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In the last lecture, we started our unit on robustness and security in deep learning, and introduced
adversarial examples, slightly perturbed inputs to machine learning models that induce specific types
of misbehaviour. Specifically, we talked about constructing adversarial examples by using Projected
Gradient Descent (PGD) to solve the maximization problem maxδ∈∆ loss(θ, x + δ, y), where ∆ is an
allowable class of perturbations.

In this lecture, we will talk about (a) how to still find adversarial examples under more restrictive
settings and (b) how to train and formally verify the robustness of deep learning models.

1 Black-box adversarial attacks
In the last lecture, when discussing how to construct adversarial examples (i.e. solve the “inner maxi-
mization” problem), we assumed a white-box setting, where the attacker has full access to the architecture
and weights of the model in question. Having access to architecture and weights implies having first-
order (gradient) access to the function being maximized (loss(θ)), which is what allowed us to use the
projected gradient descent (PGD) approach outlined in the last lecture.

In real-world settings, however, attackers rarely have full access to the model they are attacking.
Instead, attackers will have varying levels of black-box access to the models they are crafting examples
for. In the black-box setting, we no longer have access to ∇θloss(θ), and instead have access to some
subset of the classification results like logit values, confidence scores or even only hard labels. Finding
adversarial examples under this so-called “black-box setting” is more difficult as we don’t have direct
access to the model’s parameters and gradients (and so we can’t use projected gradient descent). Thus,
the central question we will try to answer in the first half of this class is:

Can we (efficiently) solve the inner maximization problem in the black-box setting?

Here, we will discuss the two main approaches proposed in the literature: (1) substitute model attacks
and (2) gradient estimation attacks.

1.1 Substitute model (transfer) attacks
Substitute model attacks, otherwise known as transfer attacks, exploit a curious property of adversarial
examples known as transferability. This property refers to the phenomenon by which adversarial exam-
ples generated for one deep neural network tend to also induce misclassification in other, independently
trained networks on the same dataset [7]. While theoretical explanation for transferability is still lacking,
attackers can use this property to their advantage in constructing black-box attacks.

In particular, rather than applying an iterative update such as PGD, the attacker queries the model
and, on observing the output, trains an auxiliary substitute model whose only objective is to mimic the
target model. The attacker can then construct adversarial examples with white-box techniques on the
constructed substitute network. Due to transferability, many such examples will also be adversarial for
the target model.

Transfer attacks seem to work well empirically across various choices of models and training algo-
rithms [7, 6]. While this method does not find adversarial examples as easily as white-box methods, it
presents a very realistic threat, given how little information about the target model is required. The two
key drawbacks of substitute model attacks are:
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1. Targeted attacks: adversarial transferability seems to be limited to misclassification. That is,
suppose we have an image-label pair (x, y), and then we construct an adversarial example x′ for
a model M that (mis)classifies as y′. If we feed in x′ to a model M ′, transferability tells us that
M(x′) 6= y with decent probability, but very rarely does M(x′) = y′; if adversarial examples
transfer, they usually end up misclassified as some unrelated class. This makes targeted attacks,
where an attacker wants to induce a specific adversarial mislabeling, somewhat infeasible with
substitute models.

2. Training set: In order to train the substitute model, the attacker needs many points drawn from
the same distribution as the original classifier was trained on. If the adversary has access to the
training set, this is not an issue, but otherwise acquiring these points can be somewhat expensive
or impossible.

1.2 Gradient estimation attacks
What if instead of building a substitute model, we want to apply an iterative method on the target
model directly? One might expect that PGD is not useful in black-box settings. It turns out, however,
that this intuition is incorrect.

Specifically, we can still estimate the gradient using only such value queries. (In fact, this kind of
estimation is the backbone of so-called zeroth-order optimization frameworks.) The fundamental tool
of this approach is the finite difference method, which allows us to estimate the directional derivative
Dvf(x) = 〈∇xf(x), v〉 of some function f at a point x in the direction of a vector v as

Dvf(x) = 〈∇xf(x), v〉 ≈ (f(x+ δv)− f(x)) /δ. (1)

Here, the step size δ > 0 governs the quality of the gradient estimate. Smaller δ gives more accurate
estimates but also decreases reliability, due to precision and noise issues.

Now, we can just use finite differences to construct an estimate of the gradient of loss(θ, x, y) with
respect to x. In particular, we can find the d components of the gradient by estimating the directional
derivative with respect to the standard basis vectors e1, . . . , ed (where ei = {0, 0, . . . , 1, 0, . . . , 0}):

∇̂xloss(θ, x, y) =

d∑
k=1

ek (loss(θ, x+ δek, y)− loss(θ, x, y)) /δ

≈
d∑
k=1

ek〈∇xloss(θ, x, y), ek〉 (2)

We can then plug this coordinate-wise gradient estimate straight into the PGD proceduce we discussed
last time, in place of the gradient. [2] introduce an attack called ZOO-attack (zeroth-order optimization
attack), the first attack to use the finite difference method in this basic form to power PGD-based
adversarial attacks in the black-box setting.

Chen et al. showed that ZOO creates adversarial examples with close to 100% success rate [2].
Despite its success, ZOO is considered impractical due to its high query complexity. In general, ZOO
requires Θ(d) queries for each gradient computation, where d is the dimension of image vector. For
ImageNet, d ∼ 300k, making the cost of attacks prohibitively high. One can easily thwart such an
attack by banning users making a huge number of queries within a short time interval.

This naturally leads to the following question: Can we reduce the query complexity? Below are
several recent works that contribute to decrease the number of queries.

First: a note on more restricted settings. Note that in order to compute the gradient esti-
mate (2), the attacker needs query access to loss(θ, x, y), which in turn implies having access to all of
the output probabilities given by the model, i.e. P (y|x) for all possible y. While this can be a rather
strong assumption, [3] show that surrogate loss functions can be constructed to make gradient estimation
attacks work in settings where even less information than loss(θ, x, y) is given (in particular, gradient
estimation approaches can still be used even if only the top label is given).
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Changing to a random basis [3]. While [2] opt to use the canonical (i.e. pixel) basis in construct-
ing a gradient estimate, there is nothing in the finite difference framework that forces us to do this.
Specifically, (2) actually holds true for any basis of vectors {ei}.

Ilyas et al. [3] use a set of random Gaussian vectors around an image, x to construct the gradient
estimates, but recover only a few components of the gradient with finite differences. Note that although
Gaussians do not strictly form a basis, in high dimensions, a few randomly drawn Gaussian vectors tend
to be pairwise near-orthogonal. Furthermore, the method benefits from favorable properties of random
Gaussian projections, like relative distance preservation1. The authors find that using this random basis
method2 led to much more query-efficient black-box adversarial attacks.

Compressive sensing. An alternative but related view of black-box gradient estimation attacks is
as solving a system of linear equations. In particular, given any unit vector v, we can query 〈∇f,v〉 = u.
We can write this as a system of equations by making k queries, and stacking {v1 . . .vk} into a matrix
A, yielding the system of equations Aw = u. Solving this system for w yields precisely the gradient
∇f(x). While normally we need k ≥ d in order to recover meaningful results, a seminal result from
Candes, Romberg, and Tao [1] shows that if the gradient is sparse under some basis (i.e. if there exists
a basis where most of the gradient components are zero), we can provably recover the gradient with
k << d queries. Concretely, compressive sensing theory shows that if we can assume our data to be
s-sparse (i.e. under the chosen basis all but s components are zero), then we require k ≈ s log d

s . This
would form a very good basis for our images. While it is known that there are sparse bases such as this
one for images, it is unclear in our problem if there is a basis under which ∇f(x) is sparse.

Gradient estimation with priors (and online optimization) [4]. It turns out that finite differ-
ences is actually, in a natural sense, the best we can do in terms of asymptotic performance at zeroth-order
optimization [4]. So what now? Ilyas et al. (2018b) [4] show that we can actually greatly improve gra-
dient estimation by integrating what the authors call “gradient priors,” external information that can
help in estimation of the gradient. For example, we know that we are going to use these gradients for
(iterative) PGD, and since we don’t move much in image space during an adversarial attack, it’s likely
that successive iterations in optimization will have similar gradients. Ilyas et al. develop a framework
inspired by bandit online optimization to integrate this prior and others into black-box attacks, resulting
in attacks that are several-times more query efficient and successful.

1.3 Verification of deep learning models
At this point in the lecture, we are going to shift our focus from attacking DNN models to defending
against such attacks. Specifically, today we study the problem of verifying the robustness of neural
network models.

The problem of verification is the following. We are given an input x, a classifier (which we can
represent as a function f(x ∈ X )→ Y mapping from images to labels), and a perturbation magnitude ε.
We would like to use this data to produce a formal certificate either proving that f(x) = f(x′), ∀‖x′ −
x‖∞ ≤ ε, or finding an x′ which “disproves” the statement.

The set of all final-layer activations attained by perturbing x with some ∆ with l∞ norm less than ε
is called the adversarial polytope. There are several approaches in the literature:

1. Formal verification methods (e.g. ReLUplex [5]). First, note that the main bottleneck of
directly verifying deep neural networks are the ReLUs, which convert the problem from verifying
a linear function to verifying a piecewise linear function, leading to a combinatorial blowup in
the problem complexity (in particular, each on/off configuration of the ReLUs leads to another
subproblem).

ReLUplex [5] attacks this problem by explicitly splitting up the verification problem into appro-
priate subproblems via SMT solver. Interested readers are encouraged to consult the appropriate

1http://pages.cs.wisc.edu/~jerryzhu/cs731/projection.pdf
2Finite differences under the Gaussian basis is actually a fundamental technique found across a variety of fields, and is

known by a variety of names (spherical estimator, Johnson-Lindenstrauss estimator, random basis search, etc.)
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literature, but the main idea is that the authors extend the real numbers R to an arithmetic over
real numbers and ReLUs (RR). This allows for the application of a Satisfiability Modulo Theories
(SMT) solver—an SMT solver is essentially an efficient way of solving decision problems involving
logical formulas; it can be thought of as a sort of formalized approach to constraint programming.
In ReLUplex, an SMT solver considers all possible settings of ReLUs (active/inactive) and uses
linear programming to decide (i) if a possible setting is feasible, and, (ii) whether there exists an
example that fools the network. However, it can currently only deal with ∼ 300-neuron networks.

2. Mixed-Integer Optimization [8]. Another technique for verifying neural networks in the pres-
ence of ReLUs involves the utilization of Mixed-Integer Linear Programs (MILPs/MIPs). MILPs
are a generalization of linear programs (LPs), where some of the variables are constrained to be
integers. In [8], the authors phrase verification as an MILP problem, by encoding the on/off status
of each ReLU with a binary (0 or 1) variable. By taking advantage of the ability to constrain some
variables (in particular the ReLUs) to be either 0 or 1, it is actually possible to write the entire
verification process as an MILP.

In contrast to linear programming (LP), however, which can be solved efficiently even in the
worst case, even binary integer programming is NP-hard—in fact, the decision version was one of
Karp’s 21 NP-complete problems. Since a binary integer program is actually a special case of the
verification MILP above (i.e. where we only have ReLUs), the verification problem is thus also
NP-hard under this formulation. Despite this, performant solvers for MILPs have been developed,
including Gurobi, CPLEX, etc. Utilizing these solvers allows for MILP verification to scale better
than ReLUplex, allowing for the verification of neural networks with ∼ 1000 neurons.

In later work, it was shown that further optimization of the MILP formulation itself, e.g. by re-
moving integer variables corresponding to “stable” ReLUs (either always active or always inactive
within the region around the image) allows for verification that is orders of magnitude faster [8].
Exploiting this further, it is shown in [10] that this stability can actually be induced via regular-
ization techniques during training. Indeed, training neural networks with ease of verification as an
objective now allows for networks of up to ∼ 50, 000 neurons to be verified [10].

3. Convex (Linear) relaxation [9]. In mathematics, the relaxation of a (mixed) integer linear
program is the problem that arises by removing integrality constraints on variables. In [9], the
authors use a convex relaxation of the ReLU function (see Figure 1) to obtain an LP relaxation of
the MILP formulation in [8]. Specifically, for a ReLU with bounded pre-activation l ≤ ẑ ≤ u, the
ReLU constraint (z = max(0, ẑ)) can be written as a mixture of linear and integer constraints (as in
an MILP). Relaxing the integer constraints yields the convex region z ≥ 0; z ≥ ẑ;−uẑ+ (u− l)z ≤
−uẑ, depicted in Figure 1. By relaxing every ReLU in this way, one effectively constructs a convex
outer bound on the adversarial polytope (Figure 2. Finding an adversarial example in this convex
outer bound can be achieved by simply solving the LP given by minimizing the output value of the
correct class minus the output value of an incorrect class. If no point in this outer approximation
exists that will change the class prediction of an example, then no point within the true adversarial
polytope can change its prediction either, i.e., the point is provably robust to all adversarial attacks.

Figure 1: Relaxation of the ReLU activation [9].

While a linear program is certainly more desirable than an MILP, solving an LP in many variables
can still be slow. To circumvent this, [9] exploit the duality of linear programs. In particular, every
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Figure 2: Illustration of adversarial polytope and its convex outer bound [9].

LP minimization has a corresponding (dual) maximization LP with the property that: (a) the
maximum of the dual LP is the minimum of the original (primal) LP, and (b) any feasible solution
to the dual LP provides a lower bound on the minimum of the primal LP. These properties, and
in particular (b), mean that instead of trying to optimize an LP directly, one can actually bound
its optimum value using any feasible solution of the dual LP.

To this end, the authors of [9] consider the dual of the convex relaxation LP. Recall that the
objective value of any solution to the dual problem provides a lower bound to any objective value
of the primal (minimization) problem. Surprisingly, [9] shows that the dual formulation of a
feedforward neural network is almost identical to the backpropagation network, except for some
free parameters αi,j that can be optimized over. In practice, setting the αi,j to fixed feasible values
gives a valid solution that can be computed quickly and already provides a good lower bound on
the primal objective value. Thus, this dual formulation can be used to provide a lower bound on
the adversarial error. Even though this bound is not tight, it can be computed much more easily
than exact verification procedures that solve mixed integer linear programs. However, a major
drawback of this method is that it might label examples as potentially adversarial, even when they
are not.
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