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1 Introduction

Continuous Optimization is an important toolkit for deep learning. It aims to solve the canonical problem
is solving the unconstrained minimization problem:

minimize f(z), where f is continuous and smooth. (1)
x

(For us, smooth means that derivatives of all orders exist.) This problem is (of course) intractable in
general, so we will make additional assumptions in order to be able to design algorithms. It turns out
that all of our algorithms will be iterative. So that we will need to specify a primitive that, given the
current solution x! determines in what direction and how far we should go to obtain an even better
solution xt+!.

2 Gradient Descent Method

The most fundamental tool for solving continuous optimization problems is gradient descent method.
The basic idea here relies on the Taylor expansion of our function around our current point x (in order
to find the best step A to take to arrive to the new solution). This expansion states that

flz+A) = f(x) +Vf(x)TA+%ATV2f(x)A+..., (2)
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where ¢, (A) = f(z) + Vf(2)TA can be viewed as the linear approximation of our function at the point
2 and g, (A) is the “tail error” of this approximation. Note that

e (M) ~ IA] - and  [lez(A)] < O(A]). 3)

for sufficiently small A. So, in principle, by taking A small enough we can always ensure that the error
of our linear approximation is smaller than the benefit from moving in the direction that minimizes

P (D).
2.1 Smoothness Assumptions

The second condition in (3) can be seen as a form a of smoothness condition. Specifically, we define the
notion of S-smoothness.

Definition 1 A function f is 5-smooth iff

1
0:(A) < ?BHAHZ, for all x and A. (4)
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In particular, this implies that f is dominated by a quadratic function ¢, (A) + 38[|A||2. That is,

Fla+8) < ou(8) + 561AJ7,

for all  and A.
Thus we can consider minimizing the proxy ¢, (A)+ B[ A[|? as a function of A in lieu of minimizing
f(z + A) directly. Since the minimizer is A* = —%A f(z), we arrive at the gradient descent algorithm.

e Pick an initial point, say, 2z° = 0.

e Fort=0,1,...,T, set

1
ot =2t — —Vf(ah). (5)
g
This basic algorithm has the following guarantee on the amount of progress made in each step
1
fat) = f(z"*) = %IIVf(xt)II- (6)

As a result, it eventually is bound to a point Z such that
IV f(2)]l ~ 0. (7)

This means that & will be a critical point. However, it might be a saddle point and not necessarily a
local extremum. So, further assumptions are needed to guarantee convergence to optimality.

2.2 Convexity

If we assume that f is convex, then & is indeed guaranteed to be a global minimum. Convexity is
equivalent to having the bound

0< 0u(d) < LA, (5)

for all x and A.

It can then be shown that after T = O(BR?*c~1) steps, where R = ||2° — z*||, we have that f(z7) —
f(x*) < e. However, this linear dependence on ¢~! and R can be quite inconvenient. So, we need a
stronger assumption to get a better bound.



2.3 Strong-a Convexity Assumption

Definition 2 The function f is said to be strong-a convex iff
1
EaHAHQ < 0.(A)  for all z and A and a > 0. (9)

So, if we assume that f is strong-a« convex and S-smooth, this means that the error g, (A) is “sandwiched”
by two quadratics, i.e.,

1 1
SolIAI? < 0.(8) < SplAJ,

for all z and A. Consequently, the function f(x+A) is “sandwiched” as well by corresponding quadratics
too. That is, we have

1 1
PalB) + 5l AIP < 0a(8) < SBIAIR,

for all x and A. (See the Figure 1.)
Once this assumption is in place, we can attain f(z7) — f(2*) < ¢ using only

T=0 (5 log f) steps. That is, we have a logarithmic dependency in . (10)
e

The quantity k := 8/« is called the condition number of f. It can be viewed as a reflection of the
“badness” of the (Euclidean) geometry of f.

In particular, if f is twice differentiable everywhere (which we assumed here), the values of @ and g
correspond to the bounds on the smallest and largest eigenvalues of the Hessian. That is,

o= ir;f )\mm(v2f(:r)) and [ =sup )\max(v2f(x)) (11)

Now, to get some intuition regarding why this condition number is important one should note that
when x = 1 (i.e., when f is quadratic), the gradient point directly in the direction of the minimizer.
Conversely, when & is large, the gradient direction does not correlate well with the direction towards
minimum. As a result, the optimization path tends to slowly zig-zag toward the minimizer. See the
figures below.
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2.4 Momentum Gradient Descent

Momentum gradient descent attempts to overcome the zig-zagging problem we alluded to above. The
algorithm is given by

o' =yt -V f(2h)

2L = gty ttl (12)
One can view this dynamics as corresponding to a physical system of heavy ball with friction. Specifically,
here, v is the velocity of the ball, v < 1 is the friction parameter and the gradient corresponds to the
applied force. The intuition why this kind of dynamics might be helpful is that zig-zagging along the
directions orthogonal to the direction of the minimum point will cancel out, and the velocity will instead
build up in the desired direction of the minimum.

Indeed, one can show that a certain “predictive” variant of this dynamics, known as Nesterov’s
momentum variant of gradient descent, given by

,Ut+1 _ ’tht o thf(zt +,tht)

13
Pl — gt _'_,Ut—&-l, ( )

with a very specific way of setting ; and 7, can be formally analyzed and shown to achieve e-optimality
in only

T=0 <\/Elog ]:) steps. (14)

Also, one can show that if the interaction with f is restricted to its gradients only (so-called first order
optimization model), then the square root dependence on « is the best asymptotically possible bound
(in the worst case).

3 Generalized gradient descent

In machine learning applications, we typically are able to learn more about f than its gradient—can
we use this extra information to achieve better bounds? Recall that the above analysis relied on the
sandwiching inequality

1 1
§a||AH2 <6 (A) < §B||A||2, for all z and A. (15)
The norm used in the above equation so far was, naturally, assumed to be an Euclidean norm. However,

it does not have to be! We can change the norm || - || so that, in effect, the constants o and 8 are
improved. And what we will get in this way is so-called general gradient descent method.



There is many norm choices we might consider here. But the one family of norms that will be most
useful to us will be so-called A-norm || - || 4 specified by some positive definite matrix A > 0 and defined
as

[lv]|a := T Av.

Note that if A is an identity matrix, this corresponds directly to the Euclidean norm.
Now, in analogy to the “standard” gradient descent setup, we minimize the objective

minimize ¢x(A) + Bl A% (16)
Note the solution to (16) is given by
1 . 1
BA’lvf(m) = arg nin g, (A) + FBIAIG (17)

So, it is not necessarily corresponding to moving in the direction of the actual gradient.

The right choice of A will be helpful as it can “rescale” the ellipsoidal level sets of f (i.e., which
correspond to large k) to make them much “rounder” and thus enable more rapid convergence. (Although
at the cost of having to compute the inverse of A, or solving a linear system in it each time we take a
step.)

Now, one could wonder what is the “best” choice of A. This choice, in a sense, turns out to be taking
A to be the Hessian V2 f(x) of our function at the point z. (Note that it means this might be a different
norm at different points!) This choice is motivated by noticing that if A is “not too big” we have that

1
ATV f(2)A ~ §\|A||2v2f(z)~ (18)

DN | =

IAVES

So, the (local) condition number here is close to 1 and thus being best possible.
The resulting algorithm is known as Newton’s method and its update rule ends up being

ot =gt — VA f(x) TP Af (). (19)

Here, the step size 1 have to be chosen carefully to address the requirement that A needs to be “not too
big”. In general, analyzing the convergence of such methods turns out to be tricky (also, because of the
norm potentially changing in each iteration) and is beyond the scope of this class. But it can lead to
significant speed ups. Unfortunately, this comes at a price of the need to invert the Hessian (or rather
solve linear system in it), which tends to be computationally expensive (and also might require too much
space to even store the Hessian explicitly). This is particularly relevant in deep learning context.

3.1 Quasi-Newton methods

The idea behind so-called quasi-Newton methods is to try to strike a compromise between the benefit
of being able to improve the geometry of the problem via rescaling and the computation time/space
constraints. The basic idea is to use the update rule

2 = 2t —nH IV f(2) (20)

for a sequence of matrices H; > 0 that approximates the Hessian (c.f. (19)) in some way.
We discuss two choices of approximations, the BFGS (as well as its variant L-BFGS) and the
AdaGrad algorithm.

3.2 BFGS method

In the BFGS method we aim to approximate in certain sense the inverse of the Hessian. Specifically,
we start with a “trivial” guess for the inverse of the Hessian: the identity matrix, i.e., By = I. Then, in
each step, we refine this guess by updating it based on the new “information” we got about the Hessian.
(Note that, importantly, we make an implicit assumption here that Hessians at different point are the
same/close to each other.)



Note that the inverse Hessian and thus our guess for it B; at time ¢, has to satisfy a number of
simple conditions. First of all, it has to be positive definite, i.e., By > 0. Secondly, if we observe how
the gradients change between two consecutive points, it has to “explain” this change. That is, we need
to have that

Btyt = St (21)

where s; = 2t — 2'7! and y; = Vf(2!) — Vf(2!1).

This constraints restrict the choice of B; but do not uniquely define it. To this end, we settle on a
choice of B; that satisfies these constraints and is “minimal” in the sense of its similarity to our previous
estimate B;_1. Specifically, we take it to be

B, = mBin ||B — Bi—1]|F subject to Byy; = s; and By > 0 (22)

where || - || is the Frobenius norm.

Once again, the implicit assumption in this algorithm is that the Hessian is globally constant; indeed,
it is possible to show that BFGS accelerates the optimization of quadratic functions. This is clearly not
true in applications, yet this method works well in practice (sometimes).

In high dimensional problems, even storing the Hessian is not really feasible though. So, a simplified
version of the BFGS method, known as L-BFGS (“limited memory” BFGS) is a variant where (22) is
replaced with

By = mgn |B—1I|lr subject to Biy: = s; and By > 0, (23)

i.e., we assume always that B;_; is just an identity matrix. The L-BFGS heuristic is also successfully
used in practice, even though its theoretical motivation seems to be much weaker.

4 AdaGrad

The final algorithm we consider is the AdaGrad algorithm, which is derived using the so-called online
convex optimization (or online learning) framework. In this framework, one considers the following
iterative online prediction game:

e Foreacht=1,...,T:

1. output a choice xy;

2. learn a “penalty” function f; and incur penalty f;(z;) corresponding to your choice.

The goal of this game is to choose a sequence of choices so that to minimize the sum of all the corre-
sponding penalties Zle fe(zy).

Of course, since the penalty function f; is revealed only after the choice x; was made, the resulting
penalty can be arbitrary large. So, there is no hope one would be able to provide any non-trivial
guarantees for a given strategy of making the choices in absolute terms. Still, it turns out that there is
a useful measure of relative performance: the regret, which is defined as

R(T) ==Y filw) - H;mz fi(z). (24)

That is, R is the difference between the penalty of our algorithm against a hypothetical algorithm which
knows the sequence {f:} in advance but is restricted to choosing a single choice z* in each one of the
rounds.

Note that minimizing R(T') with f; = --- = fp, f := fr, amounts to finding a minimum of f. In
particular, if R(T) is sub-linear, i.e., R(T) € o(T'), then z; is making progress towards the minimum:

R(T)e€o(T) = %Zf(xt) — f(z*) = 0, where f(z*) = min f(z). (25)



4.1 Follow the Regularized Leader

One algorithm that achieves sublinear regret is the regularized follow the leader algorithm, defined by
always playing

t—1
ot i argin[n 3 (o) + o). (26)
x s=1

and taking zg = 0.
For appropriate choices of the parameter 7, we can show that

R(T) < O(IIfE* NS ||Vft<mt>|) £ o(T), (27)
as required.

Now, in analogy to what we did above, we could make this algorithm be tuned to the geometry of
the problem by introducing a different (to Euclidean) norm || - ||z, in each step. Specifically, we could
have

t—1
z! ;= argmin {nz fs(x) + ||x||§{t] in which case R(T) < O<|x* — 2 Z ||Vft(mt)||Ht).
® s=1
It turns out that we can achieve the tighter bound

R(T) < gli% O(I’* — 20 Z ||Vft(xt)||H>, the minimum over positive definite H (29)
—

if we set H; to the square-root of the empirical covariance matrix

t—1 1/2
H, = (2_; st(mws(xs)T) : (30)

This latter choice is the AdaGrad algorithm. In machine learning, the covariance matrix may be too
large to fit inside memory, so another choice is to use the only the diagonal entries

t—1 1/2
H, = (Z diag Ht> : (31)
s=1

One benefit of (30) (and also (31)) is that it allows different coordinates of x to have different learning
rates. This is especially useful in cases coordinates of the data set have different rates of occurrence.
Consider a natural language setting where

x = (binary vector of 0’s and 1’s),ecv (32)

with one word v for every word in the vocabulary V. If v is a common word, then there will be many
I’s in the v*® column (e.g., ‘and’) which may not be very informative; on the other hand, a less common
word w may be very informative (e.g., ‘solipsism’). A different learning rate for every coordinate allows
us to “slow down” the not very helpful learning on the v*" coordinate without hampering the helpful
learning on the w'® one.
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