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Lecture 10: Hypothesis Testing

Lecturer: Constantinos Daskalakis Scribes: Yu Xia, Yi Sun, David Mayo
(Revised by Andrew Ilyas and Manolis Zampetakis)

Disclaimer. The proofs presented in this note may require background knowledge in classical statis-
tics and/or hypothesis testing (particularly for the uniform distribution case).

1 Introduction

Almost every machine learning problem involves making inferences about an unknown distribution based
on random samples. In the real world, there are many large datasets where the data only represents
a tiny fraction of an underlying distribution we hope to understand. For example, if we are given 100
samples from an unknown distribution supported on 1000 domain elements, then the empirical distribu-
tion given by the samples may be a poor approximation of the true distribution. Thus, it is important
to understand sample complexities before making inferences on the data.

The idea of modeling unknown distributions based on a set of data samples has a long history in
the field of statistics and is widely used in a number of fields of science.

For example, in psychology when measuring the prevalence of a particular trait in a population, a
key question that must be answered is how large of a sample size is need to provide a certain level of
confidence that the sampled population accurately measures the distribution of the entire population.
Answering this question requires an understanding of distribution distance metrics and hypothesis test-
ing, both of which will be explored in this lecture. We will also focus on the sample complexity needed
to distinguish an unknown distribution from a known distribution which under the GAN paradigm is
the key to training a generator function that accurately models an unknown distribution.

More specifically, we are trying to answer the following question:

Main question of this lecture: How many samples from an unknown probability distribution p
do we need to distinguish p from an known distribution ¢ with respect to some distance metric?

This fundamental question has received tremendous attention in statistics, and it’s also essential for
understanding deep learning. Recall from previous lectures the optimization goal of a GAN:

inf sup f (0g,64) ,

9 gd

where f(6,,04) quantifies how well a discriminator discriminates between a true distribution and a
generator distribution. In particular, supy, f (fy,04) can be seen as a statistical estimation problem.
An example of an algorithm that attempts to solve this estimation problem is the Wasserstein GAN
where the discriminator problem is aimed at approximating the Wasserstein distance between the true
distribution and the generator distribution (albeit for a restricted family of test fractions) [12].

In order to be able to use GANs in practice and understand how well they are learning a target distri-
bution, it is important to have a method of measuring the generator and target distribution distance.
Otherwise, its possible that a discriminator that was trained in tandem with a generator cannot dis-
tinguish between the true distribution and the generator distribution, but a better discriminator (e.g.
human brain) could.



This lecture aims to understand the mathematical structure behind the problem: what is the sam-
ple size required to distinguish the generator distribution and the target distribution? We will start with
some simple target distributions (Bernoulli, uniform) and then expand to more general distributions.

2 Notions of statistical distance

Before getting into some examples, lets get familiar with several notions of distances of probabilistic
measures.

e We use dry to represent the total variation (TV) distance, which is given by

drv ) =3 [ @ -0l = s b4 —q(4)]

e Kolmogorov distance dx is another distance metric similar to total variation, but uses the
cumulative density function (CDF) rather than the density—it is only defined for probability
measures on the real numbers.

dg (p,q) = Sup |p ([—00, 2]) — ¢ ([-00, z])]
<drv (p,q) -

The relationship with TV distance comes from the fact that the supremum in the definition of TV
actually captures all sets of the form [—o0, ] (along with all other subsets of the space).

e Kullback-Leibler (KL) divergence is another popular way of measuring statistical distance.
KL divergence is also known as relative entropy. We use dg 1, (p||g) to note the KL divergence from
p to q.

dir (pllg) = / p(z)log 2 (@)

reX Q(x)

Note that the KL divergence is not strictly a distance function, as it is not symmetric.

e x? distance is derived from the well-known Pearson’s x? test statistic x* (p,q) = >, c W,
but is symmetric for p and ¢q. x2 distance is often used in computer vision to estimate the distances
between bag-of-visual-word representations of images. We use d,2 to denote x? distance in this
note. )

1 Z (p(z) —q(x))

B D=5 2w )

reX

x? distance is also often used in constructing a kernel function out of histogram distances.

e Hellinger distance is yet another notion of statistical distance that we use in the proofs in this
lecture. The squared Hellinger distance between two distributions P and @ is given by:

2
H(P,Q) = / (VP@-vew) -
re
A crucial property of the Hellinger distance that we exploit in our proofs is that:

H(P,Q)* <dry <V2H (P,Q),

a property which follows directly from the relationship between ¢; and ¢ norms, and the Cauchy-
Schwarz inequality'.

1For a step-by-step proof of this inequality, we direct the reader to http://www.tcs.tifr.res.in/ prahladh/teaching/
2011-12/comm/lectures/112.pdf


http://www.tcs.tifr.res.in/~prahladh/teaching/2011-12/comm/lectures/l12.pdf
http://www.tcs.tifr.res.in/~prahladh/teaching/2011-12/comm/lectures/l12.pdf
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Figure 1: An example of total variation distance between two distributions.

It’s worth noting that, drv,dkr, and d,» can be seen as special cases of general f-distances, which

are defined by
-2 ()

reX

where the corresponding function f for dry,dkr, and d,- are

frv (8) = [t 1|

2
fKL (t) = thgt
(1)
e )=

Another useful result about statistical distances is Pinsker’s inequality, which is formally stated as

Theorem 1 Ifp and q are two probability distributions on a measurable space X, then

1
dTV (p7 Q) S §dKL (p7 Q)

Pinsker’s inequality is known not to be tight. People have made improvements and generalizations of it
[9]. For the proof of Pinsker’s inequality, please refer to [8].

In this lecture we measure distances with respect to the total variation distance. The total vari-
ance distance represents the largest possible difference between the probabilities that two probability
distributions can assign to the same event.

For example, Figure 1 shows two distribution over x1, x2, x3, and x4. The total variance dy 1 measures
half of the sum of differences of the probability iterating all possible events in either distributions, a.k.a.,
% (ll + 1o + 13)

Since for every distribution d over a measurable set X', we have ) _ . d (x) = 1, the effective difference
are counted twice. Therefore we reduce the sum by half.



3 Goodness of Fit

One of the central problem of hypothesis testing is that of goodness of fit. The goodness of fit of a model
describes how well a model fits a set of observations. Concretely, the goodness of fit problem can be
formulated as follows:

We are given sample access to some unknown high-dimensional distribution p € A(X), an explicit
distribution ¢ € A (X), and some tolerance € > 0. Our goal is to distinguish with probability of error
< %, between p = q v.s. d(p,q) > €, for some notion of statistical distance d.

Goodness of fit is also considered in the form of the tolerant goodness of fit problem, in which we
instead have two thresholds, e; and e5. Our goal is to distinguish d (p,q) < &1 v.s. d(p,q) > 2.

Example 1: Testing fairness of a coin

To illustrate the goodness of fit problem, suppose that we are given a coin with an unknown weighting
and we want to find out if the coin is a fair coin. Mathematically, you want to find out if the distribution
of flip outcomes generated using that coin is:

X ={0,1} ¢ = Bernouli (1/2)

How many coin tosses do we need to test this hypothesis? It turns out that © (E%) samples are both
necessary and sufficient for computing both goodness of fit, and tolerant goodness of fit (in terms of
total variational distance).

Proof We prove this in two parts, first showing necessity and next, sufficiency.

Necessity. Suppose there exists a test using k samples that can distinguish with probability > % a
sample from X = (x1,x2,...,2;) ~ P := Bernoulli (%) from a sample from Y = (y1,92,...,9%) ~ Q :=
Bernoulli (% + 5).

From our introduction of Hellinger distance above, we have the following upper bound on drvy :

drv (X,Y) < 2H2(X,Y) (1)

(L )
s2k<LE{O_1}(W— Q(w))2> (3)

€ o (ke?) (4)

Thus, in order for our test to be able to differentiate in TV distance between P and ), we need
k>Q(%).
- €

Sufficiency. To show that 2 (E%) samples are sufficient, we use the binomial Chernoff bound (we omit
the proof of this bound, which can be found in [10]).

In particular, we sample n = E% results ©1,22,...,2, and add them up. If the sum X = > x; is less
than (% + %s) n = ﬁ + 2—15, then we will predict that the coin is fair, a.k.a., the underlying distribution
is Bernouli(%). Otherwise it is the biased distribution Bernouli(% + 6).

Specifically, denote the sum of these 6% samples as X, if we are tossing the fair coin, we have the
expected value of the sum as % We can use a Chernoff bound to bound the probability that X deviates

from its expected value:

1 o2
Pr X>(1+5)—282 <e 2F3: (5)
1 2 1 1 1
=Pr {X>(1+5)2€2] <e2FT = THE ~vel 2, (6)

=~



We can repeat this sampling process, a.k.a., by using K - = samples to exponentially decrease the
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constant on the right hand side of the inequality. H

Example 2: Uniformity testing

Now we consider a more general problem. Instead of a Bernoulli distribution, now ¢ is a uniform
distribution over a discrete set X where m = |X|. Now we formally define the problem in the context of
hypothesis testing.

Setting Consider the null hypothesis where p is a uniform distribution over support m

1
Ho:pi=—
m
and the non-parametric alternative:
m
Hy :dpy = Z|P(Z) - —[>e¢

Goal Given a unknown distribution p, how many samples do we need to have a consistent test distin-
guishing Hy and H 47

It’s intuitive to think that the sample size needed for test I will increase as |X'| increases. Indeed, we
have the following results from Paninski [5].

Theorem 2 In test I with d = dry, we need © ( v X) samples from p to decide that p is e-distant

52

from uniform distribution q.

Upper Bound

Our uniformity test will be based on "coincidences", that is, bins ¢ for which more than one sample is
observed. The basic idea, as in the birthday inequality [6], is that deviations from uniformity necessarily
lead to an increase in the expected number of coincidences when we sample from the distribution. We
define m = | X| as the total number of bins, K; as the the number of bins into which just one sample has
fallen, and N as the sample size. For a fixed N, K; is negatively related to the number of coincidences.
To see this, we can write the expectation of K7 under a given distribution p as:

E, [Ki] = i (T)pi (1—p)N 1.

=1

where p; is the probability a sample fall into bin i. In a uniform case, p; = % and

E, [Ki] = N (T)N_l

We can compare the two expectations by computing the difference:

E, [K1] - E, [K1] = NmT_l gpi ll - (m (1 —pi))N_ll

m—1

After some approximations and an application of Jensen’s inequality, we have the following key lower
bound on E [K]] in terms of the distance from uniformity e.

Lemma 3 E, [K1] —E, [K:] > X2 1+ 0 ()] ,vpe Hy



N-1
Proof Let f(p;) =p: {1 - <7n"j1 (1- pl)) } then we have:

Kl - [ = N () 3 s

Since f (x) is not convex, we develop a convex lower bound on f (z), valid for all z € [0,1] when N < m:

r@zo (e 2) o (5) (- 1)

Ly (LY, . 11
g(z):{f(z+m) f (71) G[O’N m]

where

TR+ G- - (5)z ow

The derivative can be computed to be:

Putting things together, we can bound f (p;) as:

200> Eb(e- )+ () )

%

Applying Jensen’s inequalities, we can get:

1 Z 1 1 Z 1 €
m ig(x mD_g<m ; bi mD_g m
where the last inequality is by the fact that g is increasing and p € H4. Near 0, we can approximate g

s= (v 0 (22)) ()

We use this convex lower bound to bound the difference in expectation:

m—1 €

E, [K)] - E, [K)] > Nm (m)“ )(2)

-5 o (R

On the other hand, we can also bound the variance of K7 under p as follows:

which completes the proof. B

Lemma 4 )

Var, (K1) < Ey [Ki] - E, [Ki]+ O <J1\;>



Proof Var, (Ki) can be directly computed as:
Vary (K1) = By [K1] = B, [K1]* + N (N =1)> pip; (1= pi —pj)"
i#]

However,this is hard to be bounded directly. Instead, we can use Efron-Stein inequality [11]:

1| 2
Var(s) < 3E |3 (5—59)

Jj=1
where S is an arbitrary function of N independent random variable’s z; and
SO = 8 (21, x9,.... 25, ..., xN)

denotes that S computed with z} substituted for x;, where «} is an i.i.d. copy of z;. We can apply this
inequality to S = K7, with x; being the independent samples from p. We denote n; as the number of
samples observed to have fallen in bin i after N-1 samples have been drawn. Thus,

N

1 A\ 2 N
§E Z (S - S(’)) = EE{ZEi}ISiSN—l""p Z piP; (1 (ni =0Nn; > 0) +1 (nj —0Nn; > O))
= i<jj<m
- szipjp{wi}lgigjv,lrvp (nz =0N n; > O)
4,J

- N%:pz‘pj ((1 —p)" <1 a (1 1 ]ijpi>N_l>>

=N pip; ((1 —p)V T (1 —pi _pf)N_1>

1,3

< Nipj (1 - —pj)N_l)

Jj=1

=B, [Ki] - Ep [Ki] + N (1 - (m_l)N_1>

=B, [K1] - B, [K1] + O (Z:)

The inequality uses the fact that (1 —y)" —(1 — y — )" is a decreasing function of y for n > 1,z € [0, 1],
and0<y<l—z. N

Now we can construct our hypothesis test. Let T = E, [K;1] — K; = N (’”—’I)N_1 — K. We reject
null hypothesis Hy if T > T, for some threshold 7.

Theorem 5 The size of this test is
N2
pu@zzg)o( )

2
mT?2

. The power is greater than
B, (K] - B, (K1) + 0 (1)
(Eu [Kl] - Ep [Kl] - Toz)2

P,(T>T,)=1-

uniformly over all alternatives p € H . If % — o0, then the threshold T, may be chosen so that the
size tends to zero and the power to one, uniformly over all p € Hy (i.e., this condition is sufficient for
the test to be uniformly consistent). A sufficient choice of T, is

N252

T
2m




Proof Since we have E,, [T] =0,Var, [T] =0 (%2) from lemma 4, by Chebysheff the size is bounded
by

N2

P (T>Ty) =0 | —
210 (57)
For the power, again from lemma 4, we have that
Pp (T <To) =Pp (T = E, [T] < Ta — E, [T])
B, [T]+0 (&)
(Ep [T) = Ta)®

IA

Thus we have showed that %54 — oo (that is, N = O (‘é—?)) is a sufficient condition for the

existence of a uniformly consistent test of Hy vs. Hy4.

Lower Bound

Next we derive a lower bound on N to guarantee the consistency of any test.
Theorem 6 If %2 remains bounded, then no test reliably distinguishes Hy from H 4.

Proof W..0.g.,we assume m is even. The following bound is developed for one particular tractable
mixing measure p. We choose ¢ randomly according to the following distribution p (g): first we choose
% independent Bernoulli random variables z; € {—1,+1} (i.e. z samples uniformly from the corners of
the Z-dimensional hypercube). Given {z;}, set

1+€Z%‘) /m i even

q(i) =
© 1—52M>/m iodd

Let n; denote the number of samples observed to have fallen into the i-th bin. We can write out the
ratio of marginal likelihoods as:

L(a|H " "
M:EE H (l—zéa) 1<1+Z%€>

1=2,4,..,m

H E Kl — z%s)nii1 (1 + zgs)n}

1=2,4,...,m
= [I s+ -9 +0+e)™ 1-e""
i=2,4,..,m
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i:r}lm (1- 82)77” (1 + (C;i>£2 + <(ff> et 4 )

The second equality follows since z; are i.i.d. In the fourth equality, we use abbreviations m; =
min (n;,n;—1) and d; = |n; — n;—1|. We interpret (C]l;) as 0 whenever d; < k.

Note that the above multiplicands are greater than 1 only if d; > 2, and less than 1 only if m; > 1.
Since the number of "two-bin coincidences" ( pairs of bins into which two or more samples have fallen)
is bounded in probability if N = O (y/m), the likelihood ratio is bounded in probability as well,implying
that the error probability of any test is bounded away from zero, and the proof is complete.



Finally, it is worth noting that the expected numbers of events (m; = 1,d; = 0) and (m; = 0,d; = 2)
scale together, leading (after an expansion of the logarithm and a cancellation of the 2 terms) to exactly

the % scaling we observed previously. This implies that N must grow at least as quickly as g to

guarantee the consistency of any test. l

Valiant and Valiant [3] construct a linear estimator for estimating distance to uniformity. They

2

showed that given © < v X) independent samples from from a distribution of any support, their esti-
mator will compute the TV distance to Uniform(X) to within accuracy e, with high probability. This is

essential test IT where € = g5 — 7. Thus, we re-frame the results as the following theorem.

Theorem 7 In test II with d = dpy, we need © (%) samples from p to decide that p is e-distant
from uniform distribution q.

Note that the same bounds apply for estimating symmetric properties of a distribution such as entropy
and support size.

4 Goodness of Fit Testing

In a more general setting, can we test goodness of fit in terms of total variation distance if ¢ is an
unknown distribution over discrete support X7 Acharya-Dashalakis-Kamath '15 [2] develop a general
testing framework which leads to the following results:

£2

1. There exists an efficient test using O ( Y le) samples

£2

2. This test requires €2 ( Y X) samples
Canonne and Diakonikolas [11] also showed similar results in their paper.

4.1 Upper Bound

Poisson Sampling In this proof, we use the standard Poissonization approach. Instead of drawing
exactly m samples from a distribution p, we first draw m’ ~ Poisson (m), and then draw m’ samples
from p. As a result, the number of times different elements in the support of p occur in the sample
become independent, giving much simpler analyses. In particular, the number of times we will observe
domain element 4 will be distributed as Poisson (mp;), independently for each ¢. Since Poisson (m) is
tightly concentrated around m, this additional flexibility comes only at a sub-constant cost in the sample
complexity with an inversely exponential in m, additive increase in the error probability.

The idea is to divide effective support into several intervals of roughly equal measure. It computes
the statistic over each of these intervals, and we let our statistic Z be the sum of all but the largest t of
these values. In the case when p = ¢, Z will only become smaller by performing this operation. We use
Kolmogorov’s maximal inequality to show that Z remains large when dpy (p,q) > €. The Algorithm is
described in Figure 3, and the statistics Z is defined as:

N2
Z:Z (Ni_mq.i) —N;
icA Mg
The terms —N; in the numerator is a correction for classical test statistics. It prevents Z from exploding
when ¢; is sufficiently small.

Claim 8 E (2] = m? (p,q) where x* (p,q) = 5, 2520



Algorithm 1 Chi-squared testing algorithm

1: Input: &; an explicit distribution ¢; (Poisson) m samples from a distribution p, where N;
denotes the number of occurrences of the ith domain element.

20 A {i:q >¢e/50n}
32 24 e o
4: if Z < me?/10 then
5: return ACCEPT
6: else
7 return REJECT
8: end if
Figure 2: chi-squared testing algorithm
Proof
E [Ni]2 —2mq;E [N;] + m2q? — mp;
E[Z]=) .
i mq;
_~— mPp; +mp; — 2mPqip; + mPq; —mp;
B p mq;
(Pz’ - %)2
= m —_—
)
=mx~ (p,q)
[ |

We demonstrate the separation in the means of the statistic Z in the two hypothesis of interest:

L Ifdrv (p,q) = 0= x*(p,q) =0=E[Z] =0 (1)

2. If dry (p,q) > e = X2 (p, q) > 4e® = E[Z] > 4me? ~ /| X] (2)

Claim 9
v pi(pi — @)’
Var|Z] = E 25 + Am———5 =

Proof See Acharga-Dashalahis-Kamath NIPS’15 [1] for details. H
We can bound the variance as:
Var (2] < 41X| + 9] X|E[Z] + %miu«: 7)%
We demonstrate the separation in the variance of the statistic Z in the two hypothesis of interest:

1. Ip=q=E[Z]=0= Var[Z] < 4]X]| (3)

2 W dry (p,0) = € = E[Z] = \/IX] = Var 2] < (E[2]°) (4)

Together with conditions (1), (2), (3), and (4), we can distinguish between p = ¢ and dry (p,q) > € as
in figure 3.

10
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Figure 3: The left plot is the case where p = ¢. The right plot is the case where dry (p,q) > €.

4.2 Lower Bound

The example studied by Paninski [5] to prove lower bounds on testing uniformity can be used to prove
lower bounds for the classes we consider.This problem is not easier than distinguishing U,, from u (q) as
described in Theorem 9, where U, is the uniform distribution over n. Therefore, by invoking Paninski’s

VI

proof, we immediately get the lower bound of ( = ) samples.

5 Bad news for high-dimensional distributions

The above bounds imply exponential sample complexity lower bounds in high-dimensions.

Claim 10 Suppose ¢ = UNIFORM ({0, 1}"). We are given sample access to p € A ({0,1}™).

o Q) (25—3) samples are needed to distinguish whether p = q vs dry (p,q) > € (or wasserstein (p, q) >
€)

g

o Q) (%) samples are needed to distinguish whether dry (p,q) < § vs dpy (p,q) > €

.

Proof
e World 1: p = UnirorM ({0, 1}™)

e World 2: fix a matching M of the vertices of a hyper-cube {0,1}". Thus, if (u,v) € M, set
P, = L2, p, = 152 with probability 1. Otherwise, set P, = 152, p, = 4= with probability 3.

By rewriting the previous construction, it can be seen that we cannot distinguish between world 1 and
world 2 with less than (i—f) samples.

5.1 Back to GANs

The exponential sample complexity lower bounds are disappointing news for GANs. If uniformity cannot
be tested from a practically feasible number of samples, are there other things that can be tested?

Recall that in world 2, since there are an exponential number of edges in the hyper-cube, it requires an
exponential number of bits to index a distribution in the set. However, most real world distributions are
not parametric. What if the distributions that are sampled and those we test against have low dimen-
sional structures, like Markov Random Fields or Bayesian Networks, that can be exploited? Daskalakis,

11



Dikkala, & Kamath ’18 [1] shows that under both Ising and Bayes net assumptions, goodness-of-fit
testing requires only polynomial many samples in dimension, avoiding the curse of dimensionality.

The million dollar open research question that still remains is what is a reasonale structural assumption
for real world distributions that combined with the structure of generators would allow us to rigorously
test whether a real world distribution and the output of a generator are close.
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