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ABSTRACT
We study the problem of designing seller-optimal auctions,
i.e. auctions where the objective is to maximize revenue.
Prior to this work, the only auctions known to be approxi-
mately optimal in the worst case employed randomization.
Our main result is the existence of deterministic auctions
that approximately match the performance guarantees of
these randomized auctions. We give a fairly general deran-
domization technique for turning any randomized mecha-
nism into an asymmetric deterministic one with approxi-
mately the same revenue. In doing so, we bypass the im-
possibility result for symmetric deterministic auctions and
show that asymmetry is nearly as powerful as randomization
for solving optimal mechanism design problems. Our gen-
eral construction involves solving an exponential-sized flow
problem and thus is not polynomial-time computable. To
complete the picture, we give an explicit polynomial-time
construction for derandomizing a specific auction with good
worst-case revenue. Our results are based on toy problems
that have a flavor similar to the hat problem from [3].
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1. INTRODUCTION
In [8], Goldberg et al. proposed the study of profit maxi-

mization in auctions using a worst-case competitive analysis.
They focus on the unlimited supply, unit demand, single-
item auction problem where an effectively infinite number
of identical units of an item are for sale to consumers that
each desire at most one unit. In their worst-case competitive
framework, they gave a randomized auction that achieves a
constant fraction of the optimal single-price revenue. Fur-
ther, they prove that such randomization is necessary for
symmetric auctions, ones whose outcome is not a function
of the order of the input bids. Our main result is to show
that this result does not hold for asymmetric auctions; we
give an asymmetric deterministic auction that approximates
the revenue of the optimal single-price sale in the worst case.

In general, design and analysis of auctions and other mech-
anisms requires a game-theoretic treatment; in order to un-
derstand the performance of an auction, the behavior of the
bidders in the auction must be understood. To handle this
problem, we adopt the solution concept of truthful mecha-
nism design; we only consider mechanisms where each bid-
der has a dominant strategy of bidding their true value for
the good regardless of the actions of any of the other bid-
ders. It is well-known that truthful auctions are precisely
those auctions that compute an offer price for a bidder that
is not a function of their bid value, but may be a function of
other bidders’ bids. This bidder is then allocated the good if
their bid is above the offer price, otherwise the bidder is re-
jected. The simplest truthful auction that is approximately
optimal in worst-case is the randomized sampling auction
in [8] which randomly partitions the bidders into two sets
and uses the optimal sale price for each set as the offer price
for all bidders in the opposite set.

Randomization in mechanism design, in a spirit similar to
randomization in online algorithms, allows a mechanism to
choose the right course of action with some positive proba-
bility. Standard algorithmic derandomization techniques do
not directly apply to mechanism design because it is not pos-
sible to simply run the mechanism with all possible outcomes
of a randomized decision making procedure; the decisions
made in mechanisms are generally irrevocable. Instead, we



explore derandomization through asymmetry. Here we look
for mechanisms that will make up for making wrong choices
for some bidders by making right choices for others. A key
challenge in this endeavor is the coordination of the choices.

Our main result is to show that on any input bid vector,
b, with bids bi ∈ [1, h], any randomized truthful auction A
that obtains an expected profit of E[A] can be converted
into a truthful deterministic asymmetric auction with profit
E[A] /4− 2h. Given any auction that always obtains an ex-
pected profit that is within a constant fraction of optimal,
such as the randomized sampling auction, this gives a deter-
ministic auction that gets within a constant fraction of the
optimal profit with a small additive loss.

This general derandomization technique involves solving
an exponentially large flow problem. We introduce a dif-
ferent technique to obtain a polynomial-time constructible
derandomization of an auction from [6] with good worst-
case revenue guarantees. This resolves the question about
the existence of good deterministic worst-case auctions that
can be run efficiently.

The problem of asymmetric coordination of decisions in
mechanism design is exemplified by a related toy problem
that is similar in nature to hat-guessing problem of [3]. We
cast this problem as follows. Players interact in a three-
stage game. First, the players collectively decide on their
strategies. Second, colored hats are placed on each players
head such that each player can see the color of the hats of all
other players except for their own. Third, each player must
independently try to guess the color of their own hat. The
question is what strategy should the players adopt in order
to ensure that many of the players correctly guess their hats’
color. Assume that the available hat colors are blue or red.
There is a natural randomized strategy where each player
flips a coin and guesses red or blue with equal probability.
With this strategy, in expectation, half of the people with
red hats and half of those with blue hats guess their hat color
correctly. We would like to devise a deterministic strategy
that achieves approximately the same bound.

We solve this problem via a flow-based derandomization
technique. When applied to the simple randomized color-
guessing algorithm above, it gives an asymmetric determin-
istic (exponential-time) algorithm that guesses red for ex-
actly half of the reds and guesses blue for exactly half of
the blues (rounded down if the numbers are odd). This
flow-based derandomization extends naturally to the case in
which there are k different hat colors and we would like to
guess correctly on about 1/k fraction of each color. For the
k = 2 case, we show that there is actually a polynomial-time
computable derandomization that matches the performance
of the flow-based algorithm; however, we do not know if the
same is possible for k ≥ 3.

This coloring problem is related to the auction problem
as follows. Consider the case where there are only two types
of bidders, those with a high valuation for the item, h; and
those with a low valuation for the item, 1. Mapping h to
the color red and 1 to the color blue, a solution to the color-
guessing problem would offer half the h bids a price of h and
half the 1 bids a price of 1 and thus, the profit of such an
auction would be at least half of optimal revenue (because
either a price of h or a price of 1 is the optimal single price).

Problems related to the above hat problem were first stud-
ied in the context of coding theory [3, 13]. That these types
of problems are relevant to mechanism design makes explicit

a connection between the two fields. A similar hat color-
ing problem to the one we consider was recently proposed
by Feige [4] who independently derived a similar flow-based
construction. We are unaware of any previous applications
of the hat problem to truthful mechanism design.

This paper is organized as follows. In Section 3 we for-
mally define the hat-guessing problem and give the flow-
based solution. In Section 4 we show how the flow-based
technique can be generalized to convert any randomized auc-
tion into an asymmetric deterministic auction with approx-
imately the same performance bound. Finally, in Section 5
we give a polynomial-time deterministic auction with good
worst-case revenue bounds.

2. PRELIMINARIES
We consider single-round, sealed-bid auctions for selling

an item in unlimited supply to any of n unit-demand bid-
ders. As mentioned in the introduction, we adopt the game-
theoretic solution concept of truthful mechanism design. A
useful simplification of the problem of designing truthful
auctions is obtained through the following algorithmic char-
acterization. Related formulations to the one given here
have appeared in numerous places in recent literature (e.g., [1,
12, 5, 9]). To the best of our knowledge, the earliest dates
back to the 1970s [10].

Definition 1. Given a bid vector of n bids, b = (b1, . . . , bn),
let b−i denote the vector of bids with bi replaced with a ‘?’,
i.e.,

b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn).

Definition 2 (Bid-independent Auction, BIf ). Let
f be a function from masked bid vectors (with a ‘?’) to
prices (non-negative real numbers). The deterministic bid-
independent auction defined by f , BIf , works as follows.
For each bidder i:

1. Set ti = f(b−i).

2. If ti < bi, bidder i wins at price ti

3. If ti > bi, bidder i loses.

4. Otherwise, (ti = bi) the auction can either accept the
bid at price ti (in which case bidder i is a winner) or
reject it.

A randomized bid-independent auction is a distribution over
deterministic bid-independent auctions.

The proof of the following theorem can be found, for exam-
ple, in [5].

Theorem 1. An auction is truthful if and only if it is
equivalent to a bid-independent auction.

Given this equivalence, we will use the terms bid-independent
and truthful interchangeably. We denote the profit of a
truthful auction A on input b as A(b). This profit is given
by the sum of the prices charged to the winning bidders. For
a randomized bid-independent auction, f(b−i) and A(b) are
random variables.

It is natural to consider a worst-case competitive analysis
of truthful auctions. In the competitive framework of [5] and
subsequent papers, the performance of a truthful auction



is gauged in comparison to the profit of the optimal single
price sale of at least two units, denoted by F (2) in previous
literature. There are a number of reasons to choose this
metric for comparison; interested readers should see [5] or [7]
for a more detailed discussion.

Unfortunately, as we show in Section 4.3, it is not possible
for a deterministic auction to always perform well in com-
parison to such an optimal sale. Instead, we assume that all
bids are between 1 and h and define OPT as the profit of the
optimal single price sale. Following [8, 2] we look for auc-
tions that obtain a profit of at least OPT /β − γh for small
constants β and γ. We refer to β as the approximation ratio
and γh as the additive loss. Such an approximation frame-
work is tantamount to considering a promise problem. If we
are promised that OPT � γh then our auction is constant
fraction of optimal. This motivates the following formal def-
inition.

Definition 3. We say an auction is approximately op-
timal if its expected profit on any input, b ∈ [1, h]n, is at
least OPT(b)/β − γh for fixed constants β and γ.

3. A HAT PROBLEM
In this section we consider the problem of asymmetric

coordination through a hat problem. Here n players must
devise strategies such that when each of them has a hat of
one of k colors placed on her head and can only observe
the hats on others’ heads but not her own; about a 1/k
fraction of the players wearing each color correctly guess
their hat color. We refer to this game as a “bid-independent”
hat-guessing problem as player i’s viewpoint, seeing an n-
dimensional vector of hat colors with their own missing, is
similar to the view point a truthful mechanism has when
considering a price to offer the ith bidder.

The following randomized hat-guessing scheme achieves
this desired bound in expectation: each player i guesses each
of the colors with equal probability 1/k. We now give a tech-
nique that uses an arbitrary ordering of the players in place
of randomness to achieve the same bound deterministically.
It is instructive to view this technique as a derandomization
of the simple randomized algorithm proposed above.

Let c = (c1, . . . , cn) represent the array of colors. Let
c−i represent the array of colors with the i’th color hidden,
i.e., c−i = (c1, . . . , ci−1, ?, ci+1, . . . , cn). Note that c−i is
precisely the view of player i.

Consider a flow problem as shown in Figure 3. The graph
has a source vertex s and a sink vertex t. For each of the
nkn−1 possible values of c−i, we have a vertex, vc

−i
. We

place an arc from s to each of these vertices. For each of
the kn+1 possible values of (χ, c) (where χ is one of the k
colors), we have a vertex vχ,c. We place an arc between
each of these vertices and t. We also add an arc between
vc

−i
and vci,c signifying that we get c when we reveal that

at position i in c−i is a hat with color ci. Notice that the
in-degree due to such arcs of a vertex vχ,c is precisely the
number of hats of color χ in c. The out-degree of a vertex
vc

−i
is exactly k, one for each possible color of the hat at

position i.
Now, imagine the following flow on this graph that rep-

resents the randomized hat-guessing algorithm above. Be-
tween s and each vc

−i
place a flow of 1. This corresponds

to the randomized algorithm, upon seeing c−i, having a to-
tal probability of 1 to spend on guessing colors for the ith

player’s hat. On each of the outgoing arcs from vc
−i

we
place a flow of 1/k corresponding to the probability with
which the randomized algorithm picks each color. Now no-
tice that the incoming flow to vχ,c is precisely 1/k times the
number of hats in c from color class χ. Send all of this flow
on the arc from vχ,c to t. This is a feasible flow.

Next, we set capacities on the arcs as follows. For each
χ and c, set the capacity of the arc (vχ,c, t) to bnχ(c)/kc,
where nχ(c) represents the number of hats in c that are
colored χ. On all other arcs, place a capacity of 1. The frac-
tional flow set up in the previous paragraph respects these
capacities except on the arcs into t. Thus, the minimum
cut in this graph separates t from all other vertices, and
a maximum flow saturates the capacities of all arcs into t.
Furthermore, since all capacities are integral, there is a max-
imum flow that is integral. Revisiting the analogy between
flow and probability, since each of the vc

−i
has at most 1

unit of incoming flow, an integral flow places the entirety
of this flow on a single outgoing arc corresponding to deter-
ministically guessing a color for the i’th hat in c−i. Thus,
such a flow specifies a deterministic “bid-independent” hat-
guessing algorithm.

We now analyze the performance of this deterministic hat-
guessing algorithm on c. Given nχ(c) hats with color χ in c,
the capacity of the outgoing arc from vχ,c to t is bnχ(c)/kc.
Since this arc is saturated in an integral maximum flow, it
must be that bnχ(c)/kc of the nχ(c) incoming arcs have one
unit of flow on them. This corresponds to the determinis-
tic algorithm correctly guessing χ when considering c−i for
bnχ(c)/kc positions i in c colored χ out of a total of nχ(c)
such positions. This holds true for all colors χ; thus, this de-
terministic hat-guessing algorithm correctly guesses about a
1/k fraction from each color class.

For the case that k = 2, there is a polynomial-time con-
struction of a coordination strategy for n players that meets
the same guarantees as the above flow-based technique. We
omit the details here as it follows as a special case from the
deterministic coin flipping algorithm that we give in Sec-
tion 5.1. An obvious next step is to obtain a polynomial-
time construction for k ≥ 3 colors. This problem seems
much more difficult even for k = 3, and we leave it as an
open question.

4. AUCTION DERANDOMIZATION
The main goal of this paper is to design deterministic

auctions that are approximately optimal. We show that in
fact any randomized auction has a deterministic counterpart
that achieves approximately the same profit. As a corol-
lary of this result, known approximately-optimal random-
ized auctions imply the existence of approximately-optimal
deterministic auctions. Our proof first reduces any auction
to a special type of auction that we define, called a guessing
auction, and then uses a flow-based construction similar to
that in Section 3 to derandomize the guessing auction.

4.1 Guessing Auctions
The flow-based construction for the hat-guessing problem

in Section 3 works for the case where our goal is to con-
sider c−i and guess what c is. An auction gets revenue not
only when it guesses bid values correctly, but also when it
guesses a value below a bid value. In order to resolve this
discrepancy, we define the notion of a guessing auction that
uses only powers of two as prices and gets credit for rev-
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Figure 1: Flow for randomized hat-guessing. The label on an edge represents the amount of flow on the edge.

enue from a bidder only when it offers her a price equal to
her bid rounded down to the nearest power of two. Not only
are guessing auctions approximately as powerful as standard
auctions (in terms of approximating the optimal profit), but
it is possible to convert any auction into a guessing auction
while only losing a factor of four from the profit.

Definition 4 (GA). The guessing auction, GA, for an
auction A simulates A on b. Suppose A offers bidder i
price pi and let 2k be the largest power of two less than pi.
Then GA offers bidder i price 2k+j for integer j ≥ 0 with
probability 2−j−1.

Lemma 1. For any auction A with expected profit E[A(b)]
on input bid vector b, there is a corresponding guessing auc-
tion GA whose expected profit on any input bid vector b is
at least E[A(b)] /4.

Proof. To see that the guessing auction achieves a profit
of E[A] /4, we show that the expected profit of GA from
bidder i, given that bidder i bids above pi, is at least 2k−1 ≥
pi/4. Suppose bi ∈ [2k+j , 2k+j+1), then the probability that
GA guesses bid i is 2−j−1. The payoff on correctly guessing
is 2k+j . Thus, the expected payment of bidder i is 2k−1.
Since each bidder’s expected payment in GA is a fourth of
their payment in A, we have the desired bound.

.
We note that if we are constructing a guessing auction

from an auction that only uses prices that are powers of
two, then we only lose a factor of two of the profit instead
a factor of four.

4.2 The Flow Construction
We now show how to derandomize any guessing auction

GA.

Lemma 2. Corresponding to any guessing auction GA with
expected profit E[GA(b)] on bid vector b, there is a deter-
ministic auction whose profit on any input bid vector b is at
least E[GA(b)] − 2h, where h is the highest bid value in b.

Proof. First, round all bid values down to the nearest
power of two. Making an analogy between the k colors in
the hat-guessing problem and the log h powers of two that
are the possible (rounded) values of bids, we proceed by
setting up a flow construction identical to that for the k-
color guessing problem, except that the fractional flow on an
arc from vb

−i
to v2j ,b is the probability that GA on seeing

b−i guesses 2j . Furthermore, the flow from v2j ,b to t is the
expected number of times GA guesses one of the bids with
(rounded) value 2j correctly. We represent this quantity by
Ej(b). We then set the capacities as before such that the
capacity on the arc between v2j ,b and t is bEj(b)c; all other
capacities are set to one.

Once again, the above fractional flow implies the existence
of an integer-valued flow, and this integer-valued flow corre-
sponds to an auction making a deterministic bid-independent
offer upon seeing b−i. The flow out of v2j ,b is precisely the
number of indices i such that the auction, upon seeing b−i,
correctly guesses 2j ; since this arc is in a minimum cut, it is
saturated and the flow out of it is precisely bEj(b)c. Thus,
considering a bid vector b where the expected profit of GA

is E[GA] =
P

j 2jEj(b), the deterministic auction obtains
P

j 2j bEj(b)c ≥
P

j

ˆ

2jEj(b) − 2j
˜

≥ E[GA] − 2h.

The following theorem follows directly from Lemmas 1
and 2.

Theorem 2. Corresponding to any single-round sealed-
bid auction A with expected profit E[A(b)] on input bid vec-
tor b, there is a deterministic auction A′ whose expected
profit on any input bid vector b is at least E[A(b)] /4 − 2h.

As a corollary, using this derandomization result with the
approximately optimal auctions in [8, 5, 6], we obtain de-
terministic auctions that are approximately optimal. In this
construction, we assumed that the range of bid values [1, h]
is known. This assumption is not necessary. When consid-
ering b−i, we can compute h, which is the maximum bid
value scaled such that the minimum bid value is 1 on the
new scale, correctly for all but the minimum and maximum



bid value. Assuming the worst, i.e., the auction fails to get
any profit from the highest and lowest bid, we only lose an
additional additive h + 1.

4.3 Additive Loss Term
One discrepancy between the bounds given in this paper

and the bounds given in [5, 6] is that our bounds are inter-
esting only if the profit from the optimal single price sale is
larger than 2h. This is not true of all bid vectors, i.e., those
with h larger than the profit from the optimal single-price
sale that sells at least two items (this quantity is denoted

F(2) in [5]). For this case, the bounds obtained in [5] are
better because they prove the auction’s performance to be
a constant fraction of F (2) without any additive loss term.
We can view these two types of analysis as the difference
between solving a worst-case problem and a promise prob-
lem. Given the promise that the optimal single price sale
achieves a large profit in comparison to h, our auction gets
a constant fraction of optimal; otherwise, it may not.

In this section, we show that such a promise is necessary
for obtaining a deterministic auction that performs well in
the worst case. In particular, we show that there is no de-
terministic auction that obtains a profit that is a constant
fraction of F (2) on all inputs.

Lemma 3. No deterministic truthful auction obtains a con-
stant fraction of F (2) on all bid vectors.

Proof. We will show this by contradiction. Assume that
we are given a deterministic auction BIf , specified by bid-

independent function f , that obtains a profit of F (2)/β on
all inputs.

Let b = (1, . . . , 1) be the all-ones bid vector. Assume,
without loss of generality, that f(b−1), the price offered
the first bidder, is 1. Now, for any α > β and i ∈ I =

{1, 2, . . . ,
l

n+1
n/α−1

m

}, consider b(i) as the all-ones bid vector

except for b1 = nαi. Let Si be the set of other bidders (not
including bidder 1) that are offered price 1 when the input

to the auction is b(i), i.e., Si = {j > 1 : f(b
(i)
−j) = 1}.

Fact 1: |Si| ≥ n/α − 1.
This follows directly from the fact that otherwise BIf ’s

profit would be at most F (2)/α which would contradict our
assumption.

Fact 2:
T

i∈I Si 6= ∅.
Assuming the contrary, let the intersection of the Sis be

empty. Then the union of the Sis is of size

X

i
|Si| ≥ |I| (n/α − 1)

≥ n + 1 > n.

However, we know that all the Sis are subsets of {1, 2, . . . , n}.
This implies that

˛

˛

S

i Si

˛

˛ ≤ n, leading to a contradiction.
From Fact 2, there exists i, j, and k with i < j and

k ∈ Si ∩ Sj . Pick some h � nn (a number bigger than any
of the nαis) and let p1 = f(b′

−1), where b′ is the all-ones
input except for b′k = h.

Case 1: p1 ≤ nαi. Then on the input that is all ones
except for b1 = nαj and bk = h, F(2) = 2nαj , but auction
profit is at most nαi + n < 2nαj/β.

Case 2: p1 > nαi. Then on the input that is all ones
except for b1 = nαi and bk = h, F(2) = 2nαi, but the
auction profit is at most n and is therefore not F (2)/β.

4.4 Limited Supply
While we presented these results in terms of the unlim-

ited supply auction problem, they also apply to the limited
supply auction. Note that the number of items sold by the
derandomized auction is no more than the expected num-
ber of items sold by the randomized auction. Thus, if the
randomized auction never oversells, neither does its deran-
domized equivalent.

5. A POLYNOMIAL-TIME DETERMINIS-
TIC AUCTION

In this section, we describe a competitive deterministic
asymmetric auction, the outcome of which can be easily
computed. There are three key ingredients in this auction,
(a) a truthful profit extractor, (b) a pair of consensus es-
timate functions, and (c) a deterministic coin-flipping al-
gorithm. The first two of these were used previously by
Goldberg and Hartline along with a random coin flip to get
an approximately optimal auction [6]. The main result of
this section is to show how to derandomize this coin flip to
obtain a deterministic auction with roughly the same perfor-
mance guarantees. First we describe and solve another hat
problem which is related to the problem of derandomizing
a coin flip, then we review profit extraction and consensus
estimates, and finally we combine these techniques to give
the first polynomial-time computable deterministic auction
that is approximately optimal.

5.1 A Deterministic Coin Flip
Consider the following continuous hat problem where the

each of the hats is colored a shade of red. We would like
each of the players to simulate a coin flip with the collective
property that, for any particular shade of red, at least half
the players with darker hats choose heads and at least half
choose tails (rounding down). We assume, without loss of
generality, that the hats are all distinct shades; if not, then
we can use an arbitrary ordering to break ties (for example
by choosing unique identifiers for each player).

Note that we can reduce the 2-color hat-guessing problem
to the problem of deterministic coin flipping as follows. Run
the algorithm with the two colors – light red and dark red.
Interpret a heads coin as “light red” and a tails coin as “dark
red”. The resulting algorithm, modulo rounding, guesses
half of the light reds and half of the dark red hats correctly.

The algorithm we are about to propose solves this deter-
ministic coin flip problem. In fact, our solution satisfies the
following stronger property: the coins the players determine
are actually perfectly alternating with the shade of the hat
color. First, some definitions.

Definition 5. Given a vector of n hat shades, c, the sign
of c (shorthand for “the sign of the permutation of the or-
dering of hats”) is the parity of the number of transpositions
of adjacent hats it takes to sort c, notated sgn(c).1

Definition 6. Given a vector of n hat shades, c, the
rank of i, denoted rank(c, i), is the number hats in c that
are darker than ci.

We now propose the following deterministic coin flip al-
gorithm, φ: Given c−i as the shades of the hats that player i

1While the number of transpositions performed in sorting c
is not unique, the parity of the number of transpositions is.



sees, player i computes her coin, φ(c−i), by imagining that
her own hat is the darkest shade, ∞, and computing the
sign of this imagined vector of hat colors, (c−i,∞), as her
coin flip.

Lemma 4. The deterministic coin flip algorithm, φ, is
perfectly alternating with the shades of the hats’ colors.

Proof. This result is implied by the fact that

φ(c−i) ≡ sgn(c) + rank(c, i) (mod 2),

which is evident because one way to sort (c−i,∞) would be
to first sort c and then replace hat i with ∞ which would
require rank(c, i) additional transpositions to move the ∞
to the front of the array.

In this solution to the deterministic coin-flipping prob-
lem, each player can compute their own coin by simply ex-
ecuting φ; however, no player can compute the coin of any
other player. Clearly, each player can compute her coin in
O(n log n) time; furthermore, as is evident from the above
proof, the coins of all the players can be computed in total
of O(n log n) time.

5.2 Profit Extraction
We briefly review the truthful profit extraction mecha-

nism. This mechanism is a special case of a general cost-
sharing schema due to Moulin and Shenker [11].

The goal of profit extraction is, given bids b, to extract a
target value R of profit from some subset of the bidders.

ProfitExtractR: Given bids b, find the largest k
such that the highest k bidders can equally share
the cost R. Charge each of these bidders R/k.
If no subset of bidders can cover the cost, the
mechanism has no winners.

Important properties of this auction are as follows:

• ProfitExtractR is truthful.

• If R ≤ OPT(b), ProfitExtractR(b) = R; otherwise it
has no winners and no revenue.

Since ProfitExtractR is truthful, we let peR be its bid-
independent function.

5.3 Consensus Estimators
A pair of consensus estimators is a pair of functions, reven

and rodd, having the following properties:

1. (consensus) For any V , either reven or rodd is a con-
sensus. A function r is a consensus for V if for all
v ∈ [V/2, V ], r(v) = r(V ).

2. (estimate) For any V and r ∈ {reven, rodd} that is a
consensus on V , r(V ) ∈ [V/2, V ].

It is easy to see that the following functions form such a
pair of consensus estimators [6].

reven(v) = 2v rounded down to the nearest even power of two.

rodd(v) = 2v rounded down to the nearest odd power of two.

We will apply these consensus estimators to the values
taken by OPT(b−i), which denotes the optimal single price
profit from all the bidders except for bidder i, in order to
obtain a consensus on an approximate value for OPT.

5.4 An Efficient Auction
In this section, we describe an auction, DCORE, that is a

derandomization of a variant of the consensus revenue esti-
mate (CORE) auction of [6]. This auction is built from the
three components discussed above – the deterministic coin
flip, the profit extractor, and our pair of consensus estimate
functions.

Definition 7. DCORE is the bid-independent auction im-
plemented by the following function, f :

f(b−i) = peRi
(b−i),

with Ri = rφ(b
−i)(OPT(b−i)).

DCORE is bid-independent and therefore truthful. We
now show that DCORE is approximately optimal.

Theorem 3. The profit of DCORE is at least OPT /4 −
h.

Proof. If the optimal single price sale has exactly one
winner, then the optimal revenue is h and approximating
it within an additive h is trivial. Otherwise, let OPT =
OPT(b) be the revenue from the optimal single price sale.
Then, for every i, we have OPT /2 ≤ OPT(b−i) ≤ OPT.
Since rodd and reven are a pair of consensus estimates, one of
them is a consensus on OPT. Suppose, without loss of gen-
erality, that it is reven. Now consider the following thought
experiment. Suppose we had set Ri = reven(OPT(b−i)) for
all i. Then the profit of our auction would be reven(OPT)
because reven is a consensus at reven(OPT) ≤ OPT and
therefore the profit extraction technique will extract it. Let
the price charged to the k winning bidders in the profit ex-
traction technique be p, generating a total profit of pk ∈
[OPT /2, OPT]. In reality, by the deterministic coin-flipping
procedure, at least k/2− 1 of these k bidders had φ(b−i) =
even and thus these bidders all pay p, exactly as they would
have in the thought experiment. The total profit thus ac-
counted for is pk/2 − p ≥ OPT /4 − h, which proves the
theorem.

6. CONCLUSIONS
We have shown the existence of deterministic auctions

that are approximately optimal in the worst case. By neces-
sity, these auctions are asymmetric. This gives an affirma-
tive answer to the question left open in [8]. The construction
we developed uses a guessing auction as an intermediate and
suffers a performance loss because of it. It would be nice to
show a more direct derandomization; this is made difficult
due to the fact that the natural analogy to the flow problem
that takes into account the fact that the auction obtains
profit from all bidders above the offered price, is not a to-
tally unimodular linear program and thus is not guaranteed
to have an integral optimal solution.

The flow-based technique allows derandomization of any
auction. However, it takes exponential time. We use a dif-
ferent polynomial-time technique to derandomize the CORE
auction. The existence of a general derandomization tech-
nique with a polynomial runtime remains open.
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