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1 Introduction
In supervised learning, our goal is to train models that minimize a given loss function over a distribution
of input-output pairs (x, y) ∼ D. When we train these models, however, we are only given access to
finite samples from the distribution (these finite samples constitute the training set). It is thus important
to consider the generalization error of machine learning models, which measure how reflective the loss
incurred on finite samples reflects the expected loss with respect to D.

In traditional machine learning settings, a canonical way to bound generalization error is through
Rademacher complexity. In this lecture, we derive “standard” generalization bounds for finite and infinite
classes of models.
Concretely, the goal of Rademacher complexity theory is to give an answer to the following question.

Main Question of this Lecture. How many samples from an unknown probability distri-
bution D do we need to draw to be able to approximate (with some accuracy) the expected
value of a function f(x) with x being drawn from D?

We now explain the relation of this question with the goal of bounding generalization error. We start
with a formal definition of generalization error.

Generalization error. In a learning problem, the goal is, using n < ∞ training samples, to find a
function gn(x) that predicts output values y based on some input data x. The expected error of gn is
then given by:

E [` (gn(x), y)] =

∫
X×Y

` (gn(x), y) dp(x, y), (1)

where `(·, ·) is a loss function, and p(x, y) is the (unknown) joint probability density of x and y. Without
knowing the joint pdf, it is impossible to precisely compute E [` (gn(x), y)]. Instead, we can compute the
empirical error on sample data. Given n data points, the empirical error is:

1

n

n∑
i=1

` (gn(xi), yi) , (2)

The generalization error is the difference between the expected and empirical error. This is the difference
between error on the training set and error on the underlying probability distribution. It is defined as:

generalization error =

∣∣∣∣∣ 1n
n∑
i=1

` (gn(xi), yi)− E [` (gn(x), y)]

∣∣∣∣∣ . (3)

Let X the domain of the variable x, Y the domain of the variable y and Z = X ×Y. To understand the
relation of generalization with the main question of this lecture, we can define

F = {f : Z → R | f(x, y) = `(g(x), y) and g ∈ G } ,

where G is the set of functions that we optimize over (e.g. the set of all linear classifiers). Using this
definition of F , the generalization error is equal to the error of computing Ez∼D[f(z)] for f ∈ F . Hence
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we see the reason that an answer to the main question of this lecture will give a bound on the general-
ization error of supervised learning.

Having this intuition in mind as our final goal we now describe more formally the setting of this lecture.

Setting. For this lecture, we fix a real positive value H, a domain Z, an unknown distribution D over
Z and a class of functions F which map from the domain to the interval [−H,H]:

F ⊆ {f | f : Z → [−H,H]} .

Notice that F may not be finite in general.

Goal. Given m samples z1, . . . , zm
i.i.d∼ D, and a model class F , we wish to obtain a bound on how

finite-sample means approximate the true expectation of each function f in the class:∣∣∣∣∣ 1

m

m∑
i=1

f(zi)− Ez∼D[f(z)]

∣∣∣∣∣ , ∀ f ∈ F .
Observations: Using tools from classical statistics, we can make the following observations about
generalization, which all lead up to a concrete generalization bound for finite-sized function classes:
1. For any fixed f ∈ F , drawing m = Θ

(
log(1/δ)

ε2

)
samples guarantees that with probability at least

1− δ we can bound the estimation error as∣∣∣∣∣ 1

m

m∑
i=1

f(zi)− Ez[f(z)]

∣∣∣∣∣ ≤ εH.
Proof This follows from an application of Hoeffding’s Inequality, given below.

Theorem 1 (Hoeffding’s Inequality (Theorem 2.8 of [4])) Let X1, . . . , Xn be independent ran-
dom variables such that Xi takes its values in [ai, bi] almost surely for all i ≤ n. Let

S =

n∑
i=1

(Xi − E [Xi]) ,

then for every t > 0,

Pr (S ≥ t) ≤ exp

(
− 2t2∑n

i=1(ai − bi)2

)
.

Since samples the z = (z1, z2, . . . , zm) are i.i.d. drawn from D, we know:

Ez∼Dm

[
1

m

m∑
i=1

f(zi)

]
=

1

m

m∑
i=1

Ezi∼D [f(zi)] =
1

m
m · Ez∼D[f(z)] = Ez∼D[f(z)].

Here, the second equality utilizes the i.i.d. assumption. Additionally, we know that −H ≤ f(z) ≤ H.
We can thus utilize Hoeffding’s Inequality on the empirical estimation 1

m

∑m
i=1 f(zi). By Hoeffding’s

Inequality to the random variable 1
m

∑m
i=1 f(zi), with the threshold ε ·H, we get

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

f(zi)− Ez

[
1

m

m∑
i=1

f(zi)

]∣∣∣∣∣ ≥ ε ·H
)
≤ 2 exp

(
− 2ε2H2

4m ·H2

)
(4)

Here, the denominator of the exponential on the right hand side utilizes the boundedness of f(z). Using
(4), we can simplify this to

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

f(zi)− Ez∼D[f(z)]

∣∣∣∣∣ ≥ εH
)
≤ 2 exp

(
− ε2

2m

)
.
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If we set δ = 2 exp
(
− ε2

2m

)
, then with probability at least 1− δ, we have:∣∣∣∣∣ 1

m

m∑
i=1

f(zi)− Ez∼D[f(z)]

∣∣∣∣∣ ≤ εH
Solving for m from δ, we get

δ = 2 exp(−ε2/2m) =⇒ log δ = log 2− ε2

2m
=⇒ m =

log 2 + log(1/δ)

2ε2
=⇒ m = Θ

(
log(1/δ)

ε2

)
.

2. If F is finite, drawing m = Θ
(

log(|F|/δ)
ε2

)
samples guarantees the same error bound simultaneously

on all f ∈ F . Namely, with probability at least 1− δ,∣∣∣∣∣ 1

m

m∑
i=1

f(zi)− Ez[f(z)]

∣∣∣∣∣ ≤ εH ∀f ∈ F .

Proof This proof is obtained by an application of the union bound to the previous result. Consider the
application of generalization bound obtained in the previous result to any particular function fj(z) ∈ F .
We have:

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

fj(zi)− Ez∼D[fj(z)]

∣∣∣∣∣ ≥ εH
)
≤ 2 exp

(
− ε2

2m

)
If we apply the Union Bound for the probabilities obtained for each function fj ∈ F , since F is finite,
we have:

Pr

⋃
j

(
| 1
m

m∑
i=1

fj(zi)− Ez∼D[fj(z)]| ≥ εH

) ≤∑
j

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

fj(zi)− Ez∼D[fj(z)]

∣∣∣∣∣ ≥ εH
)

≤ 2|F| exp

(
− ε2

2m

)
.

Since we wish that the error bound is followed for all functions within F , we are interested in the negative
event:

1− Pr

⋂
j

(∣∣∣∣∣ 1

m

m∑
i=1

fj(zi)− Ez∼D[fj(z)]

∣∣∣∣∣ ≤ εH
) ≤ 2|F| exp

(
− ε2

2m

)

Setting δ = 2|F| exp
(
− ε2

2m

)
, we have that with probability at least 1− δ:∣∣∣∣∣ 1

m

m∑
i=1

f(zi)− Ez∼D[f(z)]

∣∣∣∣∣ ≤ εH, ∀f ∈ F
Solving for m from δ, we get:

δ = 2|F| exp(−ε2/2m) =⇒ log δ = log 2 + log |F| − ε2

2m
=⇒

=⇒ m =
log 2 + log(|F|/δ)

2ε2
=⇒ m = Θ

(
log(|F|/δ)

ε2

)
.

Although using the trivial observations (1) and (2) yields a bound on the number of samples that we
need, we don’t get anything for the most interesting case where F is infinite. To obtain strong bounds
for the infinite case we need to develop a theory called Rademacher Complexity.
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2 Rademacher Complexity
It is very easy to observe that if F is any infinite set of functions, then there no way to get any bound
on the generalization error given only a finite number of samples from D. To see why this is true, lets
consider F = {f | f : [0, 1]→ [0, 1]} and D = U([0, 1]). Now let S = {z1, . . . , zm} be an arbitrary finite
set of m samples drawn from Dm. We can then define

fS(z) =

{
1 z ∈ S
0 otherwise

.

Then we observe that fS ∈ F and that

1. 1
m

∑m
i=1 fS(zi) = 1,

2. Ez∼D [fS(z)] = 0,

hence the generalization error is 1 independently ofm. This implies that for any finite number of samples
m there exists one function in F such with generalization error equal to 1.

Hence, in order to give any non-trivial bound on the generalization error, when F is infinite, we will
first need to bound the complexity of the set F . There are many ways to bound the complexity of a
class of functions F , one important such measure is Rademacher complexity.

Definition 2 Given a set S = {z1, . . . , zm} ⊆ Z, the empirical Rademacher Complexity of the class of
functions F with respect to S is:

R̂S(F) = Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(zi)

]
(5)

where σ is a uniformly random sign vector of dimensionm
(
σ
u.a.r.∼ {−1,+1}m

)
(known as a Rademacher

Random Variable).

The supremum measures the maximum correlation between f and a random sign vector. Conceptu-
ally, this captures the ability of the set of functions F to fit random noise. Observe that this definition
is with respect to a specific set of samples S. We can define the population version of this notion with
respect to the distribution D itself.

Definition 3 The Rademacher Complexity of F with respect to a probability distribution D over Z, is
given by

Rm(F) = ES∼Dm

[
R̂S(F)

]
.

2.1 Generalization bounds from Rademacher Complexity
We next show how we can use a bound on Rademacher complexity of a class of functions F to prove
strong generalization bounds.

Theorem 4 Let Z be an arbitrary domain set and D be a probability distribution over Z. Also, let
δ ∈ (0, 1), F ⊆ {f | f : Z → [α, α+ 1]} and S = {z1, . . . , zm} ∼ Dm, then with probability at least 1− δ,
for all f ∈ F , it holds that

Ez∼D [f(z)] ≤ ÊS [f(z)] + 2Rm(F) +

√
log(1/δ)

m
. (6)

Also, for all f ∈ F ,

Ez∼D [f(z)] ≤ ÊS [f(z)] + 2R̂s(F) + 3

√
log(2/δ)

m
. (7)

where ES [f(z)]
def
= 1
|S|
∑
z∈S f(z).
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At a high level, the theorem states that if the Rademacher complexity of F is small and we draw enough
samples, the empirical estimate of the expected value of f(z) is close to the true expectation.

On examining this result in detail, we see that on the left had side of Equation 6, we have the ex-
pected value of a function belonging to the finite function class F over the true data distribution D. On
the right hand side, we have the empirical mean of the same function evaluated over a set of samples
S that have been drawn independently from Z. What both the statements of the Theorem suggest is
that the expected mean over the true distribution is bounded by the empirical mean over the samples
with two additional terms, the first denoting the Rademacher complexity (and empirical Rademacher
complexity in Equation 7) of the function class itself, and the second involving the number of samples
present in S. We can see that if we take more samples, this bound becomes tighter and the last term
vanishes as m→∞.

Additionally, if we choose a function class that has a higher ability to fit to random Rademacher
random variables, it will have a higher Rademacher complexity, which will in turn make the bounds
provided in Theorem 4 weaker. This result is as expected, because if we choose a class of functions
F that have a higher capacity to fit any random sample S from D, we can expect that the empirical
mean of f on the observed data (ÊS [f(z)]) will be a weaker substitute for the expected mean Ez∼D [f(z)].

Proof To prove the two results (6) and (7), we will require the following concentration bound:

Theorem 5 (McDiarmid’s Inequality (Theorem 3.1 in [5])) Let x1, x2, ..., xn be independent ran-
dom variables taking values from on a set A, and let c1, c2, ..., cn be positive real constants. If φ : An → R
satisfies

sup
x1,...,xn,x′i∈A

|φ(x1, ..., xi, ..., xn)− φ(x1, ..., x
′
i, ..., xn)| ≤ ci,

for 1 ≤ i ≤ n, then

Pr (φ(x1, ..., xn)− E[φ(x1, ..., xn)] ≥ ε) ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
.

Now, from the definition of the supremum, we can write:

Ez∼D[f(z)] ≤ ÊS [f(z)] + sup
h∈F

(
Ez∼D[h(z)]− ÊS [h(z)]

)
.

We replace φ(S) = suph∈F

(
Ez∼D[h(z)]− ÊS [h(z)]

)
. This function is called the representativeness of

S with respect to the function class F , domain Z and distribution D . We now bound φ(S) using the
McDiarmid Inequality, and then bound its expectation in terms of Rademacher complexity to complete
the proof. Let S = {z1, . . . , zm} and S ′ = {z1, . . . , z

′
j , . . . , zm}. Without loss of generality we can assume

that φ(S) ≥ φ(S ′). If this is not the case then we can swap S and S ′ and continue.

For any h∗ ∈ F , we have:

Ez∼D[h∗(z)]− ÊS [h∗(z)]−
(
Ez∼D[h∗(z)]− ÊS′ [h∗(z)]

)
≤∣∣∣Ez∼D[h∗(z)]− ÊS [h∗(z)]−

(
Ez∼D[h∗(z)]− ÊS [h∗(z)]

)∣∣∣ ,
which implies

Ez∼D[h∗(z)]− ÊS [h∗(z)] ≤∣∣∣Ez∼D[h∗(z)]− ÊS [h∗(z)]−
(
Ez∼D[h∗(z)]− ÊS [h∗(z)]

)∣∣∣+
(
Ez∼D[h∗(z)]− ÊS′ [h∗(z)]

)
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Over the set F , we can write:

sup
h∗∈F

Ez∼D[h∗(z)]− ÊS [h∗(z)] ≤ sup
h∗∈F

[∣∣∣Ez∼D[h∗(z)]− ÊS [h∗(z)]−
(
Ez∼D[h∗(z)]− ÊS [h∗(z)]

)∣∣∣
+
(
Ez∼D[h∗(z)]− ÊS′ [h∗(z)]

)]
(8)

≤ sup
h∗∈F

∣∣∣Ez∼D[h∗(z)]− ÊS [h∗(z)]−
(
Ez∼D[h∗(z)]− ÊS [h∗(z)]

)∣∣∣
+ sup
h∗∈F

(
Ez∼D[h∗(z)]− ÊS′ [h∗(z)]

)
(9)

Substituting the representativeness back in the equations, we have:

φ(S) ≤ sup
h∗∈F

∣∣∣Ez∼D[h∗(z)]− ÊS [h∗(z)]−
(
Ez∼D[h∗(z)]− ÊS′ [h∗(z)]

)∣∣∣+ φ(S ′) (10)

φ(S)− φ(S ′) ≤ sup
h∗∈F

∣∣∣Ez∼D[h∗(z)]− ÊS [h∗(z)]−
(
Ez∼D[h∗(z)]− ÊS′ [h∗(z)]

)∣∣∣ (11)

Since φ(S) ≥ φ(S ′), we have:

|φ(S)− φ(S ′)| ≤ sup
h∗∈F

∣∣∣Ez∼D[h∗(z)]− ÊS [h∗(z)]−
(
Ez∼D[h∗(z)]− ÊS′ [h∗(z)]

)∣∣∣ (12)

= sup
h∗∈F

(
Ez∼D[h∗(z)]− ÊS [h∗(z)]− Ez∼D[h∗(z)] + ÊS′ [h∗(z)]

)
(13)

= sup
h∗∈F

∣∣∣ÊS′ [h∗(z)]− ÊS [h∗(z)]
∣∣∣ (14)

=
1

m
sup
h∗∈F

∣∣∣∣∣
(∑
z∈S

h∗(z)−
∑
z∈S′

h∗(z)

)∣∣∣∣∣ . (15)

But S and S ′ differ only in the jth sample, therefore

|φ(S)− φ(S ′)| ≤ 1

m
sup
h∗∈F

∣∣h∗(zj)− h∗(z′j)∣∣ . (16)

Since h∗ : Z → [α, α+ 1], we have that suph∗∈F,zj∈Z |h
∗(zj)− h∗(z′j)| = 1. Therefore

|φ(S)− φ(S ′)| ≤ 1

m
. (17)

The above result can also be intuitively explained by the fact that the output of every function h ∈ F
is subset of [α, α + 1], therefore the maximum change possible in h(z) is 1. When averaging, this is
scaled down by a factor of 1/m. Thus, we now observe that φ satisfies the boundedness condition that
is required to apply McDiarmid’s Inequality. Applying McDiarmid’s Inequality on φ(S) with threshold
t, we get

Pr (φ(S)− E[φ(S)] ≥ t) ≤ exp (−t2m).

Setting δ = exp (−t2m) and solving for t, we get that the probability is less than δ iff t ≥
√

log(1/δ)
m .

Thus, with probability at least 1− δ, we have (by using the definition of supremum from earlier):

Ez∼D[f(z)] ≤ ÊS [f(z)] + ES
[

sup
h∈F

(
Ez∼D[h(z)]− ÊS [h(z)]

)]
+

√
log(1/δ)

m
. (18)

This gives us a result in the expected form of the final result. However, we have to yet bound the
expectation of the supremum in terms of the Rademacher Complexity. To do this, consider a set of m
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samples S̄ = {z̄1, . . . , z̄m} drawn i.i.d. from D and independently of S. We have that ES̄ [ÊS̄ [h(z)]|S] =

Ez∼D[h(z)] and ES̄ [ÊS [h(z)]|S] = ÊS [h(z)] from the independence and identical assumptions. Using
this, we can rewrite the expectation of supremum as:

ES
[

sup
h∈F

(
Ez∼D[h(z)]− ÊS [h(z)]

)]
= ES

[
sup
h∈F

ES̄
[(

ES̄ [h(z)]− ÊS [h(z)]
)
| S
]]

= ES

[
sup
h∈F

ES̄

[(
1

m

m∑
i=1

h(z̄i)−
1

m

m∑
i=1

h(zi)

)
| S

]]

= ES

[
sup
h∈F

ES̄

[
1

m

m∑
i=1

(h(z̄i)− h(zi))| S

]]
Using the fact that the supremum of expectation is smaller than expectation of the supremum we obtain:

ES

[
sup
h∈F

ES̄

[
1

m

m∑
i=1

(h(z̄i)− h(zi))|S

]]
≤ ES,S̄

[
sup
h∈F

1

m

m∑
i=1

(h(z̄i)− h(zi))

]
Now, we note an important fact. Since both z̄j and zj are i.i.d. variables for each j, therefore:

ES,S̄

 1

m
sup
h∈F

h(z̄j)− h(zj) +

m∑
i=1,i6=j

(h(z̄i)− h(zi))

 = ES,S̄

 1

m
sup
h∈F

h(zj)− h(z̄j) +

m∑
i=1,i6=j

(h(z̄i)− h(zi))


If we set random variable σj such that Pr(σj = 1) = Pr(σj = −1) = 1

2 , then we have, by the above
equation:

ES,S̄,σj

 1

m
sup
h∈F

σj(h(z̄i)− h(zi)) +

m∑
i=1,i6=j

(h(z̄i)− h(zi))

 = ES,S̄

 1

m
sup
h∈F

h(z̄i)− h(zi) +

m∑
i=1,i6=j

(h(z̄i)− h(zi))


Writing this for all j, we have:

ES,S̄

[
sup
h∈F

1

m

m∑
i=1

(h(z̄i)− h(zi))

]
= Eσ,S,S̄

[
sup
h∈F

1

m

m∑
i=1

σi(h(z̄i)− h(zi))

]

≤ Eσ,S,S̄

[
sup
h∈F

1

m

m∑
i=1

σi(h(z̄i)) + sup
h∈F

1

m

m∑
i=1

σi(h(zi))

]

= Eσ,S

[
sup
h∈F

1

m

m∑
i=1

σi(h(z̄i))

]
+ Eσ,S̄

[
sup
h∈F

1

m

m∑
i=1

σi(h(zi))

]
= 2Rm(F)

Substituting this result in (18), we get the result in (6). To obtain (7), we first note that R̂S(F) satisfies
the condition for McDiarmid’s Inequality. Consider S ′ = {z′1, ..., z′m} such that S ′ differs from S only in
element j, then

|R̂S(F)− R̂S′(F)| =

∣∣∣∣∣Eσ
[

sup
f∈F

1

m

m∑
i=1

σif(zi)

]
− Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(z′i)

]∣∣∣∣∣
=

∣∣∣∣∣Eσ
[

sup
f∈F

1

m

m∑
i=1

σif(zi)− sup
f∈F

1

m

m∑
i=1

σif(z′i)

]∣∣∣∣∣
≤

∣∣∣∣∣Eσ
[

sup
f∈F

(
1

m

m∑
i=1

σif(zi)−
1

m

m∑
i=1

σif(z′i))

]∣∣∣∣∣
=

1

m

∣∣∣∣∣Eσ
[

sup
f∈F

m∑
i=1

σi(f(zi)− f(z′i))

]∣∣∣∣∣ .
7



Since by definition, zi = z′i for all i 6= j, we get

≤ 1

m

∣∣∣∣∣Eσ
[

sup
f∈F

σj(f(zj)− f(z′j))

]∣∣∣∣∣
≤ 1

m

∣∣∣∣∣12
[

sup
f∈F

(f(zj)− f(z′j)) + sup
f∈F

(f(z′j)− f(zj))

]∣∣∣∣∣
Since f : Z → [α, α+ 1], supzj ,z′j∈Z |f(zj)− f(z′j)| = 1. Therefore:

|R̂S(F)− R̂S′(F)| ≤ 1

m

Thus, we see that the empirical Rademacher complexity satisfies the precondition of McDiarmid’s In-
equality. Using the result of (6), we can say that with probability at least 1− δ/2:

Ez∼D [f(z)] ≤ ÊS [f(z)] + 2Rm(F) +

√
log(2/δ)

m

By applying McDiarmid’s Inequality on the empirical Rademacher Complexity, we can see that with
probability at least 1− δ/2:

ES∼Dm [R̂S(F)] ≤ R̂S(F) +

√
log(2/δ)

m

By the definition of Rademacher Complexity, we can substitute:

Rm(F) ≤ R̂S(F) +

√
log(2/δ)

m

Substituting this back in the previous result, we get that with probability at least (1− δ/2)2 ≥ 1− δ:

Ez∼D [f(z)] ≤ ÊS [f(z)] + 2R̂S(F) + 3

√
log(2/δ)

m

Which is the required result.

Remarks:

• We can lower bound the true expectation using the same bound with slightly updated constants.
With probability at least 1− δ:

|Ez∼D [f(z)]− ES [f(z)]| ≤ 2Rm(F) +

√
log(2/δ)

m
,

|Ez∼D [f(z)]− ES [f(z)]| ≤ 2R̂S(F) + 3

√
log(4/δ)

m
.

F does not need to contain functions mapping Z to a unit length interval. We can generalize the above
results by the following Theorem:

Theorem 6 If F ⊆ {f : Z → [1, H]}, then

|Ez∼D [f(z)]− ES [f(z)]| ≤ 2Rm(F) + (H − 1)

√
log(2/δ)

m
,

|Ez∼D [f(z)]− ES [f(z)]| ≤ 2R̂S(F) + 3(H − 1)

√
log(4/δ)

m
.

We now apply the theorem to the simple example of CDF estimation.
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Example: CDF estimation
Let Z = R, D be an arbitrary distribution over Z, F the set of indicator functions of intervals, that is
F = {1[a,b](·) ∀a ≤ b} and S = {z1, . . . , zm} ∼ Dm. We give an upper bound on R̂S(F). Without loss
of generality, suppose zi are ordered so that z1 ≤ z2 ≤ . . . ≤ zm, note that

R̂S(F) = Eσ

[
sup
a≤b

1

m

m∑
i=1

σi1[a,b](zi)

]
. (19)

So supa≤b
∑m
i=1 σi1[a,b](zi) essentially asks us to choose a and b from zi as well as the intervals made

by them to include the most number of positive 1 but the least number of −1. Therefore, there exists a
set F ′ ⊆ F , such that |F ′| = O(m2) and R̂S(F ′) = R̂S(F). For a fixed pair of (a, b) ∈ F ′ and for some
appropriate constant c, we have

Pr

∣∣∣∣∣∣
∑

a≤zi≤b

σi

∣∣∣∣∣∣ ≥ c√m logm

 ≤ 1

m3
(20)

by Hoeffding’s inequality (Theorem 1). A union bound further gives

Pr

∃a, b ∈ F ′ :

∣∣∣∣∣∣
∑

a≤zi≤b

σi

∣∣∣∣∣∣ ≥ c√m logm

 ≤ 1

m
. (21)

Hence, we have R̂S(F ′) ≤ c
√

logm
m for some constant c.

Applying the generalization bounds from Theorem 6 shows that

∀a ≤ b D([a, b]) ≤ D̂([a, b]) + 2R̂S(F) + 3

√
log(1/δ)

m
, (22)

where D([a, b]) the probability that a sample from D lies in [a, b]. As we show in the beginning of the

section, we have R̂S(F ′) ≤ c
√

logm
m for some constant c, and hence

∀a ≤ b D([a, b]) ≤ D̂([a, b]) + c

√
logm

m
+ 3

√
log(1/δ)

m
. (23)

This implies that we can learn the CDF of D up to an additive factor.

Figure 1 shows a simulated example of CDF estimation of a standard normal, and compares the
derived theoretical bound with the empirical bound of the simulation. The theoretical error bound is
very loose with m, but it quickly gets tighter with increasing m and captures reality quite closely when
m is on the order of a thousand samples.

3 Properties of the Empirical Rademacher Complexity
We will now enumerate a few properties of the empirical Rademacher complexity. We fix the set S =
{z1, z2, ..., zm} ⊆ Z, and set the function classes F ,F ′ ⊆ {f : Z → [L,H]}.

1. The Rademacher complexity of a set is not smaller than that of its subset, i.e., if F ′ ⊂ F , we have:

R̂S(F ′) ≤ R̂S(F)

This result is trivial to obtain from the definition of the Rademacher complexity itself, by using
the property that the supremum over a set S ′ is always greater than or equal to the supremum of
a subset of S ′.
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Figure 1: Empirical and theoretical error bounds for CDF estimation of a standard normal. First the
[a,b] range with the worst empirical generalization error was identified. Then for that [a,b] range the
empirical probability of a sample falling in that range was computed using different numbers of training
samples (m). The empirical probability was then compared to the true probability of a sample falling
in that [a,b] range given a standard normal distribution.

2. For a fixed function h : Z → R, we have:

R̂S(F + h) = R̂S(F).

Proof

R̂S(F + h) =Eσ

[
sup
f∈F

1

m

m∑
i=1

σi(f(zi) + h(zi))

]

=Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(zi)

]
+ Eσ

[
1

m

m∑
i=1

σih(zi)

]

=Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(zi)

]
=R̂S(F).

3. For a function class F , let conv(F) denote the convex hull of the function class, given by conv(F) =
{
∑p
k=1 µkfk : p ≥ 1, µk ≥ 0,

∑p
k=1 µk ≤ 1, fk ∈ F}. Then, we have:

R̂S(conv(F)) = R̂S(F).

10



Proof

R̂S(conv(F)) =
1

m
Eσ

[
sup

fk∈F,µ≥0,‖µ‖≤1

m∑
i=1

σi

p∑
k=1

µkfk(zi)

]

=
1

m
Eσ

[
sup
fk∈F

sup
µ≥0,‖µ‖≤1

p∑
k=1

µk
( m∑
i=1

σifk(zi)
)]

=
1

m
Eσ

[
sup
fk∈F

max
k∈[1,p]

( m∑
i=1

σifk(zi)
)]

=
1

m
Eσ

[
sup
fk∈F

m∑
i=1

σif(zi)

]
= R̂S(F).

4. For F ,F ′ as defined earlier, define F + F ′ = {f1 + f2 : f1 ∈ F , f2 ∈ F ′} , we have

R̂S(F + F ′) = R̂S(F) + R̂S(F ′).

Proof

R̂S(F + F ′) = Eσ

[
sup

f∈F+F ′

m∑
i=1

σif(zi)

]

= Eσ

[
sup

f1∈F,f2∈F ′

m∑
i=1

σi(f1(zi) + f2(zi))

]

= Eσ

[
sup
f1∈F

m∑
i=1

σi(f1(zi)) + sup
f2∈F ′

m∑
i=1

σi(f2(zi))

]

= Eσ

[
sup
f∈F

m∑
i=1

σi(f(zi))

]
+ Eσ

[
sup
f∈F ′

m∑
i=1

σi(f(zi))

]
= R̂S(F) + R̂S(F ′)

5. For functions φ1(·), φ2(·), ..., φm(·), φi : R→ R, with each φi being c-Lipschitz, we have:

Eσ

[
sup
f∈F

m∑
i=1

σiφi(f(zi))

]
≤ c · Eσ

[
sup
f∈F

m∑
i=1

σif(zi)

]

Proof We first prove:

Eσ

[
sup
f∈F

m∑
i=1

σiφi(f(zi))

]
≤ Eσ

[
sup
f∈F

(
m−1∑
i=1

σiφi(f(zi)) + cσmf(zm)

)]
.
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For fixed σ1, . . . , σm−1, we have

sup
f∈F

(
m−1∑
i=1

σiφi(f(zi)) + φm(f(zm))

)
+ sup
f ′∈F

(
m−1∑
i=1

σiφi(f
′(zi))− φm(f ′(zm))

)

= sup
f,f ′∈F

(
m−1∑
i=1

σiφi(f(zi)) +

m−1∑
i=1

σiφi(f
′(zi)) + φm(f(zm))− φm(f ′(zm))

)

≤ sup
f,f ′∈F

(
m−1∑
i=1

σiφi(f(zi)) +

m−1∑
i=1

σiφi(f
′(zi)) + c|f(zm)− f ′(zm)|

)

= sup
f,f ′∈F

(
m−1∑
i=1

σiφi(f(zi)) +

m−1∑
i=1

σiφi(f
′(zi)) + c(f(zm)− f ′(zm))

)

=Eσm

[
sup
f∈F

(
m−1∑
i=1

σiφi(f(zi)) + cσmf(zm)

)]
.

Here, the second last step follows from the fact that one can always exchange f and f ′ to peel the
absolute value sign off. We can proceed all the way from m to 1 to arrive at the conclusion.

6. Suppose we have l : R→ R, and l is c-Lipschitz, then:

R̂S(l ◦ F) ≤ c · R̂S(F)

The proof of this property follows immediately from the one above.

7. If F is finite, then [6]

R̂S(F) ≤ (H − L)

√
2 log |F|

m
(Massart’s lemma) (24)

Proof Consider the family FL such that FL = {f−L|f ∈ F}. Thus, for all f ∈ FL, 0 ≤ f(z)2 ≤
(H − L)2. We can see by Property (2):

R̂S(FL) = R̂S(F − L) = R̂S(F)

Now, by Jensen’s Inequality, we have for t > 0:

exp

(
tEσ

[
sup
f∈FL

1

m

m∑
i=1

σif(zi)

])
≤ Eσ

[
exp

(
t sup
f∈FL

1

m

m∑
i=1

σif(zi)

)]
,

since the supremum is less than or equal to the summation of all elements in a set,

≤
∑
f∈FL

Eσ

[
exp

(
m∑
i=1

t

m
σif(zi)

)]

≤
∑
f∈FL

Eσ

[
m∏
i=1

exp

(
t

m
σif(zi)

)]

=
∑
f∈FL

m∏
i=1

Eσ
[
exp

(
t

m
σif(zi)

)]
,
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by applying Hoeffding’s lemma, we also get

≤
∑
f∈FL

m∏
i=1

exp

(
4t2f(zi)

2

8m2

)

≤
∑
f∈FL

m∏
i=1

exp

(
t2(H − L)2

2m2

)

=
∑
f∈FL

exp

(
t2(H − L)2

2m

)

= |F| exp

(
t2(H − L)2

2m

)
Finally taking logarithms and dividing by t, we get

Eσ

[
sup
f∈FL

1

m

m∑
i=1

σif(zi)

]
≤ log |F|

t
+
t(H − L)2

2m
.

Setting t =
√

2 log |F|m
(H−L)2 , we get:

R̂S(FL) ≤ 2(H − L)

√
log |F|

2m

Simplifying, we get the final form of Massart’s Lemma (since R̂S(FL) = R̂S(F)):

R̂S(F) ≤ (H − L)

√
2 log |F|

m
.

The same properties hold for the Rademacher complexity as well. Using these properties, we can derive
a connection between the Rademacher complexity of function classes, and supervised learning.

4 Generalization Bounds of Supervised Learning
We now apply the results from Rademacher complexity to study generalization bounds in supervised
learning settings. We first give the basic definitions for this setting. We define

- the domain set X from which we sample from (e.g. X is a set of images),

- the set of labels Y (usually a finite set)

- the concept class H ⊆ {h : X → Y },

- the set of samples S = {(x1, y1), . . . , (xm, ym)} with m observations of (X,Y ) drawn i.i.d. from
the data distribution D,

- the loss function L : Y × Y → R, which provides us with a penalty measure between two labels.
Examples of such a loss function are the MSE (Mean Squared Error) : ‖y − ŷ‖22, or the rate of
misclassification : 1{y 6= ŷ}.
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In the image classification problem, we can think of H as a family of classifiers and pairs of (x, y) as an
image x along with its label y. In the supervised learning, our goal is to choose a “good” h ∈ H. Here,
“good” refers to an h that minimizes the expected value of our loss function, given our empirical data.
Empirical Risk Minimization (ERM) corresponds to solving the problem:

ĥ = arg min
h∈H

1

m

m∑
i=1

L(h(xi), yi)

Our hope is that the solution we choose generalizes well, i.e., has small loss on the true distribution.
To this end, we want to show that the empirical estimate of the average loss is close to the average
loss over the true distribution. Consider Z = X × Y,F = {L(h(x), y), h ∈ H}. Let S be the set of
m observations drawn i.i.d. from D, hence S = ((xi, yi)i=1...m). By the expectation bound from the
empirical Rademacher complexity, we have:

∀h ∈ H : ED[L(h(x), y)] ≤ ÊS [L(h(x), y)] + 2R̂S(F) + 3

√
log 1

δ

m

If we expand R̂s(F):

R̂s(F) = Eσ

[
sup
fk∈F

m∑
i=1

σiL(h(xi), yi)

]
Now, consider the functions φi(h) = L(h(xi), yi), hence we have an individual loss function for each data
point in our training set. By the choice of loss function, if we select L such that all φi are L-Lipschitz,
then we can bound the expected error by the Rademacher complexity of our concept class H (by using
Properties (5) and (6) from earlier):

∀h ∈ H : ED[L(h(x), y)] ≤ ÊS [L(h(x), y)] + 2LR̂S(H) + 3

√
log 1

δ

m

4.1 Applications to LASSO
The LASSO problem is the problem of linear regression where we desire sparsity in our coefficients.
Since sparsity in terms of the number of non-zero variables is non-convex and even hard to approximate,
we solve the relaxed problem where we minimize the `1 norm of the coefficients. The problem can
hence be given by - given a set of observations (xi, yi)i=1...m, xi ∈ Rd, yi ∈ R, we wish to learn weights
f = (fi), i = 1...d by solving the following problem:

min
f∈Rd

m∑
i=1

(
yi − fTxi

)2
such that ‖f‖1 ≤ R

If we obtain say f∗ that minimizes this objective, we can obtain an understanding of the generalizability
of this function by applying the bounds obtained earlier. In particular, for the LASSO problem with
dimensionality d and sparsity R, we obtain a bound:

R̂S(H) ≤
√

log d

m
·R · ‖x‖∞

This bound tells us that the generalization performance depends linearly only on the sparsity R we desire
and not on the total number of dimensions. In cases where the dimensionality of the problem is high,
yet the features are sparse, this bound tells us that LASSO will not require samples that are linear in
d to obtain a certain error value, but will depend on the amount of sparsity we wish to enforce in the
solution.

Figure 3 shows the generalization error obtained by training a LASSO classifier on 2-dimensional
Guassian data (Figure 2 shows the target distribution) using projected gradient descent to ensure the
`1 norm of the coefficients remains within the pre-defined range throughout training. The figure also
shows the theoretically derived bound for each experiment. Again, the theoretical bound is loose at
small number of training samples, but captures reality more closely as the number of training samples
grows.
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Figure 2: Target distribution used for the LASSO and k-layered neural network simulations
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Figure 3: Theoretically derived and empirically computed generalization error bounds for training a
LASSO classifier on 2-dimensional data using different numbers of training samples (m), and holding
the `1 norm of the coefficients within the range [0.8,1] throughout training. The error measure used
is mean squared error, and for each experiment the same number of samples is used for training and
testing.
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Figure 4: A 3-layered neural network

4.2 Applications to K-layered Neural Network
Now we will consider a neural network with K layers. For the ease of presentation, we define the neural
network recursively. For an arbitrary base class of predictors F1, we recursively define the subsequent
class of neural network predictors for layer i as:

Fi =

x→∑
j

wijσ(fj(x)),∀j, fj ∈ Fi−1, ‖wi‖1 ≤ Bi


where σ is a 1-Lipschitz link function.

Theorem 7 The empirical Rademacher complexity of a K-layered neural network can be bounded as

R̂S(FK) ≤

(
K∏
i=1

2Bi

)
· R̂S(F1).

Proof We can bound the empirical Rademacher complexity of the ith layer of the neural network
recursively:

R̂S(Fi) =
1

n
Eε

 sup
∀j,fj∈Fi−1,‖wi‖1≤Bi

n∑
t=1

∑
j

εtw
i
jσ(fj(xt)


≤ 1

n
Eε

[
sup

∀j,fj∈Fi−1,‖wi‖1≤Bi

‖wi‖1 max
j

∣∣∣∣∣
n∑
t=1

εtσ(fj(xt)

∣∣∣∣∣
]

=
Bi
n
Eε

[
sup

f∈Fi−1

∣∣∣∣∣
n∑
t=1

εtσ(f(xt)

∣∣∣∣∣
]

≤ 2Bi
n

Eε

[
sup

f∈Fi−1

∣∣∣∣∣
n∑
t=1

εtσ(f(xt)

∣∣∣∣∣
]

≤ 2BiR̂S(Fi−1)

Hence, we conclude the theorem.

Intuitively, one can think of Bi as the width of the neural network as it upper bounds the `1 norm of
wi, and we can see that the Rademacher complexity of K-layered neural network grows quickly as the
width and the number of layers increases.
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Figure 5: Theoretically derived and empirically computed generalization error bounds for training a
3-layered neural network classifier on 2-dimensional data using different number of training samples (m).
Projected gradient descent was used to train w2 and w3 as lasso classifiers keeping the `1 norm of the
coefficients in the range [0.8,1] during training. The error measure used is mean squared error, and F1 is
simply the input training samples. For each experiment, the same number of samples is used for training
and testing.

4.2.1 Further Results on K-Layered Neural Network

Several existing works have established the generalization bounds of K-layered neural network. Below
is a table that summarizes the results when the activation function is ReLU. Here γ refers to the output
margin on the training set while hi refers to the number of hidden units in layer i, and h = maxi∈[K] h

i.
One may note that the nuisance factors like depth and log h are ignored. Here, the bounds marry the
generalization error with different norms of the weight parameters, specifying that the larger the range
of the weights, the larger the generalization bounds. Also, the generalization error becomes small as the
output margin grows.

[3] 1
γ2

∏K
i=1 ‖wi‖1,∞

[8] 1
γ2

∏K
i=1 ‖wi‖2F

[2] 1
γ2

∏K
i=1 ‖wi‖2F

∑K
i=1

‖wi‖21,2
‖wi‖22

[7] 1
γ2

∏K
i=1 ‖wi‖2F

∑K
i=1 hi

‖wi‖2F
‖wi‖22

[1] 1
γ2 maxx∈S ‖f(x)‖22

∑K
i=1

β2c2i dκ/se
µ2
iµ

2
i→

Figure 5 shows the generalization error obtained from training a 3-layered neural network to classify
data drawn from the distribution shown in figure 2. The theoretical bound for each experiment is also
shown, and it can be observed that the the theoretical bound captures reality more closely as the number
of training samples increases.
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4.2.2 A note about deep neural networks

As we will see in Lecture 5, it turns out that while Rademacher complexity is a powerful and useful
framework for proving generalization bounds for a variety of machine learning models, its applicability
to deep learning is dubious. In particular, results point to the fact that deep neural networks actually
can fit random noise, making the bounds obtained with empirical Rademacher complexity immediately
vacuous.
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