
6.883: Science of Deep Learning:
Bridging Theory and Practice

Costis Daskalakis

Aleksander Mądry

Course Logistics
• Website: https://stellar.mit.edu/S/course/6/sp18/6.883/index.html
• Mailing list: 6883-all@lists.csail.mit.edu [Make sure to fill out the form]
• Prerequisites: algorithms (6.046); probability (6.042/6.041/6.008); ML (6.867)
• Format: Five modules (five lectures each)

• Scribe notes [45%]
• Crucial aspect: Class discussion [10%]
• Class projects: Explores questions raised in discussion (experiments and

theory); done in 2-3 person student teams [45%]
[We will run a team matching process soon]

1. Optimization and Generalization in Deep Learning
2. (Deep) Generative Models
3. Robust/Secure Machine Learning
4. Deep Reinforcement Learning
5. Societal Impact of Machine Learning

What will this class be about?

Goal: Build a principled and crisp overview of what deep learning can

and cannot do, and what we do and do not know about it

Science = theoretical models + empirical evaluation

What this class is NOT?
• Intro to machine learning/deep learning/Tensorflow/PyTorch/…
→ 6.867, 6.S198
→ http://www.coursera.org/learn/machine-learning
→ http://www.fast.ai/
→ http://neuralnetworksanddeeplearning.com/ (Book)
→ http://www.deeplearningbook.org/ (Book*)

A survey of state of the art deep learning techniques
→ Impossible (10s of papers uploaded every day)

• Tips on how to make your AI/deep learning startup cooler

Key skill we want you to develop:
“Critical thinking” about deep learning (and ML/AI, in general)

Humble beginnings
• Perceptron [Rosenblatt ‘58]

• Criticism of Perceptrons (XOR affair) [Minsky Papert ‘69]

→ Effectively causes a “deep learning winter”

(Early) Spring
• Back-propagation [Rumelhart et al. ’86, LeCun ‘85, Parker ‘85]

• Convolutional layers [LeCun et al. ‘90]

• Recurrent Neural Networks/Long Short-Term
Memory (LSTM) [Hochreiter Schmidhuber ‘97]

Summer
• 2006: First big success: speech recognition

• 2012: Breakthrough in computer vision: AlexNet [Krizhevsky et al. ‘12]

• 2015: Deep learning-based vision models outperform humans

What enabled this success?
• Better architectures (e.g., ReLUs) and regularization

techniques (e.g. Dropout)

• Sufficiently large datasets

• Enough computational power

Geist of deep learning

Module I: Optimization and Generalization
in Deep Learning

Supervised Machine Learning
f*

D+

D-

f*= concept to learn

Supervised Machine Learning
f*

D-

D+
f*= concept to learn

�

Supervised Machine Learning

Training: Recover (approx. of) f*
by finding parameters θ*

s.t. f(θ*) fits the training data

f(θ) = classifier (parametrized by θ)

f*= concept to learn

Choice of (the family) f(·) is crucial

Too simple → underfitting

Supervised Machine Learning

Training: Recover (approx. of) f*
by finding parameters θ*

s.t. f(θ*) fits the training data

f(θ) = classifier (parametrized by θ)

f*= concept to learn

Choice of (the family) f(·) is crucial

Too simple → underfitting
Too flexible → overfitting

Supervised Machine Learning

Training: Recover (approx. of) f*
by finding parameters θ*

s.t. f(θ*) fits the training data

f(θ) = classifier (parametrized by θ)

f*= concept to learn

Choice of (the family) f(·) is crucial

Too simple → underfitting
Too flexible → overfitting

”Classic” ML developed a rich and successful theory to
understand this phenomenon

Generalization in Deep Learning

Deep neural networks are very
expressive, why don’t they overfit?

Optimization in Deep Learning
Our true goal: To minimize (wrt θ) the population risk

E(x,y)~D [loss(f(θ,x),y)]

What we actually do: Minimize (wrt θ) the empirical risk

∑i loss(f(θ,xi),yi)
where {(xi,yi)}i are the training data points

→ In case of neural networks, empirical risk is a continuous and
(mostly) differentiable function

→ Can use gradient descent method
(back-propagation) to solve it!

Optimization in Deep Learning

minθ ∑i loss(f(θ,xi),yi)

→ Issue 1: There is a lot of terms in this sum
→ Use stochastic gradient descent (SGD) instead of grad. descent

(SGD = the workhorse of deep learning)

→ Issue 2: This problem is very non-convex
→ Still, we seem to reliably* converge to good solutions. Why?

In fact: Stochasticity of SGD seems to be a “feature”, not a
deficiency. (Hypothesis: “Implicit regularization.”)

Module II: Deep Generative Models

Unsupervised Machine Learning

• Goal: Learn from unlabeled data by understanding its structure

Popular approach: Try to fit the data

to some generative model

• Example: Fit the distribution to a mixture of Gaussians

Deep Generative Models
• Neural networks constitute (parametric) models too!

• Variational Autoencoders (VAEs) [Kingma Welling ’13, Rezende et al. ’14]

• Generative Adversarial Networks (GANs)
[Goodfellow et al. ’14]

Questions:
• What are/should be the guarantees these models aim to satisfy?
• Do existing constructions work? Can they ever?
• How would we measure their success?

Module III: Robust/Secure ML

Recent Progress in ML

Have we really achieved human-level performance?

Adversarial Examples

[Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus, 2014]

[Athalye, Engstrom, Ilyas, Kwok, 2017]

Translations + rotations

(shifts by <10% pixels, <30° rotations)

CIFAR10: 93% → 8% accuracy

ImageNet: 76% → 31% accuracy

[Engstrom, Tsipras, Schmidt, M., 2017]

Too fragile?

Too contrived?

Why Does It Matter?

• Security (currently, everything is “broken”)

• Safety (“benign” noise can be a problem too)

• Understanding “failure modes” of
current vision models
(they are not as “human-like” as we might have expected)

[Sharif, Bhagavatula,

Bauer, Reiter, 2016]

Crucial question:
Can you really rely on your (deep) ML model?

What Do We Do Now?

• Problem: Adversarial examples are not at odds with our
current notion of generalization

• Time to re-think what we mean by generalization?

• There is a number of other problems/questions, such as
data poisoning, model theft,…

• Again: This is not only about security/safety but also about
understanding how ML/deep learning works (and fails!)

Module IV: (Deep) Reinforcement Learning

Reinforcement Learning (RL)

• What if the Agent was
a (deep) neural network?

Questions:
• How to train such agent (exploration vs. exploitation)?
• What are the fundamental limits on efficiency of this approach?
• How to ensure that the agent does what we really intend it to do?

Module V: Societal Impacts of ML

Machine learning is entering (and taking
control of) every aspects of our life

• Should we be worried?

• Potential concerns:

→ Interpretability (Can we understand ML models “reasoning”?)

→ Reliability (Can I trust the prediction of an ML model?)

→ Fairness (Is the ML model behaving in a “fair” way?)

→ Privacy (Is the ML model protecting our privacy?)

→ AI Safety (If we build a super-human AI, will it destroy us?)

→ (Your suggestion here)

6.883: Science of Deep Learning:
Bridging Theory and Practice

Costis Daskalakis

Aleksander Mądry

what, when, how do
deep NNs learn?

Learning
Theory

e.g. Classification
• Basic learning task: design function ℎ:# → %, mapping

objects from some set # to their class label in %

• e.g. #: images of cats and dogs, % = {0,1}

• How to do this?

1.identify “expressive enough” family of functions ℋ

2.use examples to choose some “good” ℎ ∈ ℋ

e.g. Classification
• Basic learning task: design function ℎ:# → %, mapping objects from some set # to their class

label in %

• e.g. #: images of cats and dogs, % = {0,1}

• How to do this?

1. identify “expressive enough” family of functions ℋ

• e.g. ℋ all convolutional nets of certain width and depth

2. use examples to choose some “good” ℎ ∈ ℋ

• each example is a pair (/, 0) of an image and its label

• output empirical risk minimizer:
23 ∈ argmax

9∈ℋ
:

;<=>?@;A (<B,CB)
19 <B DCB

e.g. Classification
• identify “expressive enough” family of functions ℋ

• e.g. ℋ all convolutional nets of certain width and depth

• use examples to choose some “good” ℎ ∈ ℋ

• output empirical risk minimizer $% ∈ argmax
+∈ℋ

∑ -.,0. ∈ℰ 1+ -. 30.

• hope: 4 5,6 ∼8 19+ 5 36 ≥ max
+∈ℋ

4 5,6 ∼8 1+ 5 36 − <

• >: true distribution of (image, class label) pairs to be encountered in the future
• presumably training set of examples were drawn from >

• Two questions:

1. How close is max
+∈ℋ

4 5,6 ∼8 1+ 5 36 to max
+:@ABCDEBFGECH

4 5,6 ∼8 1+ 5 36 ?
2. How fast does < decay in the number of examples I?

• Rich ℋ ⇒ 1 good, 2 bad
• Poor ℋ ⇒ 1 bad, 2 maybe good
• For 1, use a rich enough family ℋ
• For 2, bound the “dimensionality” of ℋ, get generalization bounds

Generalization Bounds
• How to prove?

• Many ways, central topic in ML theory
• Here: Vapnik–Chervonenkis (VC) theory\

• Consider a class of Boolean functions ℋ = ℎ:% → {0,1}

• Def: VC dimension of ℋ = max #points ℋ can shatter

• points ,-, … , ,/ ∈ % are shattered by ℋ iff ∀ 0/1 patterns 2 ∈ 0,1 / ∃ a function ℎ ∈ ℋ whose
values on the points ,-, … , ,/ equal σ, i.e. ℎ ,5 = 25, ∀6• e.g. say ℋ = halfplanes in ℝA

• VC(ℋ)= 3

Generalization Bounds
• How to prove?

• Many ways, central topic in ML theory

• Here: Vapnik–Chervonenkis (VC) theory

• Consider a class of Boolean functions ℋ = ℎ:% → {0,1}

• Def: VC dimension of ℋ = max #points ℋ can shatter

• points ,-, … , ,/ ∈ % are shattered by ℋ iff ∀ 0/1 patterns 2 ∈ 0,1 / ∃ a function ℎ ∈ ℋ whose values on the points ,-, … , ,/ equal σ, i.e.
ℎ ,5 = 25, ∀6

• e.g. say ℋ = halfplanes in ℝA

• VC(ℋ)= 3

• VC Theorem: Suppose ℋ is a class of Boolean functions and VC-dimension B. Then given:
C ≍

B ⋅ ln 1/G + ln 1/I

GA

samples (K-, L-), … , (KN, LN) ∼ P we have that, w/ prob ≥ 1 − I,

∀ℎ ∈ ℋ: S(T,U)∼V 1W T XU −
1

C
Y

5

1W TZ XUZ
≤ G

Generalization Bounds
• How to prove?
• Many ways, central topic in ML theory
• Here: Vapnik–Chervonenkis (VC) theory
• Similar theorems for real-valued functions via Rademacher complexity,

pseudo-dimension, …
• also for different access to examples
• Well-developed theory

• Disconnect with practical performance of Deep NNs:
• VC/Rademacher complexity of Deep NNs too large compared to sample size:

is there overfitting?
• Finding ERM is sort of hopeless; maybe SGD finds local optimum:

• maybe a good thing?
• Is there an optimality vs overfitting tradeoff?
• Is stochasticity in GD also a good thing?

• Role of optimization method, max pooling, dropout?
• Training set: attacks because training set non-representative or because of

overfitting?

Statistics

Generative Adversarial
Networks

• Algorithms mapping white noise to high-dimensional objects with structure

• If you want, what human imagination does (presumably)

• Trained using samples (e.g. faces) from true high-dimensional distribution with
structure (e.g. natural face images)

• Statistical Question: after GAN has been trained, did it really learn the underlying
structured high-dimensional distribution?

• Or did it “memorize” the training set?

face GAN! ∼ #(0, '())×()))

A Hypothesis Testing
Problem

• Sample access to !: distribution of true faces
• Sample + white-box access to #: GAN, and its output
• Goal: distinguish $!, # ≤ '(vs $!, # ≥ '*• Really well-studied problem in Statistics, Information

Theory, TCS
• Trouble is:
• what is the right distance $ to use? • !, #: high-dimensional (e.g. face image distributions)

• Statistical tests commonly require exponentially many samples in the
dimension, unless one has deeper understanding of structure in both ! and #

• e.g. even if # is trivial (product measure), and $ is total variation distance,
answering above question requires exponentially many samples in the
dimension.• What is the right statistical lens via which to approach

this question?

Game
Theory

• Think !: true high-dimensional distribution (e.g. faces) in ℝ$
• &: output of a Deep NN ', of certain architecture, with

parameters (• i.e. ')(+), where + ∼ .(0, 1)• Suppose interested in Wasserstein distance:
2 !,& = sup

7:ℝ8→ℝ, :;<=>?@A=BC
DE∼F G H − DE∼J G H

• In a perfect world, ') should minimize:
inf
)

sup
7:ℝ8→ℝ,

:;<=>?@A=BC

DE∼F G H − DC∼N(O,P) G ')(+)

• In practice, hard to compute sup over all Lipschitz functions,
so only take sup over all Deep NNs G, of certain architecture,
w/ parameters Q:

inf
)
sup
R

DE∼F GR H − DC∼N(O,P) GR ')(+)
• In other words, set up a game between a Generator deep NN,

and a Discriminator deep NN

GAN Training
face GAN+ ∼ .(0, 1)

• A game between a Generator deep NN, w/ parameters ! and a Discriminator deep
NN, w/ parameters ":

inf' sup
+

,-∼/ 0+ 1 − ,3∼4(6,8) 0+ :'(;)

• Training: generator and discriminator run some variant of gradient descent each to
update their parameters !,"; expectations are approximated by sample averages

GAN Training
face GAN; ∼ <(0, >)

• A game between a Generator deep NN, w/ parameters !
and a Discriminator deep NN, w/ parameters ":

inf' sup
+

,-∼/ 0+ 1 − ,3∼4(6,8) 0+ :'(;)

• Training: generator and discriminator run some variant of
gradient descent each to update their parameters !,";
expectations are approximated by sample averages

• Will gradient descent converge?

• If yes, to what?

GAN Training
face GAN; ∼ <(0, >)

• [von Neumann 1928]: If ! ⊂ ℝ$, & ⊂ ℝ' are compact and
convex, and (: !×& → ℝ is convex-concave (i.e. (,, - is
convex in , for all - and is concave in - for all ,), then

min2∈4 max7∈8 ((,, -) = max7∈8 min2∈4 ((,, -)• Min-max optimal (,, -) is essentially unique (unique if (is strictly
convex-concave, o.w. a convex set of solutions)

• von Neumann: "As far as I can see, there could be no theory of games
… without that theorem … I thought there was nothing worth publishing
until the Minimax Theorem was proved“

• Equivalent to strong LP duality
• [Blackwell,…]: A host of uncoupled update-rules (dynamics) applied by

the min and the max players “converge” to min-max equilibrium
• no-regret learning dynamics: e.g. Multiplicative-weights-update, follow-

the-regularized-leader, follow-the-perturbed-leader, etc.
• Follow-the-regularized-leader with ℓ<-regularization ≡ gradient descent

The Min-Max Theorem

• “Convergence” of online learning to min-max solutions for convex-
concave functions !(#, %) only happens in an average sense
• E.g. gradient descent for ! #, % = # ⋅ %

• Objective function in Wasserstein GAN training isn’t convex-concave
• Questions:

• Stability: how to converge to local saddles?
• Generalization: Effects of approximation of expectation with sample averages?

Challenges

: start

Game
Theory

Game Playing

Deep Mind

• Stated Mission: Solve intelligence, use it to make the
world a better place.

• …

• We’ll take a look at the guts of AlphaGo, and AlphaGo
Zero

• Connection to Reinforcement Learning, Policy and Value
Iteration, and the Min-Max Theorem

6.883 Statement of Purpose:
- to entice the practically-minded into theory as a
means to understand and improve practice
- to entice the theoretically-minded into the deep
questions motivated by practical experience

Outlook
• Really small sample regime: health data

• Robust Statistics

• Causality + Counterfactuals

• Privacy concerns

• Fairness

• Ethical Considerations

• Philosophical ramifications of unreasonable practical success
of Deep Learning

