . . . , n}, with edge probability
d/n. Namely each of the

(
n
2

)
edges of a complete graph on

n nodes belongs to E(G(n, d/n)) with probability d/n, in-
dependently for all edges. Given a positive integer d, Gd(n)
denotes a graph chosen uniformly at random from the space
of all d-regular graphs on n nodes. This definition is mean-
ingful only when nd is an even number, which we assume
from now on. Given a positive integer m, let I(n, d,m)
denote the set of all independent sets in G(n, d/n) with car-
dinality m. Id(n,m) stands for a similar set for the case
of random regular graphs. Given integers 0 ≤ k ≤ m, let
O(n, d,m, k) denote the set of pairs I, J ∈ I(n, d,m) such
that |I ∩ J | = k. The definition of the set Od(n,m, k) is
similar. The sizes of the sets O(n, d,m, k) and Od(n,m, k),
and in particular whether these sets are empty or not, is one
of our focuses.

Denote by α(n, d) the size of a largest in cardinality inde-
pendent subset of G(n, d/n), normalized by n. Namely,

α(n, d) = n−1 max{m : I(n, d,m) 6= ∅}.

αd(n) stands for the similar quantity for random regular
graphs. It is known that α(n, d) and αd(n) have determin-
istic limits as n→∞.

Theorem 2.1. For every d ∈ R+ there exists α(d) such
that w.h.p. as n→∞,

α(n, d)→ α(d). (1)

Similarly, for every positive integer d there exists αd such
that w.h.p. as n→∞

αd(n)→ αd. (2)



Furthermore

α(d) =
2 log d

d
(1− o(1)), (3)

αd =
2 log d

d
(1− o(1)), (4)

as d→∞.

The convergence (1) and (2) were established in Bayati,
Gamarnik and Tetali [4]. The limits (3) and (4) follow from
much older results by Frieze [13] for the case of Erdös-Rényi
graphs and by Frieze and  Luczak [14] for the case of random
regular graphs, which established these limits in the lim supn
and lim infn sense. The fallout of these results is that graphs
G(n, d/n) and Gd(n) have independent sets of size up to ap-
proximately (2 log d/d)n, when n and d are large, namely in
the doubly asymptotic sense when we first take n to infinity
and then d to infinity.

Local graph terminology.
A decision function is a measurable function f = f(u,G,x)

where G is a graph on vertex set [n] for some positive in-
teger n, u ∈ [n] is a vertex and x ∈ [0, 1]N is a sequence
of real numbers for some N ≥ n and returns a Boolean
value {0, 1}. A decision function f is said to compute an
independent set if for every graph G and every sequence x
and for every pair (u, v) ∈ E(G) it is the case that either
f(u,G,x) = 0 or f(v,G,x) = 0, or both. We refer to such an
f as an independence function. For an independence func-
tion f , graph G on vertex set [n] and x ∈ [0, 1]N for N ≥ n,
we let IG(f,x) denote the independent set of G returned by
f , i.e., IG(f,x) = {u ∈ [n] | f(u,G,x) = 1}. We will assume
later that X is chosen randomly according to some probabil-
ity distribution. In this case IG(f,x) is a randomly chosen
independent set in G.

We now define the notion of a “local” decision function,
i.e., one whose actions depend only on the local structure of
a graph and the local randomness. The definition is a natu-
ral one, but we formalize it below for completeness. Let G1

and G2 be graphs on vertex sets [n1] and [n2] respectively.
Let u1 ∈ [n1] and u2 ∈ [n2]. We say that π : [n1] → [n2]
is an r-local isomorphism mapping u1 to u2 if π is a graph
isomorphism from BG1(u1, r) to BG2(u2, r) (so in particular
it is a bijection from BG1(u1, r) to BG2(u2, r), and further
it preserves adjacency within BG1(u1, r) and BG2(u2, r)).
For G1,G2, u1, u2 and an r-local isomorphism π, we say
sequences x(1) ∈ [0, 1]N1 and x(2) ∈ [0, 1]N2 are r-locally

equivalent if for every v ∈ BG1(u1, r) we have x
(1)
v = x

(2)

π(v).

Finally we say f(u,G, x) is an r-local function if for every
pair of graphs G1,G2, for every pair of vertices u1 ∈ V (G1)
and u2 ∈ V (G2), for every r-local isomorphism π mapping

u1 to u2 and r-locally equivalent sequences x(1) and x(2)

we have f(u1,G1, x
(1)) = f(u2,G2, x

(2)). We often use the
notation fr to denote an r-local function.

Let nd,r , 1 +d · ((d−1)r−1)/(d−2) denote the number
of vertices in a rooted tree of degree d and depth r. We let
Td,r denote a canonical rooted tree on vertex set [nd,r] with
root being 1. For n ≥ nd,r,x ∈ [0, 1]n and an r-local func-
tion fr, we let fr(x) denote the quantity fr(1,Td,r,x). Let
X be chosen according to a uniform distribution on [0, 1]n.
The set subset of nodes IGd(n)(fr,X) is called i.i.d. factor
produced by the r-local function fr. As we will see below
the α(fr) , 1

n
·EX[fr(X)] accurately captures (to within an

additive o(1) factor) the density of an independent returned
by an r-local independence function fr on Gd(n).

First we recall the following folklore proposition which we
will also use often in this paper.

Proposition 2.2. As n → ∞, with probability tending
to 1 almost all local neighborhoods in Gd(n) look like a tree.
Formally, for every d, r and ε, for sufficiently large n,

PGd(n)

(
|{u ∈ [n] | BGd(n)(u, r) 6∼= Td,r}| ≥ εn

)
≤ ε.

This immediately implies that the expected value of the in-
dependent set IGd(n)(fr,X) produced by fr is α(fr)n+o(n).
In fact the following concentration result holds.

Proposition 2.3. As n → ∞, with probability tending
to 1 the independent set produced by a r-local function f on
Gd(n) is of size α(f) · n+ o(n). Formally, for every d, r, ε
and every r-local function f , for sufficiently large n,

PGd(n),X∈[0,1]N
(
||IGd(n)(fr,X)| − α(fr)n| ≥ εn

)
≤ ε.

Proof. The proof follows from by the fact that the vari-
ance of |IGd(n),X| isO(n) and its expectation is α(fr)n+o(n),
and so the concentration follows by Chebychev’s inequality.
The bound on the variance in turn follows from the fact that
for every graph G, there are at most O(n) pairs of vertices
u and v for which the events f(u,G,X) and f(v,G,X) are
not independent for random X. Details omitted.

The Hatami-Lovász-Szegedy Conjecture and our result.

We now turn to describing the Hatami-Lovász-Szegedy
(HLS) conjecture and our result. Recall αd defined by (2).
The HLS conjecture can be stated as follows.

Conjecture 2.4. There exists a sequence of r-local inde-
pendence functions fr, r ≥ 1 such that almost surely I(fr, n)
is an independent set in Gd(n) and α(fr)→ αd as r →∞.

Namely, the conjecture asserts the existence of a local al-
gorithm (r-local independence function fr) which is capable
of producing independent sets in Gd(r) of cardinality close to
the largest that exist. For such an algorithm to be efficient
the function fr(u,G,x) should also be efficiently computable
uniformly. Even setting this issue aside, we show that there
is a limit on the power of local algorithms to find large inde-
pendent sets in Gd(n) and in particular the HLS conjecture
does not hold. Let α̂d = supr supfr α(fr), where the second
supremum is taken over all r-local independence functions
fr.

Theorem 2.5. [Main] For every ε > 0 and all sufficiently
large d,

α̂d
αd
≤ 1

2
+

1

2
√

2
+ ε.

That is, for every ε > 0 and for all sufficiently large d, a
largest independent set obtainable by r-local functions is at
most 1

2
+ 1

2
√
2

+ ε for all r.

Thus for all large enough d there is a multiplicative gap
between α̂d and the independence ratio αd. That being said,
our result does not rule out that for small d, α̂d in fact equals
αd, thus leaving the HLS conjecture open in this regime.



The two main ingredients in our proof of Theorem 2.5 both
deal with the overlaps between independent sets in random
regular graphs. Informally, our first result on the size of the
overlaps shows that in random graphs the overlaps are not of
“intermediate” size — this is formalized in Theorem 2.6. We
then show that we can apply any r-local function fr twice,
with coupled randomness, to produce two independent sets
of intermediate overlap where the size of the overlap depends
on the size of the independent sets found by fr and the level
of coupling. This is formalized in Theorem 2.7 Theorem 2.5
follows immediately by combinig the two theorems (and ap-
propriate setting of parameters).

Overlaps in random graphs.
We now state our main theorem about the overlap of large

independent sets. We interpret the statement after we make
the formal statement.

Theorem 2.6. For β ∈ (1/
√

2, 1) and 0 < z <
√

2β2 − 1 <
β and d, let s = (1 +β)d−1 log d and let K(z) denote the set

of integers between (1−z)n log d
d

and (1+z)n log d
d

. Then, for all
large enough d, we have

lim
n→∞

P
(
∪k∈K(z) O(n, d, bsnc, k) 6= ∅

)
= 0, (5)

and

lim
n→∞

P
(
∪k∈K(z) Od(n, bsnc, k) 6= ∅

)
= 0. (6)

In other words, both in the Erdös-Rényi and in the ran-
dom regular graph models, when β > 1/

√
2, and d is large

enough, with probability approaching unity as n→∞, one
cannot find a pair of independent sets I and J with size
bnsc, such that their overlap (intersection) has cardinality

at least n(1−z) log d
d

and at most n(1+z) log d
d

.

Note that for all β > 1/
√

2, there exists z satisfying

0 < z <
√

2β2 − 1 and so the theorem is not vacuous in
this setting. Furthermore as β → 1, z can be chosen arbi-
trarily close to 1 making the forbidden overlap region ex-
tremely broad. That is, as the size of the independent sets
in consideration approaches the maximum possible (namely
as β ↑ 1), and as d→∞, we can take z → 1. In other words,
with probability approaching one, two nearly largest inde-
pendent sets either overlap almost entirely or almost do not
have an intersection. This is the key result for establishing
our hardness bounds for existence of local algorithms.

A slightly different version of the first of these results can
be found as Lemma 12 in [10]. The latter paper shows that
if an independent set I is chosen uniformly at random from
the set with size nearly (1 + β)n log d/d, then with high
probability (with respect to the choice of I), there exists
an empty overlap region in the sense described above. In
fact, this empty overlap region exists for every β ∈ (0, 1),
as opposed to just 1 > β > 1/2 + 1/(2

√
2) as in our case.

Unfortunately, this result cannot be used for our purposes,
since this result does not rule out the existence of rare sets
I for which no empty overlap exists.

Overlapping from local algorithms.
Next we turn to the formalizing the notion of using a

local function fr twice on coupled randomness to produce
overlapping independent sets.

Fix an r-local independence function fr. Given a vector
X = (Xu, 1 ≤ u ≤ n) of variables Xu ∈ [0, 1], recall that

IG(fr,X) denotes the independent set of G given by u ∈
IG(fr,X) if and only if fr(u,G,X) = 1.

Recall that X is chosen according to the uniform distribu-
tion on [0, 1]n. Namely, Xu are independent and uniformly
distributed over [0, 1]. In what follows we consider some joint
distributions on pairs of vectors (X,Y) such that marginal
distributions on the vector X and Y are uniform on [0, 1]n,
though X and Y are dependent on each other. The intuition
behind the proof of Theorem 2.5 is as follows. Note that if
X = Y then IG(fr,X) = IG(fr,Y). As a result the over-
lap IG(fr,X)∩ IG(fr,Y) between IG(fr,X) and IG(fr,Y) is
α(fr)n+ o(n) in expectation. On the other hand, if X and
Y are independent, then the overlap between IG(fr,X) and
IG(fr,Y) is α2(fr)n + o(n) in expectation, since the deci-
sion to pick a vertex u in I is independent for most vertices
when X and Y are independent. (In particular, note that
if the local neighborhood around u is a tree, which accord-
ing to Proposition 2.2 happens with probability approaching
unity, then the two decisions are independent, and u ∈ I
with probability α(fr).) Our main theorem shows that by
coupling the variables, the overlap can be arranged to be of
any intermediate size, to within an additive o(n) factor. In
particular, if α(fr) exceeds 1

2
+ 1

2
√
2

we will be able to show

that the overlap can be arranged to be between the values
(1−z)n log d

d
and (1+z)n log d

d
, described in Theorem 2.6 which

contradicts the statement of this theorem.

Theorem 2.7. Fix a positive integer d. For constant r,
let fr(u,G,x) be an r-local independence function and let
α = α(fr). For every γ ∈ [α2, α] and ε > 0, and for every
sufficiently large n, there exists a distribution on variables
(X,Y) ∈ [0, 1]n × [0, 1]n such that

PGd(n),(X,Y)

(
|IGd(n)(fr,X) ∩ IGd(n)(fr,Y)| 6∈ (γ ± ε)n

)
≤ ε.

3. PROOF OF THEOREM 2.5
We now show how Theorems 2.6 and 2.7 immediately im-

ply Theorem 2.5.

Proof Proof of Theorem 2.5. Fix an r-local function
fr and let α = α(fr). Fix 0 < η < 1. We will prove below
that for sufficiently large d we have α/αd ≤ 1/2+1/(2

√
2)+

η. The theorem will then follow.
Let ε = η log d

2d
. By Proposition 2.3 we have that almost

surely an independent set returned by fr on Gd(n) is of size
at least (α − ε)n. Furthermore for every γ ∈ [α2, α] we
have, by Theorem 2.7, that Gd(n) almost surely has two
independent sets I and J , with

|I|, |J | ≥ (α− ε)n and |I ∩ J | ∈ [(γ − ε)n, (γ + ε)n]. (7)

Finally, by Theorem 2.1, we have that for sufficiently large
d, |I|, |J | ≤ (2d−1 log d)(1 + η)n ≤ 4d−1 log dn and so α2 ≤
d−1 log d, allowing us to set γ = d−1/ log d.

Now we apply Theorem 2.6 with z = εd/ log d and β >√
1+z2

2
. (Note that for this choice we have z < 1 and z <√

2β2 − 1 < β < 1. We will also use later the fact that for

this choice we have β ≤ 1/
√

2+z = 1/
√

2+εd−1 log d.) The-
orem 2.6 asserts that almost surely Gd(n) has no indepen-
dent sets of size at least (1 + β)d−1 log dn with intersection
size in [(1− z)d−1 log dn, (1 + z)d−1 log dn]. Since |I ∩ J | ∈
[(γ−ε)n, (γ+ε)n] = [(1−z)d−1 log dn, (1+z)d−1 log dn], we
conclude that min{|I|, |J |} ≤ (1 + β)d−1 log dn. Combining
with Equation (7) we get that (α − ε)n ≤ min{|I|, |J |} ≤



(1 + β)d−1 log dn and so α ≤ (1 + β)d−1 log d+ ε, which by
the given bound on β yields α ≤ (1 + 1/

√
2)d−1 log d+ 2ε =

(1 + 1/
√

2 + η)d−1 log d. On the other hand we also have
αd ≥ (2−η)d−1 log d. It follows that α/αd ≤ 1/2+1/2

√
2+η

as desired.

4. PROOF OF THEOREM 2.7
For parameter p ∈ [0, 1], we define the p-correlated dis-

tribution on vectors of random variables (X,Y) to be the
following: Let X,Z be independent uniform vectors over
[0, 1]n. Now let Zu = Xu with probability p and Yu with
probability 1− p independently for every u ∈ V (G).

Let f(u,G,x) and α be as in the theorem statement. Re-
call that f(x) = f(1,Td,r,x) is the decision of f on the
canonical tree of degree d and depth r rooted at the vertex
1. Let γ(p) be the probability that f(X) = 1 and f(Y) = 1,
for p-correlated variables (X,Y). As with Proposition 2.3
we have the following.

Lemma 4.1. For every d, r, ε > 0 and r-local function f ,
for sufficiently large n we have:

P
(
||IGd(n)(f,X) ∩ IGd(n)(f,Y)| − γ(p) · n| ≥ εn

)
≤ ε,

where (X,Y) are p-correlated distributions on [0, 1]n.

Proof. By Proposition 2.2 we have that almost surely
almost all local neighborhoods are trees and so for most
vertices u the probability that u is chosen to be in the in-
dependent sets I(f,X) and I(f,Y) is γ(p). By linearity of
expectations we get that E[|I(f,X) ∩ I(f,Y)|] = γ(p) · n +
o(n). Again observing that most local neighborhoods are
disjoint we have that the variance of |I(f,X) ∩ I(f,Y)| is
O(n). We conclude, by applying the Chebychev bound, that
|I(f,X) ∩ I(f,Y)| is concentrated around the expectation
and the lemma follows.

We also note that for p = 1 and p = 0 the quantity γ(p)
follow immediately from their definition.

Proposition 4.2. γ(1) = α and γ(0) = α2.

Now to prove Theorem 2.7 it suffices to prove that for
every γ ∈ [α2, α] there exists a p such that γ(p) = γ. We
show this next by showing that γ(p) is continuous.

Lemma 4.3. For every r, γ(p) is a continuous function
of p.

Proof. Let (Wu, u ∈ Td,r) be random variables associ-
ated with nodes in Td,r, uniformly distributed over [0, 1],
which are independent for different u and also independent
from Xu and Zu. We use Wu as generators for the events
Yu = Xu vs Yu = Zu. In particular, given p, set Yu = Xu
if Wu ≤ p and Yu = Zu otherwise. This process is exactly
the process of setting variables Yu to Xu and Zu with prob-
abilities p and 1−p respectively, independently for all nodes
u. Now fix any p1 < p2, and let δ < (p2 − p1)/dr+1. We
use the notation fr(Xu, Zu,Wu, p) to denote the value of fr
when the seed variables realization is (Wu, u ∈ Td,r), and
the threshold value p is used. Namely, fr(Xu, Zu,Wu, p) =
fr (Xu1{Wu ≤ p}+ Zu1{Wu > p}, u ∈ Td,r). Here, for ease

of notation, the reference to the tree Td,r is dropped. Uti-
lizing this notation we have

γ(p) = P (fr(Xu) = fr(Xu, Zu,Wu, p) = 1) .

Manipulating the expressions somewhat we find

|γ(p2)− γ(p1)| ≤ dr+1(p2 − p1).

Since r is fixed, the continuity of γ(p) is established.

We are now ready to prove Theorem 2.7.

Proof Proof of Theorem 2.7. Given γ ∈ [α2, α] by
Lemma 4.3 we have that there exists a p such that γ = γ(p).
For this choice of p, let (X,Y) be a pair of p-correlated
distributions. Applying Lemma 4.1 to this choice of p, we
get that with probability at least 1−ε we have |IGd(n)(f,X)∩
IGd(n)(f,Y)| ∈ [(γ − ε)n, (γ + ε)n] as desired.

5. PROOF OF THEOREM 2.6
We omit the proof of this theorem from this version. De-

tails can be found in the full version [15].
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