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Abstract

Motivated by the quest for a broader understanding of upper bounds in communication com-
plexity, at least for simple functions, we introduce the class of “permutation-invariant” functions.
A partial function f : {0,1}" x {0,1}" — {0,1,?} is permutation-invariant if for every bijection
m:{1,...,n} = {1,...,n} and every x,y € {0, 1}", it is the case that f(x,y) = f(x",y™). Most
of the commonly studied functions in communication complexity are permutation-invariant. For
such functions, we present a simple complexity measure (computable in time polynomial in n
given an implicit description of f) that describes their communication complexity up to polyno-
mial factors and up to an additive error that is logarithmic in the input size. This gives a coarse
taxonomy of the communication complexity of simple functions. Our work highlights the role of
the well-known lower bounds of functions such as SET-DISJOINTNESS and INDEXING, while com-
plementing them with the relatively lesser-known upper bounds for GAP-INNER-PRODUCT (from
the sketching literature) and SPARSE-GAP-INNER-PRODUCT (from the recent work of Canonne et
al. [ITCS 2015]). We also present consequences to the study of communication complexity with
imperfectly shared randomness where we show that for total permutation-invariant functions, im-
perfectly shared randomness results in only a polynomial blow-up in communication complexity
after an additive O(loglogn) overhead.
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1 Introduction

Communication complexity, introduced by Yao [Yao79], has been a central object of study in com-
plexity theory. In the two-way model, two players, Alice and Bob, are given private inputs x and y
respectively, along with some shared randomness, and they exchange bits according to a prede-
termined protocol and produce an output. The protocol computes a function f (-, -) if the output
equals f(x,y) with high probability over the randomness !. The communication complexity of f
is the minimum over all protocols computing f of the maximum, over inputs x and y, of the num-
ber of bits exchanged by the protocol. The one-way communication model is defined similarly
except that all the communication is from Alice to Bob and the output is produced by Bob. For an
overview of communication complexity, we refer the reader to the book [KN97] and the survey
[LS09].

While communication complexity of functions has been extensively studied, the focus typically
is on lower bounds. Lower bounds on communication complexity turn into lower bounds on
Turing machine complexity, circuit depth, data structures, streaming complexity, just to name a
few. On the other hand, communication complexity is a very natural notion to study on its own
merits and indeed positive results in communication complexity can probably be very useful in
their own rights, by suggesting efficient communication mechanisms and paradigms in specific
settings. For this perspective to be successful, it would be good to have a compact picture of
the various communication protocols that are available, or even the ability to determine, given
a function f, the best, or even a good, communication protocol for f. Of course such a goal is
overly ambitious. For example, the seminal work of Karchmer and Wigderson [KW90] implies
that finding the best protocol for f is as hard as finding the best (shallowest) circuit for some
related function f.

Given this general barrier, one way to make progress is to find a restrictive, but natural, sub-
class of all functions and to characterize the complexity of all functions within this class. Such ap-
proaches have been very successful in the context of non-deterministic computation by restricting
to satisfiability problems [Sch78], in optimization and approximation by restricting to constraint
satisfaction problems [Cre95, KSTWO0O0], in the study of decision tree complexity by restricting to
graph properties [Ros73], or in the study of property testing by restricting to certain symmetric
properties (see the survey [Sud10, Gol10] and the references therein). In the above cases, the
restrictions have led to characterizations (or conjectured characterizations) of the complexity of
all functions in the restricted class. In this work, we attempt to bring in a similar element of
unification to communication complexity.

In this work, we introduce the class of “permutation-invariant” (total or partial) functions. Let
[n] denote the set {1,---,n}. A function f : {0,1}" x {0,1}" — {0, 1,?} is permutation invariant
if for every bijection 7 : [n] — [n] and every x,y € {0, 1}" it is the case that f(x,y) = f (X", y").
We propose to study the communication complexity of this class of functions.

To motivate this class, we note that most of the commonly studied functions in communication
complexity including EQUALITY [Ya079], (GAP) HAMMING DISTANCE [Wo0004, JKS08, CR12, Vid11,
Shel2, PEG86, Yao03, HSZZ06, BBG14], (GAP) INNER PRODUCT, (SMALL-SET) DISJOINTNESS
[KS92, Raz92, HW07, ST13], SMALL-SET INTERSECTION [BCK*14] are all permutation-invariant
functions. Other functions, such as INDEXING [JKS08], can be expressed without changing the
input length significantly, as permutation-invariant functions. Permutation-invariant functions
also include as subclasses, several classes of functions that have been well-studied in communica-
tion complexity, such as (AND)-symmetric functions [BAWO01, Raz03, She11] and XOR-symmetric
functions [ZS09]. It is worth noting that permutation-invariant functions are completely expres-

!n this work, we also consider partial functions where f (x,y) may sometimes be undetermined, denoted f (x,y) = ?.
In such cases, the protocol can output anything when f (x,y) is undetermined.



sive if one allows an exponential blow-up in input size, namely, for every function f(x,y) there
are functions F, A, B s.t. F is permutation-invariant and f(x,y) = F(A(x),B(y)). So results on
permutation-invariant functions that don’t depend on the input size apply to all functions. Fi-
nally, we point out that permutation-invariant functions have an important standpoint among
functions with small communication complexity, as permutation-invariance often allows the use
of hashing/bucketing based strategies, which would allow us to get rid of the dependence of the
communication complexity on the input length n. We also note that functions on non-Boolean do-
mains that are studied in the literature on sketching such as distance estimation (given x,y € R",
decide if |[x —yll, < d or if |[x—yl|, > d(1 + €)) are also permutation-invariant. In particular,
the resulting sketching/communication protocols are relevant to (some functions in) our class.
Permutation-invariant functions have been studied outside of communication complexity as well.
In particular, Aaronson-Ambainis [AA14] showed that for partial functions that are permutation-
invariant, there is at most a polynomial gap between the randomized and quantum query com-
plexity (the same is known to not be true for general partial functions).

1.1 Coarse characterization of Communication Complexity

Permutation-invariant functions on n-bits are naturally succinctly described (by O(n?) bits). Given
this natural description, we introduce a simple combinatorial measure m(f) (which is easy to
compute, in particular in time poly(n) given f) which produces a coarse approximation of the
communication complexity of f. We note that our objective is different from that of the stan-
dard objectives in the study of communication complexity lower bounds, where the goal is often
to come up with a measure that has nice mathematical properties, but may actually be more
complex to compute than communication complexity itself. In particular, this is true of the In-
formation Complexity measure introduced by [CSWYO01] and [BJKS04], and used extensively in
recent works, and which, until recently, was not even known to be approximately computable
[BS15] (whereas communication complexity can be computed exactly, albeit in doubly exponen-
tial time). Nevertheless, our work does rely on known bounds on the information complexity of
some well-studied functions and our combinatorial measure m(f ) also coarsely approximates the
information complexity for all the functions that we study.

In a recent breakthrough, an exponential separation was shown between information com-
plexity and communication complexity [GKR15]. This motivates our attempt to understand the
gaps between information and communication complexity for natural classes of functions.

To formally state our first theorem, let R(f ) denote the randomized communication complexity
of a function f and IC(f) denote its information complexity. Our result about our combinatorial
measure m(f) (see Definition 3.2) is summarized below.

Theorem 1.1. Let f : {0,1}" x {0,1}" — {0,1,?} be a (total or partial) permutation-invariant
function. Then,
Q(m(f)) <IC(f) < R(f) < poly(m(f)) + O(log n).

In other words, the combinatorial measure m(f) approximates communication complexity to
within a polynomial factor, up to an additive O(logn) factor. Our result is constructive — given
f it gives a communication protocol whose complexity is bounded from above by poly(m(f)) +
O(logn). It would be desirable to get rid of the O(logn) factor but this seems hard without
improving the state of the art vis-a-vis communication complexity and information complexity.
To see this, first note that our result above also implies that information complexity provides a
coarse approximator for communication complexity. Furthermore, any improvement to the addi-
tive O(logn) error in this relationship would imply improved relationship between information
complexity and communication complexity for general functions (better than what is currently
known). Specifically, we note:



Proposition 1.2. Let G(-) be a function such that R(f ) < poly(IC(f ))+G(log n) for every permutation-
invariant partial function f on {0,1}" x {0,1}". Then, for every (general) partial function g on
{0,1}"* x {0,1}", we have R(g) < poly(IC(g)) + G(n).

Thus, even an improvement from an additive O(logn) to additive o(logn) would imply new
relationships between information complexity and communication complexity for all functions.

Remark. We would like to draw a comparison between our measure m(f) and the measure of
block sensitivity often studied in query complexity (see for eg, [BAW02]). For any total function
f :{0,1}* — {0,1} and input x, bs(f,x) is defined as the maximum number of disjoint subsets
of input bits in x, such that flipping all the bits in any subset will flip the value of the function
f. And bs(f) = max,bs(f,x). Thus, block sensitivity is a measure of local hardness of f. It
follows easily from the definition of bs(f) that bs(f) < D(f), where D(f) is the deterministic
query complexity of f. However, it also turns out that D(f) < O((bs(f))3). Morally, this means
that in terms of deterministic query complexity, the function is not much harder than its local
hardness. The measure m(f) we introduce is also a measure of local hardness for permutation-
invariant functions, and Theorem 1.1 shows that the communication complexity of the function
is not much larger compared to m(f).

1.2 Communication with imperfectly shared randomness

Next, we turn to communication complexity when the players only share randomness imperfectly,
a model introduced by [BGI14, CGMS14]. Specifically, we consider the setting where Alice gets
a sequence of bits r = (ry,...,r,) and Bob gets a sequence of bits s = (sq,...,s,) where the pairs
(r;,s;) are identically and independently distributed according to distribution DSBS(p), which
means, the marginals of r; and s; are uniformly distributed in {0, 1} and r; and s; are p-correlated
(e, Prlr;=s;1=1/2+p/2).

The question of what can interacting players do with such a correlation has been investi-
gated in many different contexts including information theory [GK73, Wit75], probability the-
ory [MOO05, BM11, CMN14, MOR"06], cryptography [BS94, Mau93, RW05] and quantum com-
puting [BBP*96]. In the context of communication complexity, however, this question has only
been investigated recently. In particular, Bavarian et al. [BGI14] study the problem in the Simul-
taneous Message Passing (SMP) model and Canonne et al. [CGMS14] study it in the standard
one-way and two-way communication models. Let ISR, (f) denote the communication complex-
ity of a function f when Alice and Bob have access to p-correlated bits. The work of [CGMS14]
shows that for any total or partial function f with communication complexity R(f) < k it is the
case that ISR, (f) < min{0(2%), k + O(logn)}. They also give a partial function f with R(f) < k
for which ISR, (f) = Q(2%). Thus, imperfect sharing of randomness leads to an exponential blow
up for low-communication promise problems.

One of the motivations of this work is to determine if the above result is tight for total func-
tions. Indeed, for most of the common candidate functions with low-communication complexity
such as SMALL-SET-INTERSECTION and SMALL-HAMMING-DISTANCE, we show (in Section 4.1) that
ISR, (f) < poly(R(f)). 2 This motivates us to study the question more systematically and we do so
by considering permutation-invariant total functions. For this class, we show that the communica-
tion complexity with imperfectly shared randomness is within a polynomial of the communication
complexity with perfectly shared randomness up to an additive O(loglog n) factor; this is a tighter

2In fact, this polynomial relationship holds for a broad subclass of permutation-invariant functions that we call
“strongly permutation-invariant”. A function f (x, y) is strongly permutation invariant if there exists h : {0,1}*> — {0,1}
and symmetric function o : {0,1}" — {0,1} such that f(x,y) = o(h(x;,y1),...,h(x,,y,)). Theorem 4.12 shows a
polynomial relationship between R(f) and ISR(f) for all strongly-permutation-invariant total functions f .



connection than what is known for general functions. Interestingly, we achieve this by showing
that the same combinatorial measure m(f) also coarsely captures the communication complexity
under imperfectly shared randomness. Once again, we note that the O(loglogn) factor is tight
unless we can improve the upper bound of [CGMS14].

Theorem 1.3. Let f : {0,1}" x {0,1}" — {0, 1} be a permutation-invariant total function. Then,
we have

ISR, (f) < poly(R(f)) + O(loglogn)
Furthermore, ISR;,'WQ“V (f) < poly(R*™¥(f)) + O(loglog n).

1.3 Overview of Proofs

Our proof of Theorem 1.1 starts with the simple observation that for any permutation-invariant
partial function f (-,-), its value f (x,y) is determined completely by |x|, |y| and A(x,y) (where |x|
denotes the Hamming weight of x and A(x,y) denotes the (non-normalized) Hamming distance
between x and y). By letting Alice and Bob exchange |x| and |y| (using O(logn) bits of commu-
nication), the problem now reduces to being a function only of the Hamming distance A(X,y).
To understand the remaining task, we introduce a multi-parameter version of the GAP-HAMMING-
DISTANCE problem GHDZ’b’C’g(-,-) where GHDZ’b’C’g(x,y) is undefined if |x| # a or |y| # b or
c—g <A(x,y) < c+g. The function is 1 if A(x,y) > c+ g and 0 if A(x,y) <c—g.

This problem turns out to have different facets for different choices of the parameters. For
instance, if a &~ b ~ c, then the communication complexity of this problem is roughly O((c/g)?)
and the optimal lower bound follows from the lower bound on Gap Hamming Distance [CR12,
Vid11, Shel2] whereas the upper bound follows from simple hashing. However, when a < b,
¢ ~ b and g ~ a different bounds and protocols kick in. In this range, the communication
complexity turns out to be O(log(c/g)) with the upper bound coming from the protocol for Sparse-
Gap-Inner-Product given in [CGMS14], and a lower bound that we give based on a reduction from
Set Disjointness. In this work, we start by giving a complete picture of the complexity of GHD
for all parameter settings. The lower bound for communication complexity, and even information
complexity, of general permutation-invariant functions f follows immediately - we just look for
the best choice of parameters of GHD that can be embedded in f. The upper bound requires
more work in order to ensure that Alice and Bob can quickly narrow down the Hamming distance
A(x,y) to a range where the value of f is clear. To do this, we need to verify that f does not
change values too quickly or too often. The former follows from the fact that hard instances of
GHD cannot be embedded in f, and the latter involves some careful accounting, leading to a full
resolution.

Turning to the study of communication with imperfectly shared randomness, we hit an imme-
diate obstacle when extending the above strategy since Alice and Bob cannot afford to exchange
|x| and |y| anymore, since this would involve Q(logn) bits of communication and we only have
an additional budget of O(loglogn). Instead, we undertake a partitioning of the “weight-space”,
i.e., the set of pairs (|x|, |y|), into a finite number of regions. For most of the regions, we reduce
the communication task to one of the SMALL-SET-INTERSECTION or SMALL-HAMMING-DISTANCE
problems. In the former case, the sizes of the sets are polynomially related to the randomized
communication complexity, whereas in the latter case, the Hamming distance threshold is poly-
nomially related to the communication complexity. A naive conversion to protocols for the imper-
fectly shared setting using the results of [CGMS14] would result in an exponential blow-up in the
communication complexity. We give new protocols with imperfectly shared randomness for these
two problems (which may be viewed as extensions of protocols in [BGI14] and [CGMS14]) that
manage to reduce the communication blow-up to just a polynomial. This manages to take care of
most regions, but not all. To see this, note that any total function h(|x|, |y|) can be encoded as a
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permutation-invariant function f (x,y) and such functions cannot be partitioned into few classes.
Our classification manages to eliminate all cases except such functions, and in this case, we ap-
ply Newman’s theorem to conclude that the randomness needed in the perfectly shared setting
is only O(loglogn) bits (since the inputs to h are in the range [n] x [n]). Communicating this
randomness and then executing the protocol with perfectly shared randomness gives us in this
case a private-randomness protocol with communication R(f) + O(loglogn).

1.4 Roadmap of this paper

In Section 2, we give some of the basic definitions and introduce the background material rel-
evant to this paper. In Section 3, we introduce our measure m(f) and prove Theorem 1.1. In
Section 4, we show the connections between communication complexity with imperfectly shared
randomness and that with perfectly shared randomness and prove Theorem 1.3. We end with a
summary and some future directions in Section 5.

2 Preliminaries

In this section, we provide all the necessary background needed to understand the contributions
in this paper.

2.1 Notations and Definitions

Throughout this paper, we will use bold letters such as x, y, etc. to denote strings in {0, 1}", where
the i-th bit of x will be denoted by x;. We denote by |x| the Hamming weight of binary string x, i.e.,
the number of non-zero coordinates of x. We will also denote by A(x,y) the Hamming distance
between binary strings x and y, i.e., the number of coordinates in which x and y differ. We also
denote [n] def {1,---,n} for every positive integer n.

Very significant for our body of work is the definition of permutation-invariant functions, which
we define as follows,

Definition 2.1 (Permutation-Invariant functions). A (total or partial) function f : {0,1}"x{0,1}" —
{0, 1, ?} is permutation-invariant if for all X,y € {0, 1}" and every bijection 7t : [n] — [n], f (x",y™) =
f(x,y) (Where X" is such that x| = x ;).

We note the following simple observation about permutation-invariant functions.

Observation 2.2. Any permutation-invariant function f depends only on |x Ay|, [X A -y, | "X AYy|
and |-x A-y|. Since these numbers add up to n, f really depends on any three of them, or in fact any
three linearly independent combinations of them. Thus, we have that for some appropriate functions
g h
fxy) = g(Ixl, lyl, x Ayl) = h(|x], lyl, Ax,y))

We will use these 3 representations of f interchangeably throughout this paper. We will often refer to
the slices of f obtained by fixing |x| = a and |y| = b for some a and b, in which case we will denote
the sliced h by either h, j(+) or h(a, b, -), and similarly for g.

2.2 Communication Complexity

We define the standard notions of two-way (resp. one-way) randomized commmunication com-
plexity® R(f) (resp. RM""¥(f)), that is studied under shared/public randomness model (cf. [KN97]).

3we will often abbreviate “communication complexity” by CC

5



Definition 2.3 (Randomized communication complexity R(f)). For any function f : {0,1}" x
{0,1}* — {0,1,?}, the randomized communication complexity R(f) is defined as the cost of the
smallest randomized protocol, which has access to public randomness, that computes f correctly on
any input with probability at least 2/3. In particular,

R(f) = mr}n CC(II)
Vx,ye{0,1}" s.t. fF(xy)# ?:
Pr{I(x,y)=f (x,y)]=2/3

where the minimum is taken over all randomized protocols I, where Alice and Bob have access to
public randomness.

The one-way randomized communication complexity R™"™¥(f) is defined similarly, with the
only difference being that we allow only protocols I1 where only Alice communicates to Bob, but not
other way round.

Another notion of randomized communication complexity that is studied, is under private
randomness model. The work of [CGMS14] sought out to study an intermediate model, where
the two parties have access to i.i.d. samples from a correlated random source u(r,s), that is, Alice
has access to r and Bob has access to s. In their work, they considered the doubly symmetric binary
source, parametrized by p, defined as follows,

Definition 2.4 (Doubly Symmetric Binary Source DSBS(p)). DSBS(p) is a distribution on {0, 1} x
{0,1}, such that for (r,s) ~ DSBS(p),

Prir=1,s=1]=Pr[r=0,s=0]=(1+p)/4
Prir=1,s=0]=Pr[r=0,s=1]=(1—p)/4

Note that p = 1 corresponds to the standard notion of public randomness, and p = O corre-
sponds to the standard notion of private randomness.

Definition 2.5 (Communication complexity with imperfectly shared randomness [CGMS14]). For
any function f : {0,1}" x {0,1}" — {0, 1, ?}, the ISR-communication complexity ISR, (f) is defined
as the cost of the smallest randomized protocol, where Alice and Bob have access to samples from
DSBS(p), that computes f correctly on any input with probability at least 2/3. In particular,

ISR,(f) = min CC(1I)
Vx,y€{0,1}" s.t. f(x,y)# ?:
Pr{II(x,y)=f (x,y)]=2/3
where the minimum is taken over all randomized protocols T1, where Alice and Bob have access to
samples from DSBS(p).
def

For ease of notation, we will often drop the subscript p and denote ISR(f) = ISR, (f).

We use the term ISR as abbreviation for “Imperfectly Shared Randomness” and ISR-CC for
“ISR-Communication Complexity”. To emphasize the contrast, we will use PSR and PSR-CC for the
classical case of (perfectly) shared randomness. It is clear that if p > p’, then ISR, (f) < ISR,/(f).

An extreme case of ISR is when p = 0. This corresponds to communication complexity with
private randomness, denoted by R, (f ). Note that ISR, (f) < Rp,y4,(f) for any p > 0. A theorem
(due to Newman [New91]) shows that any communication protocol using public randomness can
be simulated using only private randomness with an extra communication of additive O(logn)
(both in the 1-way and 2-way models). We state the theorem here for the convenience of the
reader.



Theorem 2.6 (Newman’s theorem [New91]). For any function f : {0,1}" x {0,1}" — Q (any
range ), the following hold,

Rpriv(f) < R(f) + O(lOg n)
R (f) < R™9(f)+0(logn)

here, Rpy,(f) is also ISRy (f ) and R(f) is also ISRy (f).

2.3 Information Complexity

Information complexity” is an interactive analogue of Shannon’s information theory [Sha48]. In-
formally, information complexity is defined as the minimum number of bits of information that
the two parties have to reveal to each other, when the inputs (x,y) € {0,1}" x {0,1}" are coming
from the ‘worst’ possible distribution .

Definition 2.7 ((Prior-Free) Interactive Information Complexity; [Bral2]). For any f : {0,1}" x
{0,1}* — {0,1}, the (prior-free) interactive information complexity of f, denoted by IC(f), is
defined as,
IC(f) = igf sup I(X;IIY)+I(Y;TI|X)
u

where, the infimum is over all randomized protocols I such that for all x,y € {0,1}" such that
f(x,y) # 2, PrlIi(x,y) # f(x,y)] < 1/3 and the supremum is over all distributions u(x,y) over
{0,1}* x {0,1}". [I(A;B|C) is the mutual information between A and B conditioned on C ]

We refer the reader to the survey by Weinstein [Weil5] for a more detailed understanding of
the definitions and the role of information complexity in communication complexity.

A general question of interest is: what is the relationship between IC(f) and R(f)? It is
straightforward to show R(f) = IC(f). Upper bounding R(f) as a function of IC(f) has been
investigated in several works including the work of Barak et al. [BBCR13]. The cleanest relation
known is that R(f) < 200€0U)) [Bra12]. Additionally, Ganor, Kol and Raz [GKR15] demonstrate
a function f for which IC(f) = k, but R(f) > 2%, Our first result, namely Theorem 1.1, shows
however that for permutation-invariant functions, R(f) is not much larger than IC(f).

2.4 Some Useful Communication Problems

Central to our proof techniques is a multi-parameter version of GAP-HAMMING-DISTANCE, which
we define as follows.

n

Definition 2.8 (GAP-HAMMING-DISTANCE, GHD" GHD

s n
: : ‘ b.c.g’ abeg) Ve define GHDj ,
lowing partial function,

G5 the fol-

[

1 iflx|=a,|lyl=band Ax,y)=c+g
(x,y)=410 iflx|=a,lyl=band A(x,y)<c—¢g
? otherwise

GHDZ, beg

Additionally we define GHD;1 beg 05 the following partial function,

1 iflx|=a,ly|=band Ax,y)=c+¢g
— .
GHD, , ., (x,y)=1{0 iflxl=a,lyl=band A(xy)=c—g
? otherwise

“we will often abbreviate “information complexity” by IC
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We say that the instance of GHD! , g (or GHDZ b g) is meaningful if a,b < n and ¢ + g and
c—g are achievable hamming distances, namely, b—a+g < ¢ < b+a—g and ¢ = b+a—g (mod 2).

n

abcg 1S equivalent to the following problem:

Informally, computing GHD
e Alice is given x € {0,1}" such that |x| = a
e Bob is given y € {0,1}" such that [y| = b
e They wish to distinguish between the cases A(x,y) > ¢+ g and A(x,y) <c—g.

In the GHDZ,b,C,g problem, they wish to distinguish between the cases A(x,y) = ¢ + g or

A(x,y) = c—g. Arguably, GHDZ beg is an ‘easier’ problem than GHD" However, it turns out

c, a,b,c,g’

that in fact GHDZ’ beog is not much harder than @Z beg:

We will use certain known lower bounds on the information complexity and one-way com-
munication complexity of Gﬁz beg for some settings of the parameters. The two main settings
of parameters that we will be using correspond to the problems of UNIQUE-DISJOINTNESS and
SPARSE-INDEXING (a variant of the more well-known INDEXING problem).

2.4.1 IC lower bound for UNIQUE-DISJOINTNESS

Definition 2.9 (UNIQUE-DISJOINTNESS, UD1sJ}!). UDIsSJ; is given by the following partial function,

1 iflxl=tlyl=tand [xAy|=1
UD1ssi(x,y) =4 0 if|x|=t,lyl=tand [xAy|=0
? otherwise

n

n - . p—
Note that UDIsJ; is an instance of GHDt,t,Zt—l,l‘

Informally, UD1sJ} is the problem where the inputs x,y € {0, 1}" satisfy [x| = |y| = t and Alice
and Bob wish to decide whether [x Ay| =1 or |[x Ay| = 0 (promised that it is one of them is the
case).

Lemma 2.10. For all n € N, IC(UD1ss?") = Q(n).

Proof. Bar-Yossef et al. [BJKS04] proved that GENERAL-UNIQUE-DISJOINTNESS, that is, unique
disjointness without restrictions on x|, |y| on inputs of length n, has information complexity
Q(n). We convert the general UNIQUE-DISJOINTNESS instance into an instance of UDISJ?I” by a
simple padding argument as follows. Given an instance of general UNIQUE-DISJOINTNESS (x,y’) €
{0,1}" x {0, 1}". Alice constructs x = X’ o 1(""¥D o 0(1+I¥') and Bob constructs y =y’ 0 0D o
1D Note that |[xAy| = |x' AY’|. Also, we have that x,y € {0,1}°", and |x| = |y| = n. Thus, we
have reduced GENERAL-UNIQUE-DISJOINTNESS to UDISJin, and thus the lower bound of [BJKS04]
implies that IC(UDISJ:Z”) =Q(n). O

On top of the above lemma, we apply another simple padding argument, to get a more general
lower bound for UNIQUE-DISJOINTNESS as follows.

Proposition 2.11 (Unique Disjointness IC Lower Bound). For all t,w € N,

IC(UD1ss2*") = Q(min {t, w})



Proof. We look at two cases, namely w < t and w > t.

Case 1. [w < t]: We have from Lemma 2.10 that IC(UDISJ?VW) > Q(w). We map the in-
stance (x',y’) of UDIss¥ to an instance (x,y) of UDIsJ*™" by the following reduction, x =
x' 01 0 0™ and y =y 0 0™ 0 1(=%) | This implies that IC(UDIss*%) = Q(w).

Case 2. [w > t]: We have from Lemma 2.10 that IC(UDISJ?t) = Q(t). As before, we map
the instance (x/,y") of UDIss?* to an instance (x,y) of UDIsj™" by the following reduction,
x=x"00"" and y =y 0 0", This implies that IC(UD1sJ2 ™) = Q(¢).

Combining the above two lower bounds, we get that IC(UDISJ?HW) = Q(min {t, w}). O

2.4.2 1-way CC lower bound for SPARSE-INDEXING

Definition 2.12 (SPARSE-INDEXING, SPARSEIND}). SPARSEIND} is given by the following partial
function,
1 flxl=tlyl=1and [xAy|=1
SPARSEIND}(x,y) =1{ 0 if[x|=t,ly=1and [xAy|=0
? otherwise

n

Note that SPARSEINDY is an instance of GHD, ; , ;.

Informally, SPARSEIND? is the problem where the inputs x,y € {0, 1}" satisfy [x| = t and |[y| = 1
and Alice and Bob wish to decide whether |[x Ay| =1 or [x Ay| = 0 (promised that one of them is
the case).

Lemma 2.13. For all a € N, R™®(SpaRSEIND>") = Q(n).

Proof. Jayram et al. [JKSO8] proved that if Alice is given x € {0,1}", Bob is given i € [n],
and Bob needs to determine x; upon receving a single message from Alice, then Alice’s message
should consist of Q(n) bits, even if they are allowed shared randomness. Using their result, we
deduce that Rl'way(SPARSEINDTZI") = Q(n) via the following simple padding argument: Alice and
Bob double the length of their strings from n to 2n, with Alice’s new input consisting of (x,X)
while Bob’s new input consists of (e;,0), where X is the bitwise complement of x and e; is the
indicator vector for location i. Note that the Hamming weight of Alice’s new string is equal to n
while its length is 2n, as desired. O

On top of the above lemma, we apply another simple padding argument, to get a more general
lower bound for SPARSE-INDEXING as follows.

Proposition 2.14 (SPARSE-INDEXING 1-way CC Lower Bound). For all t,w €N,
R™®¥(SPARSEIND' ™) = Q(min {t, w})

Proof. We look at two cases, namely w < t and w > t.

Case 1. [w < t]: We have from Lemma 2.13 that Rl'WaY(SPARSEINDﬁ/W) > Q(w). We map the
instance (x’,y’) of SPARSEIND2" to an instance (x,y) of SPARSEIND'*" by the following reduction,
x =% 01" and y =y 0 0. This implies that R4 (SPARSEIND ™) > Q(w).

Case 2. [w > t]: We have from Lemma 2.13 that Rl""’ay(SPARSEIND%f) = Q(t). We map the
instance (x,y’) of SPARSEIND?! to an instance (x,y) of SPARSEIND: ™" by the following reduction,

x=x'00"" and y =y’ 0 0~"). This implies that R (SPARSEIND' ™) > Q(t).

Combining the above two lower bounds, we get that R"™*(SPARSEIND! ™) > Q(min{t,w}). O



3 Coarse Characterization of Information Complexity

In this section, we prove the first of our results, namely Theorem 1.1, which we restate below for
convenience of the reader.

Theorem 1.1. Let f : {0,1}" x {0,1}" — {0,1,?} be a (total or partial) permutation-invariant
function. Then,
Q(m(f)) <IC(f) < R(f) < poly(m(f)) + O(logn).

where m(f) is the combinatorial measure we define in Definition 3.2.

3.1 Overview of proof

We construct a measure m(f ) such that Q(m(f)) < IC(f) < R(f) < O(m(f)*)+0(logn). In order
to do this, we look at the slices of f obtained by restricting |x| and |y|. As in Observation 2.2, let
hq »(A(x,y)) be the restriction of h to |x| = a and |y| = b. We define the notion of a jump in h, ,
as follows.

Definition 3.1 (Jump in h, ). (¢, g) is ajump in h, p, if hy p(c +g) # hy p(c—g), both hy ,(c +g),
h,p(c—g) arein {0,1} and h, ,(r) is undefined forc— g <r <c+g.

Thus, any protocol that computes f with low error will in particular be able to solve the GAP-
HAMMING-DISTANCE problem GHDZ bcg ASIN Definition 2.8. Thus, if (c, g) is a jump for h, ;,, then

Ic(ﬁz,b’ . g) is a lower bound on IC(f). We will prove lower bounds on IC(@Z@ . g) for any
value of a, b, ¢ and g by obtaining a variety of reductions from UNIQUE-DISJOINTNESS, and then
our measure m(f) will be obtained by taking the largest of these lower bounds for IC(GHD
over all choices of a and b and jumps (c, g) in h, p.

a,b,c,g)

Suppose m(f) = k. We construct a randomized communication protocol with cost 5(k4)+O(log n)
that computes f correctly with low constant error. The protocol works as follows: First, Alice and
Bob exchange the values |x| and |y|, which requires O(logn) communication (say, |x| = a and
|yl = b). Now, all they need to figure out is the range in which A(x,y) lies (note that finding
A(x,y) exactly can require (n) communication!). Let ¢ (h, ;) = {(c1, 1), (c2,82), "+, (Cim, &)}
be the set of all jumps in h, ;. Note that the intervals [c; — g;,¢; + g;] are all pairwise disjoint.
To compute h, ;,(A(xX,y)), it suffices for Alice and Bob need to resolve each jump, that is, for each
i € [m], they need to figure out whether A(x,y) > c+ g or A(x,y) < c—g. We will show that any
particular jump can be resolved with a constant probability of error using O(k®) communication,
and the number of jumps m is at most 2°( log n. Although the number of jumps is large, it suffices
for Alice and Bob to do a binary search through the jumps, which will require them to resolve
only O(kloglogn) jumps each requiring O(k®) communication. Thus, the total communication
cost will be O(k*) + O(logn).>

3.2 Proof of Theorem 1.1

As outlined earlier, we define the measure m(f) as follows.

Definition 3.2 (Measure m(f)). Given a permutation-invariant function f : {0,1}" x {0,1}" —
{0,1,?} and integers a, b, s.t. 0 <a,b <n, let h,}, : {0,---,n} — {0,1,?} be the function given

>We will need to resolve each jump correctly with error probability of at most 1/Q(kloglogn). And for that we
will actually require O(k®logk logloglogn) communication. So the total communication is really O(k*-logk - loglogn -
logloglog n) which we write as O(k*) + O(log n) in short. See Remark 3.7.
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by h, p(d) = f(x,y) if there exist X,y with |x| = a, [y| = b, A(x,y) = d and ? otherwise. (Note. by
permutation invariance of f, h, j, is well-defined.) Let ¢ (h, ;) be the set of jumps in h, ;, defined as
follows,
hq,p(c —8), hep(c+g) €{0,1}
Fhep) = (8 heplc—g)#Fhgplc+g)

Vie(c—g,c+g) : hgp(i)=2?

Then, m(f) is defined as follows.

def min{a, b,c,n—a,n—b,n—c} min{c,n—c}
m(f) = max  max ,log
a,be[n] g g
(c,8)€.# (hap)

We will need the following lemma to show that the measure m(f) is a lower bound on IC(f).

Lemma 3.3. For all n,a,b,c,g € N, such that GHDZ be.g is a meaningful problem (as in Defini-
tion 2.8), the following lower bounds hold,

p— 1 i ’b: > - _b:' —
IC(GHDZ,b,c,g) > E-mm{a Cnga" n—c}

—— 1 in{c,n—
IC(GHD, . ,) > E.log(W)

where C is a suitably large constant (to be determined in the proof).
Next, we obtain randomized communication protocols to solve GHD , ‘ in the following lemma.

Lemma 3.4. Let a < b < n/2. Then, the following upper bounds hold

R(GHD, ) = O((g)z(l"g(g)“og(%)))
R(GHD] , ) = O(min{(é)zn(n;)z})

We defer the proofs of the Lemmas 3.3 and 3.4 to Section 3.3. For now, we will use these lemmas
to prove Theorem 1.1. First, we show that each jump can be resolved using O(m(f)?) communi-
cation.

Lemma 3.5. Let [x| = a and |y| = b and let (c,g) be any jump in h, . Then the problem of

GHDZ’b,C’g, that is, deciding whether A(X,y) = ¢ + g or A(x,y) < ¢ — g can be solved, with a

constant probability of error, using O(m(f)*) communication.

Proof. We can assume without loss of generality that a < b < n/2. This is because both Alice and
Bob can flip their respective inputs to ensure a, b < n/2. Also, if a > b, then we can flip the role
of Alice and Bob to geta < b < n/2.

For simplicity, let k def m(f). Since a < b < n/2, from the definition of m(f) and Lemma 3.3 we
have that,

We consider two cases as follows.
Case 1. (c/g) < kor ((n—c)/g) < k: In this case we have, from part (ii) of Lemma 3.4, a
randomized protocol with cost O (min{(c/g)% ((n—c)/g)*}) = O(k?).

11



Case 2. (a/g) < k: In this case we have, from part (i) of Lemma 3.4, a randomized protocol
with cost O ((a/g)2 (log(b/a)+ log(a/g))). We will show that ((a/g)2 (log(b/a)+1log (a/g))) <
O(k®). Clearly, (a/g)? < k? and log(a/g) < log k. We will now show that in fact log(b/a) < O(k).
From part (ii) of Lemma 3.3 we know that either log(c/g) < k or log((n—c)/g) < k. Thus, it
suffices to show that (b/a) < O (min {(c/g),((n—c)/g)}). We know that b—a+g <c < b+a—g.
The left inequality gives (b/a) < (c+a—g)/a = (c/g).(g/a)+1—(g/a) < O(c/g) (since g/a < 1).
The right inequality gives ((n—b)/a) < ((n—c)/g).(g/a)+1—g/a < O((n—c)/g). Since b < n/2,
we have (b/a) < ((n—b)/a) <0O((n—c)/g). O

Next from the definition of m(f ), we obtain an upper bound on | ¢ (h, )|, that is, the number of
jumps in hg p,.
Lemma 3.6. For any function f : {0,1}" x {0,1}" — {0, 1}, the number of jumps in h, j is at most

Proof. For simplicity, let k & m(f). Let £ ={(c1,81),**,(cm> &m)} be the set of all jumps in h, 5.

Partition ¢ into ¢, U %,, where ¢, = {(c,g) € _¢ :c<n/2} and % = {(c,g) € £ :c>n/2}.
From second part in Lemma 3.3 we know the following:

Vic,g)e n log( )<k thatis, g>c27%
8

V(c,g)e % : log(%) <k thatis, g>(n—c)27k

Let ¢ = {(cl,gl), e ,(cp,gp)}, where the c;’s are sorted in increasing order. We have that
¢; + g < Cipq — givq for all i. That is, we have that ¢;(1 +27%) < ¢;.1(1 —27%), which gives
that ¢; 1 > ¢;(1+27%). Thus, n/2 > cp =c(1+ 27%)P, which gives that |41l =p < 200 1og n.
Similarly, by looking at n—c;’s in _#,, we get that | #,| < 2°®logn, and thus, | #| < 2°®logn. O

Using the above lemmas, we now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Any protocol to compute f also computes GHD g for any a, b and any
jump (c,g) € #(h,;). Consider the choice of a, b and a jump (c, g) e F(hgp) such that the

lower bound obtained on IC(GHD wb.c g) through Lemma 3.3 is maximized, which is Q(m(f)) (by

definition of m(f)). Thus, we have Q(m(f)) < IC(@Z’b,C,g) <IC(f).
We also have a protocol to solve f, which works as follows: First Alice and Bob exchange |x| = a
and |y|] = b, requiring O(logn) communication. From Lemma 3.6, we know that the num-
ber of jumps in h, } is at most 200mfN1ogn, and so Alice and Bob need to do a binary search
through the jumps, resolving only O(m(f)loglogn) jumps, each with an error probability of at
most O(1/m(f)loglogn). This can be done using O(m(f)?) communication® (using Lemma 3.5).
Thus, the total amount of communication is R(f) < O(m(f)*) + O(logn)”. All together, we have
shown that, B
Q(m(f)) < IC(f) <R(f) < O(m(f)*) + O(log n)
O

Remark 3.7. It is a valid concern that we are hiding a loglogn factor in the O(m(f)*) term. But
this is fine because of the following reason: If m(f) < (logn)'/®, then the O(logn) term is the
dominating term and thus the overall communication is O(logn). And if m(f) = (log n)'/5, then
logm(f) = Q(loglogn), in which case the O(m(f)*) is truly hiding only polylogm(f) factors.

In the following section, we prove the main technical lemmas used, namely Lemmas 3.3 and 3.4.

®Here, O(m(f)*) = O(m(f)? log m(f)logloglog n).
"Here O(m(f)*) = 0(m(f)*1logm(f)loglognlogloglogn)
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3.3 Lower and upper bounds on Gap Hamming Distance

In this section, we prove lower bounds on information complexity (Lemma 3.3), and upper bounds
on the randomized communication complexity (Lemma 3.4) of GAP-HAMMING-DISTANCE.

Lower bounds

We will prove Lemma 3.3 by getting certain reductions from UNIQUE-DISJOINTNESS (namely
Proposition 2.11). In order to do so, we first prove lower bounds on information complexity of
two problems, namely, SET-INCLUSION (Definition 3.8) and SPARSE-INDEXING (Definition 2.12).
We do this by obtaining reductions from UNIQUE-DISJOINTNESS.

Definition 3.8 (SETINCzq). Let p < q < n. Alice is given x € {0, 1}" such that |x| = p and Bob is
given y € {0,1}" such that |y| = q and they wish to dlstmguish between the cases |x Ay| = p and
|x Ay| = p—1. Note that SETINC; is the same as GHD .

p,4,9—p+1,1°

" 2 .
Proposition 3.9 (SET-INCLUSION lower bound). Vt,w €N, IC(SETINCt’t::v"V) > Q(min(t,w))

Proof. We know that IC(UDIsJ**") > Q(min(t, w)) from Proposition 2.11. Note that UDI1ss**" is

——2 . . .
same as the problem of GHD, t:;: 1,1+ If we instead think of Bob’s input as complemented, we get

that solving GHDt . Zt 1,1 is equivalent to solving GHDt t+ww+1,1> Which is same as SETINC?f:fV.
Thus, we conclude that IC(SETIth ) = Q(min(t, w)). O

Proposition 3.10 (SPARSE-INDEXING lower bound). Vt €N, IC(SPARSEIND%EH) > Q(t)

Proof. We know that IC(UDISJtH) > Q(t) from Proposition 2.11. Recall that SPARSEINDZt is an
[+1 t
instance of GHth 1201 . Alice uses x to obtain the Hadamard code of x, which is X € {0, 1}2 -

such that X(a) = a- x (for a € {0,1}'™!). On the other hand, Bob uses y to obtain the indicator

vector of y, which is Y € {0, 1}2t+1 such that Y(a) = 1 iff a = y. Clearly |Y| = 1. Observe that,
|X| = 2 and X(y) y-xis1if [xAy|l = 1 and 0 if |x Ay| = 0. Thus, we end up with an instance
of SPARSEIND 2" Hence IC(SPARSEIND ) > IC(UDISJHl) > Q(t). O

We now state and prove a technical lemma that will help us prove Lemma 3.3.

Lemma 3.11. Let n,a,b,c,g € N be such that GHD beg is a meaningful problem (as in Defini-
tion 2.8). Additionally, let a < b < n/2. Then, the followmg lower bounds hold,

(0 1C(GHD,,,, ) = @ (min {25, 2 })

(ii) 1C(GHD, , . ) > (min {&tb=, etb=l)

(iii) IC(GHDab g)>§2(m1n{log( ) log( )})

Proof. We prove the three parts of the above lemma using reductions from UDIsJ, SETINC and
SPARSEIND respectively. Note that once we fix x| = a and |y| = b, a jump (c, g) is meaning-
fulonlyif b—a+g <c<b+a—g (since b—a < A(x,y) < b+ a). We will assume that
¢ =b+a—g(mod 2), so that ¢ + g and ¢ — g will be achievable Hamming distances.

Proof of (i). We obtain a reduction from UDISJ?’t for which we know from Proposition 2.11
that IC(UDISJSt) > Q(t). Recall that UD1ss* is same as GHD "
GHD

£,6,2t—1,1° leen any instance of

we first repeat the instance g times to get an instance of GHD Now,

t,t,2t—1,1° gtgtg(zt 1),g°
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we need to append (a—gt) I’sto x and (b—gt) 1’s to y. This will increase the Hamming distance
by a fixed amount which is at least (b —a) and at most (b 4+ a —2gt). Also, the number of inputs
we need to add is at least ((a—gt)+(b—gt)+(c—g(2t—1)))/2 8. Thus, we can get a reduction

to GHDZ’ be.g if and only if,

(b—a)<c—g@t—1)<b+a—2gt

(a—gt)+(b—gt)+(c—g(2t—1))
2
The constraints on ¢ give us that 2gt < c—(b—a)+ g and ¢ < b+ a— g (recall that this is always
true). The constraint on n gives that gt < n—(a+ b + ¢ + g)/2, which is equivalent to

n=>3gt+

n—a—b n—c—g
< +
28 28
Thus, we can have the reduction work by choosing t to be
t:min{c—b+a+g’n—c—g}:Q(min{c—bJra,n—c})
28 28 g g

(since n > a + b) and thus we obtain

P —b+ —
IC(GHD, , . ,) = IC(UDIss}*) = Q (min { %, : . : })

Proof of (ii). We obtain a reduction from SETINC}", (where m = 2t + w) for which we know
from Proposition 3.9 that IC(SETINC",) = Q(min{t,w}). Recall that SETINC]" is same as

GHD, .., ,+1,1- Given an instance of GHD, 1\ 11,10 WE first repeat the instance g times to get
. —_—=am
an instance of GHD® Now, we need to append (a — gt) 1I’s to x and (b — gt — gw)

gtgt+gw,gw+g,g’
1’s to y. This will increase the Hamming distance by a fixed amount which is at least |b—a — gw|
and at most (b — gt — gw) + (a — gt). Also, the number of inputs we need to add is at least
((a—gt)+(b—gt—gw)+ (c—g(w+1)))/2. Thus, we can get a reduction to GHDZ’b’C’g if and
only if,

lb—a—gw|<c—gw+1)<b+a—2gt—gw
(b—gt—gw)+(a—gt)+(c—gw—g)
2

The left constraint on ¢ requires ¢ > max{b—a+ g,2gw—(b—a)+ g}. We know that ¢ > b —
a + g, so the only real constraint is ¢ > 2gw — (b —a) + g, which gives us that,

n=2gt+gw+

c+b—a—g
28
The right constraint on ¢ requires ¢ < b +a —2gt + g, which gives us that,

w<

tSa+b—c+g
28

b— . L
Suppose we choose t = %. Then the constraint on n is giving us that,

a+b+c—g _a+b—c+g+a+b+c—g
2 B 2 2

n=gt+ =a+b

8We will be repeatedly using this idea in several proofs. The reason we obtain the said constraints is as follows:
Suppose Alice has to add A 1’s to her input and Bob has to add B 1’s to his input. Then the hamming distance increases
by an amount C such that |JA—B| < C < A+ B. Also, the minimum number of coordinates that need to be added to
achieve this is at least (A+ B + C)/2

14



We already assumed that a < b < n/2, and hence this is always true.

Thus, we choose t = Hbz;ﬁg ¢+b-4-¢ and invoking Proposition 3.9, we get,

and w = 2

IC(GHDZ’b’C’g) > IC(SETING? ™) > min({t,w}) > Q (min{

t,w

a+b—c c+b—a})
g

Proof of (iii). We obtain a reduction from SPARSEIND%EH for which we know from Proposition 3.10
1 1., 2H1 . . .

that IC(SPARSEIND%E+ ) = Q(t). Recall that SPARSEIND%E+ is same as GHD,), , ,. ;, which is equiv-
_2t+1 . . . . . 2t+l .

alent to GHD}, ,,, ,, ; (if we flip roles of Alice and Bob). Given an instance of GHD, ,, ,. ;, we first

t+1

repeat the instance g times to get an instance of GHD; g2t g2t
1’s to x and (b—g2") 1’s to y. This will increase the Hamming distance by a fixed amount which
is at least |b — g2 —a + g| and at most (b — g2 + a — g). Also, the number of inputs we need to
add is at least ((a — g) + (b — g2') + (c — g2'))/2. Thus, we can get a reduction to GHD . if

A a,b,c,g
and only if,

- Now, we need to append (a — g)

Ib—g2t—a+g|<c—g2'<(b—g2'+a—g)

(a—g)+(b—g2") +(c—g2")
2

The left constraint on ¢ requires ¢ > max{b—a+g,2g2f —b +a—g}. Sincec >b—a+g

anyway, this only requires 2g - 2' < ¢+ b—a+ g. The right constraint on ¢ requiresc < b+a—g
which is also true anyway. The constraint on n is equivalent to,

n> g2ttt 4+

a+b+c—g _n—a—b+n—c—g
2 2 2

g2t <n—

Thus, we choose t such that,

+b—a+ —c— —
t:min{log2 (ﬂ),logz (u)} Zﬂ(ming, n C)
28 28 § &

and invoking Proposition 3.10, we get,

IO(GHD] ) > TCEsmansensn ™) = () = 0 min{logs £ ) 1og (=)}

We are now finally able to prove Lemma 3.3.
Proof of Lemma 3.3. Assume for now that a < b < n/2. From parts (i) and (ii) of Lemma 3.11,
we know the following,

I —b+ —
IC(GHD, ,.,) > Q(min{u,n C})

g g
Ic(GHD", ) > ofmin{dfb=c cfb=a
a,b,c,g g g

Adding these up, we get that,

IC(GHDZbC )Zﬂ(min{w,n_c}_,_min{a"‘b—c,c'i‘b—a})
o8 g g g 2
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Since min {A,B} + min {C,D} =min{A+ C,A+ D,B + C,B + D}, we get that,

— 2a 2c n+a+b—2c n+b—
IC(GHD , . )Zﬂ(min{—a,—c,n - == a})
08 g€ g g g
For the last two terms, note that, n+a+b—2c>n—c (sincea+ b >c) and n+ b—a > n (since
b > a). Thus, overall we get,

IC(GHD, , . ,) > (min { g, é, n ; ¢ })

Note that this was assuming a < b < n/2. In general, we get,

. e
IC(GHDZ,b,C,g)ZQ(mm{a’ ,6,n—a,n—b,n c})

8

[We get b, (n—b), (n—a) terms because we could have flipped all input bits of either or both of
Alice and Bob. Moreover, to get a < b, we might have flipped the role of Alice and Bob.]

The second lower bound of IC(GHD, , . =0 (log(%)) follows immediately from part
(iii) of Lemma 3.11.
We choose C to be a large enough constant, so that the desired lower bounds hold. O

Upper bounds

We will now prove Lemma 3.4.

Proof of Lemma 3.4. We use different protocols to prove the two parts of the lemma.
Proof of Part 1. The main idea is similar to that of Proposition 5.7 of [CGMS14], except that we
first hash into a small number of buckets. The details are as follows.

Alice and Bob have an instance (x,y) of GHDZ,b,c,g’ that is, Alice has x € {0,1}" such that
|x| = a, and Bob has y € {0, 1}" such that |y| = b, and they wish to distinguish between the cases
A(x,y) = c+gand A(x,y) <c—g.

Bob definesy € {1,—1}" such that y; = 1—2y; for every i € [n]. Then, the number of —1 coor-
dinates in y is exactly equal to b. It is easy to see that (x,¥) = (A(x,y)—b), and hence computing

GHDZ’b,C’g(x, y) is equivalent to distinguishing between the cases (x,y) > aa and (x,y) < fBa,

where a d=ef(c —b+g)/aand f def (c—b—g)/a. Note that a, § € [—1,+1].

Alice and Bob use their shared randomness to generate a uniformly random hash function
h:[n] — [B] where B def 100(a + b)(a/g)?. Basically, each coordinate i € [n] is mapped to one
of the B ‘buckets’ uniformly and independently at random. Let supp(x) := {i € [n] : x; = 1}. We
say that a coordinate i € supp(x) is bad if there is a coordinate j € [n], j # i such that h(j) = h(i)
and at least one of x; = 1 or y; = 1. For any i € supp(x), the probability that i is bad is at most
(1-(1—1/B)@)) < (a + b)/B = g2/100a>. Thus, the expected number of bad coordinates
is at most (g2/100a), and hence by Markov’s inequality, we have that with probability at least
1—g/(10a), there are at least a(1 — g/(10a)) coordinates in supp(x) that are not bad. Suppose
we have chosen an h such that at least a(1 — g/(10a)) coordinates in supp(x) that are not bad.

Let¢ % (2B/a)In(20a/g) and consider the following atomic protocol T,(x,y):

e Alice and Bob use shared randomness to sample a sequence of ¢ indices by, ..., b, € [B].

e Alice picks the smallest index j € [¢] such that h~!(b ;) N supp(x) is non-empty and sends j
to Bob. If there is no such j, then the protocol aborts and outputs +1.
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e Boboutputs [] ¥
ich=1(b;)
We first show that the difference in the probability of 7,(x,y) outputting +1, in the two cases
(x,¥) = aa and (x,y) < Ba, is at least £2(g/a). In particular, we will show the following,

Prit,(x,y)=+1]| (x,y) = aa] = 1/2+a/2—3g/20a D
Prit,(x,y)=+1| (x,y) <Pal < 1/2+p/2+3g/20a 2

Before we prove Inequalities 1 and 2, we first show how to use these to obtain our desired protocol.
We observe that the difference in the two probabilities is at least (¢ — 3)/2—3g/10a = Q(g/a).
We repeat the above atomic procedure T times and declare the input to satisfy (x,y) = aa, if
the number of times the output is +1, is at least ((1 + a + 3)/2)T, and (x,y) < fa otherwise.

A Chernoff bound implies that we will have the correct value the given GHD? , g instance with

probability at least 1—e A& T/a*) Setting T = ©((a/g)?) gives us that our protocol gives the right
answer with probability at least 3/4. And the overall communication complexity of this protocol
is

O((a/g)*log,(£)) = O((a/g)* log,(2B/alogy(10a/g))) = O((a/g)*(log(b/a) + log(a/g)))

We now prove Inequalities 1 and 2. Note that there are three possible situations that can arise in
Th(X,Y),

1. the protocol aborts (that is, for all j € [£], h_l(bj) N supp(x) = 0)

2. the index j picked by Alice is such that |h~1(b ;) Nsupp(x)| > 1

3. the index j picked by Alice is such that |h=*(b i) Nsupp(x)| =1
We will say that an index b € [B] is ‘good’ if |h ™1 (b) Nsupp(x)| = 1, ‘bad’ if |h~1(b) Nsupp(x)| > 1,
and ‘empty’ if |h~1(b) N supp(x)| = 0

For Inequality 1, we have that (x,y) > aa, and we wish to lower bound the probability that

the protocol 7j(x,y) outputs +1. Notice that, when the protocol aborts, it always outputs +1.
And conditioned on not aborting, the probability that we are in situation (3) and not (2), is at

least (1 — g/10a). This is because the number of non-‘empty’ b’s is at most a, but the number of
‘good’ b’s is at least a(1 — g/10a). Thus, overall, we get that,

Prz,(xy)=+1] (x§) > aa] > (1 & )(Hz)

10a/\2 " 2
1

> (—+9—i) [ra<1]
2 2 10a

>

1
(_ Lo 3_g)
2 2 20a
For Inequality 2, we have that (x,§) < fBa, and we wish to upper bound the probability

that the protocol 7,(x,y) outputs +1. The probability that we are in situation (1) is at most

_ 14
(1 - (ai‘;&) <(1- %)e < e"%/2B = ¢ /20a. Conditioned on not aborting, the probability that
we are in situation (3) and not (2), is at least (1 — g/10a) as before. Thus overall, we get that,

(36) (562) (162 (32
< (3+5+3%)
a

Proof of Part 2. Kushilevitz, Ostrovsky and Rabani [KOR00] gave a protocol for distinguishing
between the cases A(x,y) > ¢ + g and A(x,y) < c — g using O((c/g)?) communication (without

Priy(x,y) =+11| (x,y) < fa]
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requiring any knowledge about |x| and |y|). The upper bound of O(((n—c)/g)?) follows by Alice
flipping her input so that the task is of distinguishing between the cases A(x,y) = n—c + g and
A(x,y) < n—c—g, and then the upper bound of [KOR00] applies again. O

4 Communication with Imperfectly Shared Randomness

In this section, we prove our second result, namely Theorem 1.3, which we restate below for
convenience of the reader.

Theorem 1.3. Let f : {0,1}" x {0,1}" — {0, 1} be a permutation-invariant total function. Then,
we have

ISR, (f) < poly(R(f)) + O(loglogn)
Furthermore, ISR};Way (f) < poly(R*™¥(f)) + O(loglog n).

The outline of this section is as follows: In Section 4.1, we prove upper bounds on the ISR-CC of
two basic problems: SMALL-SET-INTERSECTION (in Section 4.1.1) and SMALL-HAMMING-DISTANCE
(in Section 4.1.2). As an aside, in Section 4.1.3, we introduce a new class of functions, called
strongly permutation-invariant functions, which is a generalization of both SET-INTERSECTION and
HAMMING-DISTANCE, and show that for every strongly permutation-invariant function f there is
a polynomial relationship between R(f) and ISR(f) (Theorem 4.12). In Section 4.2 we give an
overview of the proof for Theorem 1.3. The proof of the 2-way part of Theorem 1.3 appears in
Section 4.3, and that of the 1-way part appears in Section 4.4. In Section 4.5, we prove a technical
lemma needed in the proof of the 1-way part of Theorem 1.3.

4.1 ISR Protocols for Basic Problems

In this section, we prove that ISR-CC and PSR-CC are polynomially related for some specific
functions (note that this is stronger than Theorem 1.3, in the sense that the additive O(loglogn)
factor is not required). In particular, we give ISR protocols for two basic problems: SMALL-SET-
INTERSECTION (in Section 4.1.1) and SMALL-HAMMING-DISTANCE (in Section 4.1.2), such that the
communication costs of these protocols are polynomially related to the respective PSR-CC of these
functions. Our motivation in doing so is two-fold: firstly, to give techniques for designing efficient
ISR protocols, and secondly because these protocols are at the heart of our proof of Theorem 1.3.
In addition to these, we also give ISR-protocols for the class of strongly permutation-invariant
functions which we describe in Section 4.1.3.

4.1.1 Small Set Intersection

The SMALL-SET-INTERSECTION problem is defined as follows.

Definition 4.1 (SMALL-SET-INTERSECTION). SSI7 , : {0, 1}'x{0,1}" — ZU{?} is defined as follows,

XAyl iflxl=a,lyl=b
n . )
SSIG (%, y) = { ? otherwise

Essentially, Alice is given x € {0, 1}" such that |x| = a, Bob is given y € {0, 1}" such that |y| = b, and
they wish to compute [X Ay|.

The next two lemmas show that ISR-CC and PSR-CC are polynomially related for SSI] , (for 1-way
and 2-way models respectively).
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Lemma 4.2 (1-way ISR Protocol for SSI” ). Let n,a, b €N, such that, a,b < n/2. Then,
Q(max {a,log b}) < R™¥(SSI} ;) < ISRl'Way(SSIZ ,) = O(alog(ab))

Proof. We first describe the 1-way ISR-protocol for SSI”

Let x be Alice’s string and y be Bob’s string, with a = |x| and b = |y|. First, Alice and Bob
use their correlated randomness to sample hash functions hy, hg : [n] — {0,1}" such that for any
i, hy(i) and hp(i) are p-correlated strings, but for i # j, h,(i) and hg(j) are independent. Now,
Alice sends {h,(i) : x; =1}, which Bob sees as hy,hy,...,h,. Then, Bob computes the size of the
set {] € supp(y) : A(hB(]) h;) S z—£ 7 for some i € [a]} and outputs it.

By the Chernoff bound, we have that for any i, A(ha(i),hg(0)) < l - £ 7 with probability 1 —
27U Also, forany i # j, A(hy(i), hp(j)) 2 3—% with probability 1—2~ Q(r) Thus, the probability
that for every i such that x; = yl =1, A(hA(l) hp(i)) < %— % and for every i # j such that
x; = ¥; = 1, A(ha(i),hp(i)) = 5 — £ is at least 1 — ab2~(") (by a union bound). Thus, with
probability at least 1 —ab2™ Q(r), Bob is able to correctly determine the exact value of |x A y|.
Choosing r = ©(log(ab)) yields a 1-way ISR protocol with O(alog(ab)) bits of communication
from Alice to Bob.

The lower bound Rl'way(SSIZ,b) > Q(max {a,log b}) will follow from Lemma 4.18 which we

. . — ]
prove in Section 4.5, because any protocol for SSI' ;| can be used to compute GHD,, ; ., where
we can choose ¢ to be anything, in particular, we choose ¢ ~ max{a, b}. O

Lemma 4.3 (2-way ISR Protocol for SSI ;). Let n,a,b € N. Let a, b < n/2. Additionally, assume
wlog that a < b (since the roles of Alice and Bob can be flipped). Then,

Q(max {a,logb}) < R(SSIZ,b) < ISRp(SSIZ,b) = O(alog(ab))

Proof. The ISR protocol is same as in proof of Lemma 4.3, with the difference that we flip the
roles of Alice and Bob if a > b. The lower bound of R(SSI} ;) > Q(max {a,log b}) follows from
Lemma 3.3 as any protocol for SSI7 , also solves GHDZ bob1e O
Remark 4.4. The protocol given in proof of Lemma 4.2 can be viewed as a generalization of the
protocol of [BGI14 ] for the EQUALITY function. More precisely, the EQUALITY function on n bit strings
is equivalent to the SSI 11 problem. This is because Alice and Bob can keep a list of all 2" elements of

{0,1}" (e.g., in lexwographlc order) and then view their input strings as subsets of cardinality 1 of
this list.

We will repeatedly use the following corollary which follows from Lemma 4.2 by setting a = 1
and b = 2. Note that SSIT , is like the reverse direction of SPARSE-INDEXING, in which Alice had
a large set and Bob had a s1ngleton set.

Corollary 4.5 (Reverse SPARSE-INDEXING). Y n,k € N, ISRIW% (SSI'll o) = o(k).

4.1.2 Small Hamming Distance
The SMALL-HAMMING-DISTANCE problem is defined as follows.

Definition 4.6 (SMALL-HAMMING-DISTANCE). Let n,k € Nand 0 < k < n—1. Then HDZ :{0,1}" x
{0,1}* — {0, 1} is defined as follows,

n 1 ifAxy) <k
HDk(X’Y)_{O if A(x,y) >k

Essentially, Alice is given x € {0, 1}" and Bob is given 'y € {0, 1}" and they wish to distinguish between
the cases A(x,y) < k and A(x,y) > k.
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The following lemma shows that ISR-CC and PSR-CC are polynomially related for HD} (for both
the 1-way and 2-way models).

Lemma 4.7 (ISR Protocol for SMALL-HAMMING-DISTANCE). Let n,k € N. Additionally, assume
wlog that k < n/2 (since Bob can flip his input, and thus computing HD;' is equivalent to computing
HD?_,). Then,

Q(k) < R(HD}) < ISR"™¥(HD}) < O(k?)

In order to prove Lemma 4.7, we will use the following protocol (from [CGMS14]) twice, namely
in the proofs of Lemmas 4.9 and 4.10.

Lemma 4.8 (ISR protocol for GAP-INNER-PRODUCT [CGMS14]). Let —1 < s < ¢ < 1 be real
numbers. Assume that Alice is given a vector u € R" such that ||u||, = 1, and that Bob is given a
vector v € R" such that ||v||y = 1. Then, there is a 1-way ISR protocol that distinguishes between the

cases {u,v) > ¢ and {u,v) < s using O(1/(c —s)?) bits of communication from Alice to Bob.

Lemma 4.9. Assume that k < n/20. Then, there is a 1-way ISR protocol that distinguishes between
the cases A(x,y) < k and A(x, y) > n/10 using O(1) bits of communication.

Proof. Let Alice construct the vector u € R" by setting u; = (—1)*/4/n for every i € [n] and let
Bob construct the vector v € R" by setting v; = (—1)¥i/4/n for every i € [n]. Then, we have that
[lull, = ||v]|, = 1. Furthermore, (u,v) = 1 — 2A(x,y)/n. Therefore, A(x,y) < k implies that
(u,v) > 1—2k/n and A(x,y) > n/10 implies that (u,v) < 4/5. Setting ¢ := 1—2k/nands :=4/5
and using the assumption that k < n/20, Lemma 4.8 yields a 1-way ISR protocol with O(1) bits
of communication from Alice to Bob (since (¢ —s) > 1/10). O

Lemma 4.10. Assume that k < n/20. Then, there is a 1-way ISR protocol that distinguishes between
the cases A(x,y) < k and k < A(x,y) < n/10 using O(k?) bits of communication.

Proof. As in the proof of Lemma 4.9, we let Alice and Bob construct unit vectors u,v € R" by
setting u; = (—1)%/4/n and v; = (—1)Yi/4/n (respectively) for every i € [n]. Then, (u,v) =
1—2A(x,y)/n. Let t := n/(10k). Alice tensorizes her vector t times to obtain the vector u®‘ € R™,

t

namely, for every iy,is,...,i, € [n], she sets uG oo
1582500 t

t
)y = Il U, Similarly, Bob tensorizes his
j=1

vector ¢ times to obtain the vector v® € R™ . Observe that |[u®!||, = lull; =1, [v® [l = IVl =1
and

(u®,v®) = (u,v)" = (1-2A(x,y)/n)".
Therefore, A(x,y) < k implies that (u®‘,v®") > (1—2k/n)" :=¢, and k < A(x, y) < n/10 implies
that (u®‘,v®) < (1—2(k+1)/n)" :=s. The inner product gap c —s is at least

(-2)-(-22) - (-2 [-(-72=) ]
1 2K\ () t/nj2k)
(-5 )

= g(l —e2O0) [+t =n/10k and k < n/20]

- o(})

where the first inequality above follows from the fact that (1 + x)" < e™ for every x,r € R with
r > 0, as well as the fact that (1 —x)" > 1—xr for every 0 < x < 1 and r > 1. Moreover, the
last equality above follows from the fact that (1 —e™)/x — 1 as x — 0. Therefore, applying
Lemma 4.8 with ¢ —s = Q(1/k) yields a 1-way ISR protocol with O(k?) bits of communication
from Alice to Bob. O

\%
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We are now ready to prove Lemma 4.7.
Proof of Lemma 4.7. Assume without loss of generality that k < n/20, since otherwise, Alice
can simply send her entire input (n bits) to Bob, requiring only O(k) communication. Run the
protocols from Lemmas 4.9 and 4.10 in sequence’ and declare that A(x,y) < k if and only if
both protocols say so; otherwise, declare that A(x,y) > k + 1. This gives a 1-way ISR protocol
with O(k?) bits of communication from Alice to Bob.

The lower bound R(HD;) > Q(k) follows from Lemma 3.3 as any protocol the computes HDj,

— ]
can be used to compute GHD, , , ; as well. O

4.1.3 Strongly Permutation-Invariant functions

In this section, we show that the ISR-CC is polynomially related to the PSR-CC — without any
additive dependence on n - for a natural subclass of permutation-invariant functions that we
call “strongly permutation-invariant functions”. We point out that this section is not needed for
proving Theorem 1.3, but we include it because it highlights some of the proof ideas that we
eventually use. We start by defining strongly permutation-invariant functions.

Definition 4.11 ((Total) Strongly Permutation-Invariant functions). A (total) function f : {0,1}"x
{0,1}" — {0, 1} is strongly permutation-invariant if there exists a symmetric function o : {0,1}" —
{0,1} and a function h : {0,1}* — {0, 1} such that for every x,y € {0, 1}",

f(X, Y) = U(h(xla yl)’ h(Xz, .yZ): T Jh(xna .yn))

Note that strongly permutation-invariant functions include as subclasses, (AND)-symmetric func-
tions (studied, e.g., by [BAWO01, Raz03, She11]) and XOR-symmetric functions (studied, e.g., by
[ZS097).

The following theorem shows that ISR-CC of any strongly permutation-invariant function is poly-
nomially related to its PSR-CC, with no dependence on n.

Theorem 4.12. For any total strongly permutation-invariant function f : {0,1}"x{0,1}" — {0, 1},
if R(f) =k then,

ISR(f) < Ok
ISRI™@(f) < O(k®)

Proof. Depending on h, any such function depends only on the sum of some subset of the quan-
tities {|x Ay, |X A 7y|, |7x A y|, | =X A =y|}. There are three main cases to consider (the remaining
cases being similar to these three):

(i) f depends only on |x Ay|+ |x A —y|: In this case, f depends only on |x|, and hence R(f),
ISR(f) and ISR™¥(f) are all 1.

(ii) f depends only on |x Ay|+ |-x A —y|: In this case, f depends only on [x®y|. Let R(f) =k,
and suppose i is such that f(x,y) =0 for |x®y|=i—1, and f(x,y) =1 for |x®y| =i+ 1.

. =N .
If i < n/2 then any protocol to compute f can be used to compute GHD; ;.. Applying
Lemma 3.3 we get that, k = R(f) > R(GHD; ,, ,) > IC(GHD;, ;) > i/C. If i > n/2, then

n

any protocol to compute f can be used to compute GHD, , ; ;. Applying Lemma 3.3 again,

we get that, k =R(f) = R(GHD?n_i )= IC(GHD?H_I. i,l) > Q(n—1i). Thus, we get that for
any such i, it must be the case that either i < Ck or i > n— Ck.

“More precisely, we first repeat each of the two protocols a constant number of times and take a majority-vote of the
outcomes. This allows us to reduce the error probability to a small enough constant and thereby apply a union bound.
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Alice and Bob now use the 1-way ISR protocol given by Lemma 4.7 to solve HD} for every i
such that i < Ck or i > n—Ck, and for each such problem, they repeat the protocol O(log k)
times to make the error probability down to O(1/k). This yields a 1-way ISR protocol with
O(k®) bits of communication from Alice to Bob. This protocol can be modified into a 2-way
ISR protocol with only O(k?) bits of communication by letting Alice and Bob binary-search
over the O(k) Hamming distance problems that they need to solve, instead of solving all of
them in parallel.

(iii) f depends only on |x Ay|: Suppose j is such that f(x,y) = 0 when [xAy| =j and f(x,y) =1
when [xAy| = j+1. Then, if we restrict to only x and y such that |x| = |y| = (n+2j)/3, then

any protocol to compute f can be used to compute GHDZ wc1» Wherea = (n+2j)/3 and c =

(2n—2j)/3. Applying Lemma 3.3 we get that, k =R(f) > R(@Z’a}c’l) > IC(@Z’MJ) >
2(n—j)/3C. This implies that j > n — 2Ck. In particular, we deduce that there are at
most O(k) such values of j. On input pair (x,y), Alice checks whether |x| > n —2Ck and
Bob checks whether |y| > n—2Ck. If one of these inequalities fail, then it is the case that
|x Ay| < n—2Ck and the function value can be deduced. Suppose that |x| > n —2Ck and
|y| = n—2Ck. In this case, |x| takes one of O(k) possibilities and hence Alice can send |x| to
Bob using O(log k) bits. At this point, Bob knows both [x| and |y|. Thus, using the identity
A(X,y) = |x|+|y|—2|xAy], the problem gets reduced to a collection O(k) Hamming Distance
problems as in case (ii) above. The same protocols as in case (ii) imply a 1-way ISR protocol
with O(k®) bits of communication from Alice to Bob, and a 2-way ISR protocol with O(k?)
bits of communication. O

4.2 Overview of Proofs

The proofs of the 1-way and 2-way parts of Theorem 1.3 follow the same general framework,

. . . . def def ..
which we describe next. Let (x,y) be the input pair, a = |x| and b = ly|]. We partition the

(a, b)-plane into a constant number of regions such that:

(i) Using a small amount of communication, Alice and Bob can distinguish in which region their
combined input lies.

(ii) For each of these regions, there is an ISR protocol with small communication that computes
the function value on any input in this region.

Some of the region-specific protocols (in (ii) above) will be based on low-communication ISR
protocols for two “atomic” problems: SMALL-SET-INTERSECTION and SMALL-HAMMING-DISTANCE
described in Section 4.1.

We point out again that both of our protocols for SMALL-SET-INTERSECTION and SMALL-HAMMING-
DISTANCE have ISR-CC that is polynomial in the underlying PSR-CC, which is crucial for our pur-
poses. In particular, one cannot instead use the generic exponential simulation of [CGMS14].

The additive O(loglogn) factor in the ISR-CC upper bound of Theorem 1.3 is due to the fact
that for one region (other than the ones mentioned above), we show that in order for Alice and
Bob to compute the function value f(x,y), it is enough that they compute some other low PSR-
CC function f’(|x], |y|]) of the Hamming weights of (X,y). Since the Hamming weight of an n-
bit string can be expressed using |—log2 n-| bits, we have effectively reduced the “dimension” of
the problem from n to |_log2 n-|. At this point, we can apply Newman’s theorem (Theorem 2.6)
to obtain a private-coin protocol computing f’(|x|,|y|) (and hence f(x,y)) while increasing the
communication cost by at most an additive O(loglogn).
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4.3 2-way ISR Protocol for Permutation-Invariant Functions

In this section, we prove the 2-way part of Theorem 1.3. We again use the measure m(f) (intro-
duced in Definition 3.2) when restricted to total functions. For the sake of clarity, we describe the
resulting specialized expression of m(f) again in the following proposition.

Proposition 4.13 (Measure m(f ) for total functions). Given a total permutation-invariant function
f:{0,1}" x {0,1}" — {0,1}, and integers a, b, s.t. 0<a,b <n, let h,; : {0,1,---,n} — {0,1,?}
be the function given by h, ,(d) = f(X,y) if there exist X, y with |x| = a, |y| = b, A(x,y) =d and
? otherwise. (Note. by permutation invariance of f, h, j is well-defined.) Let #(h,}) be the set of
jumps in h, p,, defined as follows,

def o hep(c—=1)#hgp(c+1)
S hap) = {C : ha’b(cb— 1), hgp(c +b1) € {0,1}}

Then, we define m(f) as follows.

m(f) def rgla[x] max {min{a, b,c,n—a,n—b,n—c},log(min{c,n—c})}
a,b€[n
c€ #(hap)

We will now prove the following theorem, which immediately implies the 2-way part of Theo-
rem 1.3.

Theorem 4.14. Let f : {0,1}" x {0,1}" — {0,1} be any (total) permutation-invariant function.
Then,
Q(m(f)) <R(f) <ISR(f) < 0(m(f)*) +R(f) + O(loglog n)

Proof. From Theorem 1.1 we have the Q(m(f)) < IC(f) < R(f), which proves the lower bound.

Let k % m(f). The main part of the proof is to show that ISR(f) < O(k®)+R(f)+0(loglogn).
We first divide the input space into a constant number of regions, such that Alice can send O(log k)
number of bits to Bob with which he can decide in which of the regions does their combined input
lie (with high probability). Thus, once we break down the input space into these regions, it will
suffice to give 2-way protocols with small ISR-CC for computing the function over each of these
regions; as Alice and Bob can first determine in which region their combined input lies, and then
run the corresponding protocol to compute the function value.

Let a = |x| and b = |y|. We divide the (a, b)-plane into 4 regions, (I), (II), (III) and (IV), based
on the values of a and b as follows. First let A=min{a,n—a} and B =min{b,n— b}. Then the
regions are given by,

(I) (A< Ckand B < 2°F) or (A< 2% and B < Ck)
(II) (A< CkandB > 2°%) or (A> 2°% and B < Ck)
(Im) A> Ck and B> Ck and |A—B| < Ck
(IV) A> Ck and B> Ck and |A—B| > Ck

where C comes from Lemma 3.3. Note that regions (1), (II), (II) and (IV) form a partition of the
(a, b)-plane. This division is shown pictorially in Figure 1.

First, note that if [x| > n/2, then Alice can flip all her input bits and convey that she did so to
Bob using one bit of communication. Similarly, if |y| > n/2, then Bob can flip all his input bits and
convey that he did so to Alice using one bit of communication. After these flipping operations,
Alice and Bob will look at the appropriately modified version of f based on who all flipped their
input. Note that flipping all the bits of Alice and/or Bob preserves the permutation-invariance
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Figure 1: Division of the (a, b) plane into four regions in the 2-way setting

of the function. We will henceforth assume w.l.o.g. that a = |x| < n/2 and b = |y| < n/2.
[This is also the reason that the regions described above are in terms of A = min{a,n—a} and
B=min{b,n—b}and A,B <n/2.]

Next, we show that determining the region to which the input pair (x,y) belongs can be done
using O(logk) bits of (ISR) communication from Alice to Bob. First, Alice will send Bob two
bits indicating whether a < Ck and whether a < 2¢* respectively. With this information Bob
can determine in which of regions {(I), (II), (IIT) U (IV)} the combined input lies. To distinguish
between regions (III) and (IV), Alice and Bob can first check whether |a— b| < 100k by setting up
an instance of SPARSE-INDEXING. Namely, Alice will translate the value a into a string s, where
sq(i) = 1iff i = a. And Bob will translate b into a string s; such that s,(i) = 1iff b—Ck <i <
b+ Ck. This is an instance of SPARSE-INDEXING which can be solved with O(log k) bits of ISR-CC,
by Corollary 4.5.

We now show how to compute the value of the function f in each of the 4 individual regions
(D), (ID), (II) and (IV) using ISR-CC of at most O(k®) + R(f) + O(loglogn) bits. Since f is a
permutation-invariant function, we use the following 2 interchangeable representations of f using
Observation 2.2,

F&xy)=g(x],lyl, xAyl]) = (x|, [yl, A(x,y))

(D (Main idea: SMALL-SET-INTERSECTION) We have that either (a < Ck and b < 2°%) or (a <
2¢k and b < Ck). Since we can interchange the roles of Alice and Bob if required, we can
assume w.l.o.g. that a < Ck and b < 2°¥. In this case, Alice first sends the value of a = |x]
to Bob. They can then apply the protocol from Lemma 4.2 in order to compute |x A'y| using
O(alog(ab)) = O(k?) bits of 1-way ISR communication from Alice to Bob. Hence, Bob can
determine |xAy| correctly with high probability, and hence deduce g(|x|, |yl, |xAy]) = f (%,¥).

(I) (Main idea: No dependence on A(x,y)) We have that either (a < Ck and b > 2°%) or (a > 2¢*
and b < Ck). Since we can interchange the roles of Alice and Bob if required, we can assume
w.l.o.g. that a < Ck and b > 2¢%. Then, the definition of the measure m(f) implies that for
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this range of values of a and b, the function h cannot depend on A(x,y) (because in this
case A(x,y) > (b—a)). Since h depends only on |x| and |y|, Alice can simply send the value
of a (which takes only O(log k) bits), with which Bob can compute h(a, b, ¢) for any valid c,
that is, h, ,(c) # ?.

(III) (Main idea: SMALL-HAMMING-DISTANCE) We have that |a — b| < 100k. In this case, Alice

sends the value of a (mod 2Ck) to Bob, requiring O(k) 1-way communication. Since Bob
knows b, and so he can figure out the exact value of a. Next, they need to determine the
Hamming distance A(X,y). The definition of our measure m(f) (along with the fact that
k := m(f)) implies that if h(a, b,c — 1) # h(a, b,c + 1), then ¢ must be either < Ck or
> n— Ck. That is, given a and b, h(a, b, c) must equal a constant for all valid ¢ such that
Ck <c<n—Ck.
Since Bob knows both a and b exactly, Alice and Bob can run the 1-way ISR-protocol for HD
(from Lemma 4.7) for every i < Ck and i > n — Ck. This requires 5(k3) communication. '
If the Hamming distance is either < Ck or > n— Ck, then Bob can determine it exactly and
output h(a, b, c). If the Hamming distance is not in this range, then the Hamming distance
does not influence the value of the function, in which case Bob can output h(a, b, ¢) for any
valid ¢ such that Ck < ¢ <n—Ck.

(IV) (Main idea: Newman’s theorem on (a, b)) We claim that for this range of values of a and b,
the function h(a, b, c) cannot depend on c. Suppose for the sake of contradiction that the
function depends on c. Hence, there exists a value of ¢ for which h(a, b,c—1) # h(a, b, c+1).
Since |a — b| = Ck, we have that ¢ > Ck. And since |n —a — b| > Ck, we also have that
¢ <min{a+ b,2n—a— b} < n—Ck. Thus, we get that Ck < ¢ < n— Ck, which contradicts
that m(f) = k (see Proposition 4.13).

Since f (x,y) only depends on |x| and |y]| in this region, we have converted the problem which
depended on inputs of size n, into a problem which depends on inputs of size O(logn) only.
Since the original problem had a PSR-protocol with R(f) bits of communication, applying
Newman’s theorem (Theorem 2.6), we conclude that, with private randomness itself, the
problem can be solved using R(f) + O(loglogn) bits of 2-way communication. O]

Note 4.15. We point that the proof of Theorem 4.14 shows, more strongly, that for any function
G(.), the following two statements are equivalent:

(1) Any total function f with R(f) = k has ISR(f) < poly(k) + G(n)
(2) Any total permutation-invariant function f with R(f) = k has ISR(f) < poly(k)+G(O(logn)).

Newman’s theorem (Theorem 2.6) implies that (1) holds for G(n) = O(logn), and hence we have
that (2) also holds for G(n) = O(logn); thereby yielding the bound implied by Theorem 4.14. On the
other hand, improving the O(loglogn) term in Theorem 4.14 to, say o(loglogn) will imply that for
all total functions we can have G(n) in (1) to be o(logn). We note that currently such a statement is
unknown.

4.4 1-way ISR Protocol for Permutation-Invariant Functions

In this section, we prove the 1-way part of Theorem 1.3. On a high level, the proof differs from
that of the 2-way part in two aspects:

1. The underlying measure that is being used.

10The ISR-protocol for HD! takes 0(i%?) < 0(k?®) communication each. But we can only afford to make error with
probability O(1/k), and thus for sake of amplification, the overall communication is O(k>log k).
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2. The partition of the (a, b)-plane into regions, which is no longer symmetric with respect to
Alice and Bob as can be seen in Figure 2.

We introduce a new measure m' ™" (f) as follows (this is the 1-way analog of Proposition 4.13).

Definition 4.16 (Measure m'™"%(f) for total functions). Given a total permutation-invariant func-
tion f : {0,1}" x {0,1}" — {0,1}, and integers a,b, s.t. 0 < a,b <n, let hy; : {0,1,--- ,n} —
{0,1,?} be the function given by h, ,(d) = f (x,y) if there exist X, y with [x| = a, |y| = b, A(x, y) =
and ? otherwise. (Note. by permutation invariance of f, h, j, is well-defined.) Let ¢ (h,}) be the set
of jumps in h, p, defined as follows,

def . hgplc—=1)#hgp(c+1)
Hhap) = {C'ha,b(cb—n, hap(c +b1)e {0,1}}

Then, we define m'™" ¥ (f) as follows.

mivo(py max max {min {a,c,n—a,n—c},log(min{c,n—c}))
a,be[n

c€f(hep)

We point out that the only difference between Definition 4.16 and Proposition 4.13 is that the
term min{a, b,c,n—a,n—b,n—c} in Proposition 4.13 is replaced by min{a,c,n—a,n—c} in
Definition 4.16. In particular, Definition 4.16 is not symmetric with respect to Alice and Bob.
We will now prove the following theorem, which immediately implies the 1-way part of Theo-
rem 1.3.

Theorem 4.17. Let f : {0,1}" x {0,1}" — {0,1} be any (total) permutation-invariant function.
Then,

Qm™(£)) < R™V(f) < ISR (F) < O(m™2 (£)?) + R (f) + O(loglog n)

We will need the following lemma to show that the measure m!™"#(f) is a lower bound on
R"™Wa(f). This is analogous to Lemma 3.3, which was used to show that m(f) is a lower bound
on R(f) and in particular, IC(f).

Lemma 4.18. For all n,a, b,c,g € N, such that GHD lS a meaningful problem (as in Defini-
tion 2.8), the following lower bounds hold,

1 (min{a,n—a,c,n—c}
1- > L)
R @D, 02 3 )
1-way 1 min {c,n—c}
R'™(GHD, ) 2 - (log —

where C is a suitably large constant (to be determined in the proof).

We defer the proof of Lemma 4.18 to Section 4.5. For now, we will use this lemma to prove
Theorem 4.17.
Proof of Theorem 4.17. Any protocol to compute f also computes GHD. b1 forany a, b and
any jump c € #(h, ;). Consider the choice of a, b and a jump c € #(h,, b) such that the lower
bound obtained on IC(GHDa’b, c,l) through Lemma 4.18 is maximized, which is Q(m'"™&(f)) (by
definition of m"W&(f)). Thus, we have

Q(m™ () < RVWY(GHD, , . ) < RM¥(f)

a,b,c,g
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Let k & m'™a(f). The main part of the proof is to show that ISR'""®(f) < O(k®) + R +
O(loglogn). We first divide the input space into a constant number of regions, such that Alice can
send O(logk) bits to Bob with which he can decide in which of the regions does their combined
input lie (with high probability). Thus, once we break down the input space into these regions,
it will suffice to give 1-way protocols with small ISR-CC for computing the function over each of
these regions; as Alice can then send the 1-way messages corresponding to all of these regions, and
Bob will first determine in which region their combined input lies and then use the corresponding
messages of Alice to compute the function value.

Suppose that we have a function f with m™"®(f) = k. Let a = |x| and b = |y|. We partition
the (a, b)-plane into 4 regions based on the values of a and b as follows. FirstletA = min{a,n—a}
and B = min {b,n — b}. Then the regions are given by,

(I) A< Ck and B < 26k

(II) A< Ck and B > 26k
(III) A> Ck and |A—B| < Ck
(IV) A> Ck and |A—B| > Ck

where C comes from Lemma 4.18. Note that the regions (I), (I), (II1) and (IV) form a partition
of the (a, b) plane. This partition is shown pictorially in Figure 2.

First, note that if [x| > n/2, then Alice can flip all her input bits and convey that she did so to
Bob using one bit of communication. Similarly, if |y| > n/2, then Bob can flip all his input bits and
convey that he did so to Alice using one bit of communication. After these flipping operations,
Alice and Bob will look at the appropriately modified version of f based on who all flipped their
input. Note that flipping all the bits of Alice and/or Bob preserves the permutation-invariance
of the function. We will henceforth assume w.l.o.g. that a = |x| < n/2 and b = |y| < n/2.
[This is also the reason that the regions described above are in terms of A = min{a,n—a} and
B=min{b,n—b}and A,B <n/2.]

We now show that determining the region to which the input pair (x,y) belongs can be done
using O(log k) bits of (ISR) communication from Alice to Bob. First, to distinguish between {(I),
(ID} and {(III), (IV)}, Alice needs to send one bit to Bob indicating whether a < 100k. Moreover,
in the case of {(I), (II)}, Bob can easily differentiate between (I) and (II) because he knows the
value of b. To distinguish between regions (III) and (IV), Alice and Bob can first check whether
|a — b| < 100k by setting up an instance of SPARSE-INDEXING. Namely, Alice will translate the
value a into a string s, where s, (i) = 1 iff i = a. And Bob will translate b into a string s; such that
sp(i) =11iff b—Ck < i < b+ Ck. This is an instance of SPARSE-INDEXING which can be solved
with O(log k) bits of ISR-CC, by Corollary 4.5.

We now show how to compute the value of the function f in each of the 4 individual regions
(D), (I1), (I11) and (IV) using 1-way ISR-CC of at most O(Kk3) +RWay( f)+ O(loglogn) bits. Since
f is a permutation-invariant function, we use the following 2 interchangeable representations of
f using Observation 2.2,

f&xy) = g(xl,lyl, lx Ayl) = h(Ix], lyl, Ax,y))

(D (Main idea: SMALL-SET-INTERSECTION) We have that a < Ck and b < 2€k. Alice can first
send the value of a = |x| to Bob. They can then apply the protocol from Lemma 4.2 in order
to compute |x Ay| using O(alog(ab)) = O(k?) bits of 1-way ISR communication from Alice
to Bob. Hence, Bob can determine [x A y| correctly with high probability, and hence deduce
g(Ixl, [yl, xAyD) = fF(x,y).

(II) (Main idea: No dependence on A(x,y)) We have that a < Ck and b > 2°%. In this case,
the definition of our measure m'™"¥(f) implies that for this range of values of a and b,

27



T oy .
D Region I
n—2¢k 4 T D Region II
D Region III
9Ck — D Region IV
. . n a
Ck n—Ck

Figure 2: Division of the (a, b) plane into four regions in the 1-way setting

the function h cannot depend on A(x,y) (because in this case A(x,y) = (b —a)). Since h
depends only on |x| and |y|, Alice can simply send the value of a (which takes only O(log k)
bits), with which Bob can compute h(a, b, ¢) for any valid c, that is, h(a, b,c) # ?.

(II) (Main idea: SMALL-HAMMING-DISTANCE) We have that that |a — b| < Ck. Then, Alice sends
the value of a (mod 2Ck) to Bob, requiring O(k) 1-way communication. Since Bob knows b,
he can figure out the exact value of a. Next, they need to determine the Hamming distance
A(x,y). The definition of our measure m* ™" (f) (along with the fact that k := m*™"&(f))
implies that if h(a, b,c — 1) # h(a, b, c + 1), then ¢ must be either < Ck or > n— Ck. That
is, given a and b, h(a, b, c) must equal a constant for all valid ¢ such that Ck < ¢ <n—Ck.
Since Bob knows both a and b exactly, Alice and Bob can run the 1-way ISR-protocol for HD?
(from Lemma 4.7) for every i < Ck and i > n— Ck. This requires O(k®) communication.'!

If the Hamming distance is either < Ck or > n— Ck, then Bob can determine it exactly and

output h(a, b, c). If the Hamming distance is not in this range, then the Hamming distance

does not influence the value of the function, in which case Bob can output h(a, b, ¢) for any
valid ¢ such that Ck < ¢ <n—Ck.

(IV) (Main idea: Newman’s theorem on (a, b)) We claim that for this range of values of a and b,
the function h(a, b, ¢) cannot depend on c. Suppose for the sake of contradiction that the
function depends on c. Hence, there exists a value of ¢ for which h(a, b,c—1) # h(a, b,c+1).
Since |a — b| = Ck, we have that ¢ > Ck. And since [n—a — b| = Ck, we also have that
¢ <min{a+ b,2n—a— b} < n—Ck. Thus, we get that Ck < ¢ < n— Ck, which contradicts
that m'™"®(f) = k (see Definition 4.16).

Since f (x,y) only depends on |x| and |y| in this region, we have converted the problem which
depended on inputs of size n, into a problem which depends on inputs of size O(logn) only.
Since the original problem had a 1-way PSR-protocol with RM™"#(f) bits of communication,

" The ISR-protocol for HD! takes 0(i?) < 0(k?) communication each. But we can only afford to make error with
probability O(1/k), and thus for sake of amplification, the overall communication is O(k®logk).
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applying Newman’s theorem (Theorem 2.6), we conclude that, with private randomness
itself, the problem can be solved using R™™"(f)+0(loglog n) bits of 1-way communication.

O

Note 4.19. We point that the proof of Theorem 4.17 shows, more strongly, that for any function
G(.), the following two statements are equivalent:

(1) Any total function f with R*™%¥(f) = k has ISR (f) < poly(k) + G(n)

(2) Any total permutation-invariant function f with R©™"%(f) = k has ISR™¥(f) < poly(k) +
G(O(logn)).

Newman’s theorem (Theorem 2.6) implies that (1) holds for G(n) = O(logn), and hence we have
that (2) also holds for G(n) = O(log n); thereby yielding the bound implied by Theorem 4.17. On the
other hand, improving the O(loglogn) term in Theorem 4.17 to, say o(loglogn) will imply that for
all total functions we can have G(n) in (1) to be o(logn). We note that currently such a statement is
unknown.

4.5 1-way CC lower bounds on Gap Hamming Distance

In this section, we prove lower bounds on 1-way randomized communication complexity of GAP-
HAMMING-DISTANCE (Lemma 4.18).

We will prove Lemma 4.18 by getting certain reductions from SPARSE-INDEXING (namely Proposi-
tion 2.13). Similar to our approach in Section 3.3, we first prove lower bounds on 1-way PSR-CC
of SET-INCLUSION (Definition 3.8). We do this by obtaining a reduction from SPARSE-INDEXING.

Proposition 4.20 (SET-INCLUSION 1-way PSR-CC lower bound). For all t,w €N,

R'™¥(SETINC!'Y ) > Q(min(t,w))

Proof. We know that Rl'way(SPARSEINDfJFW) > Q(min(t,w)) from Proposition 2.14. Note that
t+w

SPARSEIND! ™" is same as the problem of GHD If we instead think of Bob’s input as comple-

t,1,6,1°
. me—ttw . . . mettw .
mented, we get that solving GHD, ., ., ,, is equivalent to solving GHD, ; , ;, which is same as
SETINC!*W . Thus, we conclude that R™W#(SETINCIY ) > Q(min(t, w)). O

We now state and prove a technical lemma that will help us prove Lemma 4.18. Note that this is
a 1-way analogue of Lemma 3.11.

n

Lemma 4.21. Let n,a,b,c,g € N be such that GHD  , . , is a meaningful problem (as in Defini-
tion 2.8). Additionally, let a, b < n/2. Then, the following lower bounds hold,

() R™(GHD, , . ) > @ (min{=be, =< 1)

(i) R™(GHD, , )= @ (min {#t2=c cbsl)

(i) RI™(GHD, , . ) > 2 (min {log(£),log(%5*)})

Proof. We first note that part (iii) follows trivially from Lemma 3.11 because IC(f) < R(f) <
RI"™Wa(f). But we require slightly different proofs for parts (i) and (ii). The main technical dif-
ference in these proofs and the corresponding ones in Lemma 3.11 is that now we cannot assume
that a < b < n/2. We note that this assumption of a < b was extremely crucial for Lemma 3.11,
without which parts (i) and (ii) would not have been possible (even though they look exactly
same in form!). The reason why we are able to succeed here without making the assumption
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because we derive reductions from a much “simpler” problem, but which is still hard in the 1-way
model, namely the SPARSE-INDEXING problem.

Proof of (i). We obtain a reduction from SPARSEIND%t for which we know from Proposition 2.14

. —2t
that R"™"%(SPARSEIND?') = Q(t). Recall that SPARSEIND?' is same as GHD, | , ;.
28t

instance g times to get an instance of ﬁgt’ g.gt.gr NOw, we need to append (a — gt) 1’s to X
and (b—g) 1’s to y. This will increase the Hamming distance by a fixed amount which is at least
la—b—gt+ g| and at most b + a— gt — g. Also, the number of inputs we need to add is at least
((a—gt)+(b—g)+ (c—gt))/2. Thus, we can get a reduction to ﬁz’b’c’g if and only if,

We repeat the

la—b—gt+g|<c—gt<b+a—gt—g

(a—gt)+(b—g)+(c—gt)
2
The left condition on ¢ gives us that 2gt <c+a—>b+ g and b—a + g < ¢ (which is always
true). The right condition on ¢ gives ¢ < b + a — g (which is always true). The condition on n
gives that gt <n—(a+ b +c— g)/2, which is equivalent to

n>2gt+

n—a—b n—c—g
< +
28 28

Thus, we can have the reduction work by choosing t to be

—b —c— _ _
tzmin{c +a+g’n c g}:ﬂ(min{c b+a,n c})
28 28 g g

(since n > a + b) and thus we obtain

N —b+ —
R“"¥(GHD, , . = R!"™"¥(SPARSEINDZ) > Q (min{u, n—¢ })
Eht ] g g

Proof of (ii). We obtain a reduction from SETINC’tnt tw—1 (where m = t + w) for which we know

from Proposition 4.20 that Rl'way(SPARSEINDTtnt +w1) = Q(min {t,w}). Recall that SETINC]", , _;
. = . . T =m . .
is same as GHDM Fw—lwl® Given an instance of GHDM tw—lw1 We first repeat the instance g

times to get an instance of GHDi’:g(t fw—1),gwg: NOW, we need to append (a — gt) 1’s to x and

(b—gt—gw+ g) I's toy. This will increase the Hamming distance by a fixed amount which is
at least |b—a —gw+ g| and at most (b— gt —gw+ g) + (a— gt). Also, the number of inputs we
need to add is at least ((a— gt)+(b—gt —gw+ g) + (c — gw))/2. Thus, we can get a reduction
to Gﬁz b if and only if,

lb—a—gw+g|<c—gw<b+a—2gt—gw+g
(b—gt—gw+g)+(a—gt)+(c—gw)
2

n=gt+gw+
The left constraint on ¢ requires ¢ > max{b—a+ g,a +2gw—b — g}. Weknow thatc > b—a+g,
so the only real constraint is ¢ > 2gw — (b —a) + g, which gives us that,

w< c+b—a—g
28
The right constraint on ¢ requires ¢ < b+ a—2gt + g, which gives us that,
r < a+b—c+g
28
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Suppose we choose t to be Hbz;gﬁg. Then the constraint on n is giving us that,

a+b+c—g _a+b—c+g+a+b+c—g

nx=gt+ =a+b
2 2 2
We already assumed that a, b < n/2, and hence this is always true.
Thus, we can choose t = (H—Z)2;gc+g and w = ﬁb;%, and from Proposition 4.20, we get,

t,w

— +b—c c+b—
RIY(GHD, , ) > RM¥(SETINGES) > min({t,w}) = 0 (min { atb—cctb-a })

g g

We are now finally able to prove Lemma 4.18.
Proof of Lemma 4.18. Assume for now that a, b < n/2. From parts (i) and (ii) of Lemma 4.21,
we know the following,

- _b+ —
RIY(GHD,, ) > Q(min{u,n c})

g g
__ b— b—
RIWY(GHD, , . ) > Q(min{a+ e a})

e p

Adding these up, we get that,

— —b+a n— +b—c c+b—
Rl'way(GHDZbc )Zﬂ(min{u,n C}+min{a C,C a})
68 g g g g

Since min {A, B} + min {C,D} =min{A+ C,A+ D,B + C,B + D}, we get that,

[ 2a 2 +a+b-—2 +b—
Rl-way(GHDZbcg) > Q(min{—a,—c, n+a C’ n a})
T g & g g

For the last two terms, note that, n+a+b—2c >n—c (sincea+b>c)andn+b—a>n—a>a
(since n/2 > a). Thus, overall we get,

_— a ¢c n—c
RI'WY(GHD., .)>Q (min { ==, })
a,b,c,g g’g g

Note that this was assuming a, b < n/2. In general, we get,

Rl_way(@Zbcg) S Q(mm{a,c,n—a,n—c})

8

[We get the (n — a) term because we might have flipped all bits in Alice’s input to make sure
a < n/2 But unlike in the proof of Lemma 3.3, we don’t get b or (n— b) in the above lower bound
because while restricting to a, b < n/2, we never flipped the role of Alice and Bob.]

The second part follows trivially from the corresponding part of Lemma 3.3, since IC(f) < R(f) <
RIW¥(f) for any f.

We choose C to be a large enough constant, so that the desired lower bounds hold. O
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5 Summary and discussion

In this work, we initiated the study of the communication complexity of permutation-invariant
functions. We gave a coarse characterization of their information complexity and communica-
tion complexity (Theorem 1.1). We also showed for total permutation-invariant functions that
the communication complexity with imperfectly shared randomness is not much larger than the
communication complexity with perfectly shared randomness (Theorem 1.3). Our work points
to several possible future directions.

¢ [Generalized Permutation-Invariance] Is it possible to generalize our results for any larger
class of functions? One candidate might be classes of functions that are invariant under
natural subgroups of the permutation group S,, or more generally any group of actions on
the input spaces of Alice and Bob. For example, once choice of a subgroup of permutations is
the set of all permutations on [n], that map [n/2] to [n/2] and map [n]\[n/2] to [n]\[n/2].
Or more generally, the subgroup of £-part permutation-symmetric functions, which consists
of functions f for which there is a partition I = {I;,...,I,} of [n] such that f is invariant
under any permutation 7t € S,, where 7(I;) = I; for every i € {1,...,£}.

e [Permutation-Invariance over higher alphabets] Another interesting question is to gen-
eralize our results to larger alphabets, i.e., to permutation-invariant functions of the form
f X" x Y™ — Rwhere &, % and R are not necessarily binary sets.

o [Tight lower bounds for Gap-Hamming-Distance | What are the tightest lower bounds on
GHD? , beg for all choices of parameters, a, b, ¢, g? Our lower bounds on GHD“ bc,g Ar€ NOL
tight for all choices of parameters a, b, c and g. For example, whena =b =c¢ = n /2and g =
v/n, our lower bound in Lemma 3.3 only implies IC(GHDZ,b,C,g) > Q(4/n). Using the proof
techniques in [CR12, Vid11, Shel2], one can obtain that R(GHDZ,b’C,g) > Q(n). Sherstov’s
proof [She12] is based on the corruption bound. A recent result due to [KLL*12] showed (by
studying a relaxed version of the partition bound of [JK10]) that many known lower bound
methods for randomized communication complexity — including the corruption bound — are
also lower bounds for the information complexity. This implies that IC(GHD} )= Q(n)
fora=b=c=n/2and g = 4/n.

e [Hierarchy within ISR] The work of [CGMS14] shows an exponential separation between
ISR, (f) and R(f ). However, it is unclear if some strong separation could be shown between
ISR, (f) and ISR,/ (f) for some function f (where p < p’ < 1).

a,b,c,g

e [Limits of separation in [CGMS14]] Canonne et al showed that for some unspecified k,
there is a partial permutation-invariant function with communication at most k under per-
fect sharing of randomness, but with communication at least 2(2) under imperfect sharing
of randomness. Can their separation be made to hold for k = ©(loglogn)? Answering this
question would shed some light on the possibility of proving an analogue of Theorem 1.3
for partial permutation-invariant functions.
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