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Course Logistics

« Website: https://stellar.mit.edu/S/course/6/sp18/6.883/index.html

« Mailing list: 6883-all@lists.csail.mit.edu [Make sure to fill out the form]

* Prerequisites: algorithms (6.046); probability (6.042/6.041/6.008); ML (6.867)
« Format: Five modules (five lectures each)

1. Optimization and Generalization in Deep Learning
2. (Deep) Generative Models

3. Robust/Secure Machine Learning

4. Deep Reinforcement Learning

5. Societal Impact of Machine Learning

« Scribe notes [45%)]
« Crucial aspect: Class discussion [10%)]
» (lass projects: Explores questions raised in discussion (experiments and
theory): done in 2-3 person student teams [45%)]
[We will run a team matching process soon|



What will this class be about?

&he New York Eimes Magazine

a Great AL Awakening

2016: The Year That Deep Learning Took Over the Internet

Goal: Build a principled and crisp overview of what deep learning can
and cannot do, and what we do and do not know about it

Science = theoretical models + empirical evaluation



What this class is NOT?

* Intro to machine learning/deep learning/Tensorflow/PyTorch/...
— 6.867, 6.5198
— http://www.coursera.org/learn/machine-learning
Nttp://www.fast.ai/
nttp://neuralnetworksanddeeplearning.com/ (Book)
nttp://www.deeplearningbook.org/ (Book™)

U

A survey of state of the art deep learning techniques
— Impossible (10s of papers uploaded every day)
* Tips on how to make your Al/deep learning startup cooler

Key skill we want you to develop:
“Critical thinking” about deep learning (and ML/AI, in general)



Humble beginnings e Ca(miazwz)
» Perceptron [Rosenblatt ‘58] . / \

input layer -

» Criticism of Perceptrons (XOR affair) [Minsky Papert ‘69]
— Effectively causes a “deep learning winter”




(Early) Spring =

. Back—propagation [Rumelhart et al. '86, LeCun ‘85, Parker ‘85]

Backward E

* Recurrent Neural Networks/Long Short-Term
Memory (LSTM) [Hochreiter Schmidhuber ‘97]
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Summer

« 2006: First big success: speech recognition

« 2012: Breakthrough in computer vision: AlexNet [Krizhevsky et al. ‘12]




What enabled this success?

« Better architectures (e.g., RelLUs) and regularization
techniques (e.g. Dropout)

« Sufficiently large datasets IMAGE




Geist of deep learning
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Module I: Optimization and Generalization
N Deep Learning



Supervised Machine Learning
£

f'= concept to learn
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f'= concept to learn

Training: Recover (approx. of) f
by finding parameters 6
s.t. f(©) fits the training data

f(0) = classifier (parametrized by 0)

¥ Choice of (the family) f(-) is crucial

Too simple — underfitting
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¥ Choice of (the family) f(-) is crucial
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Supervised Machine Learning

f'= concept to learn

- N + Training: Recover (approx. of) f
- . by finding parameters 6’
_ s.t. f(©) fits the training data

: f(0) = classifier (parametrized by 06)

Choice of (the family) f(-) is crucial

_________________ Too simple — underfitting

Too flexible — overfitting

"Classic” ML developed a rich and successful theory to
understand this phenomenon
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Optimization in Deep Learning

Our true goal: To minimize (wrt 6) the population risk

E(x,y)~D [ IOSS(f(e’X)ay) ]

What we actually do: Minimize (wrt 0) the empirical risk

)i loss(f(6,x;),y;)

where {(x,y))}; are the training data points

— |n case of neural networks, empirical risk is a continuous and
(mostly) differentiable function

— Can use gradient descent method
(back-propagation) to solve it!




Optimization in Deep Learning

ming ) loss(f(B,x,),y)

— Issue 1: There is a lot of terms in this sum
— Use stochastic gradient descent (SGD) instead of grad. descent
(SGD = the workhorse of deep learning)

— Issue 2: This problem is very non-convex ,.
— Still, we seem to reliably* converge to good solutions. Why?

In fact: Stochasticity of SGD seems to be a “feature”, not a
deficiency. (Hypothesis: “Implicit regularization.”)



Module II: Deep Generative Models



Unsupervised Machine Learning

« Goal: Learn from unlabeled data by understanding its structure

Popular approach: Try to fit the data | = = |
to some generative model RO

« Example: Fit the distribution to a mixture of Gaussians
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Deep Generative Models

* Neural networks constitute (parametric) models too!

» Variational Autoencoders (VAES) [Kingma Welling *13, Rezende et al. ’14]

 (Generative Adversarial Networks (GANS)

Generative Adversarial

|(Goodfellow et al. "14] ~ Network
tttttt O
P P :\H{TF E
—HEB—{ G }GT” eeeeee \ 4
= ‘ %ﬂeTHETanng ,,,,,,
Questions:

« What are/should be the guarantees these models aim to satisfy?
* Do existing constructions work”? Can they ever?
 How would we measure their success”



Module lll: Robust/Secure ML



Recent Progress in ML

30%
25%
20%
S 15%

10%

5 C:"::

0[')":;
NEC-UIUC XRCE AlexNet ZFNet GooglLeNet ResNet SENet
(2010) (2011) (2012) (2013) (2014) (2015) (2017)

Have we really achieved human-level performance?



Adversarial Examples

u +.007 x - H Too fragile?

(Kiﬂn(v' Jlol x, yl :'

“panda”™ “nematode™ “gibbon™

[Christian Szegedy, Wojciech Zaremba, llya Sutskever, Joan
Bruna, Dumitru Erhan, lan Goodfellow, Rob Fergus, 2014]

] [Athalye, Engstrom, llyas, Kwok, 2017]
Too contrived?

Translations + rotations
(shifts by <10% pixels, <30° rotations)

CIFAR10: 93% — 8% accuracy
ImageNet: 76% — 31% accuracy

[Engstrom, Tsipras, Schmidt, M., 2017]
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Why Does It Matter?

® Security (currently, everything is “broken”) [Sarif ‘Bhgavam

Bauer, Reiter, 2016]
® Safety (“benign” noise can be a problem too) s

® Understanding “failure modes” of
current vision models
(they are not as “human-like” as we might have expected)

Crucial question:
Can you really rely on your (deep) ML model?

 GOOGLE SELFDRIVING CAR
CRASHES INTO A BUS




What Do We Do Now?

®* Problem: Adversarial examples are not at odds with our
current notion of generalization

®* Time to re-think what we mean by generalization?

®* There is a number of other problems/questions, such as
data poisoning, model theft,...

® Again: This is not only about security/safety but also about
understanding how ML/deep learning works (and fails!)



Module [V: (Deep) Reinforcement Learning



World

Observation

Reward Action

ED  What Iif the Agent was
a (deep) neural network”?

Questions:

* How to train such agent (exploration vs. exploitation)?

* What are the fundamental limits on efficiency of this approach?

* How to ensure that the agent does what we really intend it to do?



Module V: Societal Impacts of ML



Machine learning is entering (and taking
control of) every aspects of our life

®* Should we be worried?

® Potential concerns:

— Interpretability (Can we understand ML models “reasoning”?)
— Reliability (Can | trust the prediction of an ML model?)

— Fairness (Is the ML model behaving in a “fair” way?)

— Privacy (Is the ML model protecting our privacy?)

— Al Safety (If we build a super-human Al, will it destroy us?)
— (Your suggestion here)
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[ earning
Theory

,

what, when, how do
deep NNs learn?




e.g. Classification

* Basic learning task: design function h: X’ — C, mapping
objects from some set X to their class label in C

* e.g. X:images of cats and dogs, C = {0,1}
* How to do this?

1 .identify “expressive enough” family of functions H

2.use examples to choose some “good” h € H
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e.g. Classification

Basic learning task: design function h: X — C, mapping objects from some set X to their class
label in C

e.g. X: images of cats and dogs, C = {0,1}
How to do this?
1. identify “expressive enough” family of functions H
®* e.g. H all convolutional nets of certain width and depth
2. use examples to choose some “good” h € H
®* each example is a pair (x,y) of an image and its label

* output empirical risk minimizer:

h € argmax Z Lhe=yi

examples (xi,¥;)



e.g. Classification

identify “expressive enough” family of functions H
®* e.g. H all convolutional nets of certain width and depth

use examples to choose some “good” h € H

* output empirical risk minimizer h € argmax 2 (xpypes Lnep=y;

hope: Ecx y)~r|1acx)=y] 2 max Ecxv)~r|1ha=v] — €

® F:true distribution of (image, class label) pairs to be encountered in the future
* presumably training set of examples were drawn from F

Two questions:

i ?
1. HOW C|OS€ |S ri{le%%( IE(X,Y)~F[1h(X)=Y] tO -Eunlngsati‘(icted E(X,Y)~F[1h(X)=Y] H
2. How fast does € decay in the number of examples N? — Q
RichH = 1 good, 2 bad OF 1

Poor H = 1 bad, 2 maybe good
For 1, use a rich enough family
For 2, bound the “dimensionality” of H , get generalization bounds



(Generalization Bounds

How to prove?

* Many ways, central topic in ML theory
®* Here: Vapnik—Chervonenkis (VC) theory\

Consider a class of Boolean functions H = {h: X — {0,1}}
Def: VC dimension of H = max #points H can shatter

* points xy, ..., x; € X are shattered by # iff v 0/1 patterns ¢ € {0,1}* 3 a function h € % whose
values on the points x4, ..., x; equal o, i.e. h(x;) = o0}, Vi

* e.g.say H = {halfplanes in R?}

* VCH)=3 ¢ W

xo

O
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(Generalization Bounds

How to prove?

° Many ways, central topic in ML theory

* Here: Vapnik—Chervonenkis (VC) theory

Consider a class of Boolean functions H = {h: X — {0,1}}
Def: \/C dimension of H = max #points H can

* p(()inits X1, ., X, € X are by H iff v 0/1 patterns ¢ € {0,1}* 3 a function h € H whose values on the points x4, ..., x;, equal o, i.e.
h Xi) = O'i,Vi

. e.g. say H = {halfplanes in R?}
©  VCH)=3

VC Theorem: Suppose H is a class of Boolean functions and VC-dimension d. Then given:
N = (d-In(1/€) +In(1/6))
= =

samples (X1,Y;), ..., Xy, Yy) ~ F we have that, w/ prob > 1 — 6,

1
Vh € H: [E(X,Y)~F[1h(X)=Y] - NZ Thxp=y;| <€
i




(Generalization Bounds

How to prove?

Many ways, central topic in ML theory

Here: Vapnik—Chervonenkis (VC) theory

Similar theorems for real-valued functions via Rademacher complexity,
pseudo-dimension, ...

also for different access to examples

Well-developed theory

* Disconnect with practical performance of Deep NNs:

VC/Rademacher complexity of Deep NNs too large compared to sample size:
is there overfitting?
Finding ERM is sort of hopeless; maybe SGD finds local optimum:

* maybe a good thing?
* Is there an optimality vs overfitting tradeoff?
* Is stochasticity in GD also a good thing?

Role of optimization method, max pooling, dropout?
Training set: attacks because training set non-representative or because of
overfitting?



Statistics




(Generative Adversarial
Networks

Algorithms mapping white noise to high-dimensional objects with structure

AR

z ~ N(0,I190x100)

If you want, what human imagination does (presumably)

Trained using samples (e.g. faces) from true high-dimensional distribution with
structure (e.g. natural face images)

Statistical Question: after GAN has been trained, did it really learn the underlying
structured high-dimensional distribution?

Or did it “memorize” the training set?



A Hypothesis [esting
Problem

Sample access to F': distribution of true faces

Sample + white-box access to Q: GAN, and its output
Goal: distinguish d(F,Q) < &, vs d(F,0Q) = &,

Really well-studied problem in Statistics, Information
Theory, TCS

Trouble is:
* what is the right distance d to use?

® [ Q: high-dimensional (e.g. face image distributions)
* Statistical tests commonly require exponentially many samples in the
dimension, unless one has deeper understanding of structure in both F and Q
®* e.g.evenif Q is trivial (product measure), and d is total variation distance,
answering above question requires exponentially many samples in the
dimension.

What is the right statistical lens via which to approach
this question?



Game
Theory




Think F: true high-dimensional distribution (e.g. faces) in R"
Q: output of a Deep NN G, of certain architecture, with
parameters 6

* l.e. Gy(z), where z ~ N(O, )

Suppose interested in Wasserstein distance:

W(F,Q) = sup (Ex~r[DCO] — Ex~o[D(X)])

D:R">R, 1-Lipschitz
In a perfect world, Gy should minimize:

inf sup (Ex-r[DX)] = E,-non[D(Go(2))])

0  D:RSR,
1—-Lipschitz
In practice, hard to compute sup over all Lipschitz functions,

so only take sup over all Deep NNs D, of certain archltecture
w/ parameters w:

1nfsup(IEXNF Dy, (X)] — z~N(O I)[ w(Go (Z))])

In other words set up a game between a Generator deep NN,
and a Discriminator deep NN



* A game between a Generator deep NN, w/ parameters 8 and a Discriminator deep
NN, w/ parameters w:

inf Sld,p([EvaF[DW(X )= Ez<non[Pw (G (2))])

T \-:Sf:nt/{ \l-v”"\ldw"mhl’

sam
/ O real data
%) e ey

1 g Discriminator 1

| Network

Generator D(x) 0
Random Input Network 8
G(2) generated
S s | data

* Training: generator and discriminator run some variant of gradient descent each to
update their parameters 8, w; expectations are approximated by sample averages



A game between a Generator deep NN, w/ parameters 6
and a Discriminator deep NN, w/ parameters w:

i sup(Ex-r (D (0] - alDw(Gote))]) 11

ok F

gam

Training: generator and discriminator run some variant of
gradient descent each to update their parameters 6, w;

ot o otod |
Will gradient descent converge?

If yes, to what?

e-averages



The Min-Max heorem

[von Neumann 1928]: If X c R",Y ¢ R™ are compact and
convex, and f: XXY — R is convex-concave (i.e. f(x,y) is

convex in x for all y and is concave in y for all x), then

Tip Tk f(xy) = maxmip f(x,)
Min-max optimal (x, y) is essentially unique (unique if f is strictly
convex-concave, 0.w. a convex set of solutions)
von Neumann: "As far as | can see, there could be no theory of games
... without that theorem ... | thought there was nothing worth publishing
until the Minimax Theorem was proved*
Equivalent to strong LP duality
[Blackwell,...]: A host of uncoupled update-rules (dynamics) applied by
the min and the max players “converge” to min-max equilibrium
no-regret learning dynamics: e.g. Multiplicative-weights-update, follow-
the-reqularized-leader, follow-the-perturbed-leader, etc.
Follow-the-regularized-leader with £,-regularization = gradient descent



Challenges

* “Convergence” of online learning to min-max solutions for convex-

concave functions f (x,y) only happens in an average sense
* E.g. gradient descent for f(x,y) =x -y

¢ start

* Objective function in Wasserstein GAN training isn’t convex-concave
* Questions:

* Stability: how to converge to local saddles?
Generalization: Effects of approximation of expectation with sample averages?



(Game
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- VN rung on the ladder to proving general learning systems can work”.
By LIAT CLARK "It’s the first time that anyone has built a single general learning



Deep Mino

Stated Mission: Solve intelligence, use it to make the
world a better place.

We’ll take a look at the guts of AlphaGo, and AlphaGo
Zero

Connection to Reinforcement Learning, Policy and Value
lteration, and the Min-Max Theorem



0.883 Statement of Purpose:

- to entice the practically-minded into theory as a

means to understand and improve practice
- to entice the theoretically-minded into the deep
guestions motivated by practical experience



Outlook

Really small sample regime: health data
Robust Statistics

Causality + Counterfactuals

Privacy concerns

Fairness

Ethical Considerations

Philosophical ramifications of unreasonable practical success
of Deep Learning



