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Lecture 4: Optimization Landscape of Deep Learning
Lecturer: Aleksander Mądry Scribes: Nishanth Dikkala, Pritish Kamath, Devendra Shelar

(Revised by Andrew Ilyas and Dimitris Tsipras)

Disclaimer: Our understanding of deep learning is still severely lacking and mostly conjectural. As a
result, the statements in these lecture notes often take the point of view of the paper that introduced the
respective techniques/conjecture and should not be treated as conclusive explanations for the intriguing
phenomenon they aim to explain.

1 Gradient Descent Methods
In Lecture 2, we covered several iterative continuous optimization methods, and showed that every
update step can be seen as corresponding to solving a local approximation problem. In particular, we
looked at:

• Gradient descent, where we use a locally linearization of the function f :

∆(t) := arg min
∆

g>t ∆ +
1

2
β‖∆‖2 = − 1

β
gt,

x(t+1) := x(t) + ∆(t),

where gt = ∇f
(
x(t)
)
is the gradient through the function f being optimized. We also considered

the momentum variant, where we keep track of an exponentially weighted moving average of ∆,
i.e. ∆(t) = γ∆(t−1) − ε∇f>(x(t)).

• Newton’s method, where we use a second-order local approximation of f :

x(t+1) := x(t) − ηH−1
t gt,

where again gt = ∇f(x(t)) is the gradient of f at x(t) andHt = ∇2f(x(t)) is the Hessian. InQuasi-
Newton methods, we use the same update step but instead use an estimate of Ht derived from
only first-order information. BFGS and its variant L-BFGS were heuristics to approximate the
inverse of Hessian of f . People often use some heuristics on top of these methods, which empirically
seem to work well for deep learning.

1.1 Natural gradient descent
Natural gradient descent is another oft-used algorithm for training deep neural networks in the context
of classification tasks.

Classification as cross-entropy minimization. Note that in the context of classification, we can
view a deep neural network with parameters θ, input x ∈ X , and possible labels Y 3 y as outputting
a conditional probability distribution Pθ(y|x) rather than just labels. Indeed, the softmax activation
function, ubiquitously applied to the output of the neural networks, actually ensures that the output of
DNNs is a valid probability distribution. For network outputs r(x; θ) = {ry(x; θ) ∀ y ∈ Y},

Pθ(y|x) = softmax (r(x; θ)) :=
ery(θ,x)∑
y e

ry(θ,x)
.
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Given a dataset D = {(xi, yi)} of inputs and their true labels, the goal of classification is then to
find parameters θ∗ which minimize the cross-entropy between the output distribution Pθ(·|x), and the
ground-truth distribution P ∗(·|x), which for any image x is

P (y|x) =

{
1 if y = yi, the true label
0 otherwise

.

Recall that the cross-entropy between two distributions P and Q is given by:

H(P,Q) = −Ex∼P [log(Q(x))] ,

and thus we can write the cross-entropy between the true and predicted distributions as:

H(P ∗(·|xi), Pθ(·|xi)) = − log(Pθ(yi|xi)

Using this, our classification objective becomes that of finding θ∗ such that:

θ∗ = arg min
θ

∑
(xi,yi)∈D

log(Pθ(yi|xi))

Natural gradient. Recall that we derived gradient descent by minimizing a locally linear approx-
imation of the function. In the natural gradient descent method, we do the same, but opt to use
KL-divergence between the distributions Pθ(·|x) and Pθ+∆(·|x) as a distance measure, rather than the
`2 distance ‖(x+ ∆)− x‖2. In particular

∆(t) := arg min
∆

∇loss(θ(t))> ·∆ + Ex∼D
[
DKL

(
Pθ(·|x)

∣∣∣∣∣∣ Pθ+∆(·|x)
)]
.

The intuition behind this method is that we care more about the output distribution of the network and
not about the exact parameters governing the network per se. Thus, this choice of regularizer ensures
that the output distribution of the network on input x does not change drastically in any gradient descent
iteration. It turns out that the minimizer of the above expression is precisely

∆(t) = −F−1
θ ∇θ(loss(θ)))

where Fθ is the Fisher information matrix given as

Fθ := Ex∼D
[
Ey∼Pθ(·|x)

[
∇θ logPθ(y|x) · ∇θ logPθ(y|x)>

]]
.

Note that the y’s in the definition of the Fisher information matrix are sample from the predicted
distribution. The matrix does not depend at all on the true labels.

Note that we don’t have access to the true distribution D, and so we cannot compute Fθ explicitly.
Instead, we use the empirical distribution of the dataset to get the empirical Fisher information matrix
F̂ . But even then, computing F̂−1 itself is also too expensive. In order to deal with this, the K-
FAC heuristic (Kronecker-Factored Approximate Curvature) was introduced in [MG15] to empirically
estimate F̂−1. Despite using merely an approximation to the inverse Fisher matrix, natural gradient
descent with K-FAC seems to improve convergence: the training error plotted against time is given in
Figure 1. That said, there are several issues/concerns regarding the K-FAC heuristic.

• Each iteration of K-FAC based gradient descent takes a lot of time as the heuristic itself is quite
involved and requires highly non-trivial computation.

• The plot provided is for the training error on the MNIST dataset, so we don’t know if the heuristic
works well for other datasets.

• Most importantly, the plot only shows that the training loss reduces with time. But what about
the loss on the test set? It turns out that this heuristic doesn’t give good test loss.
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Figure 1: Training error using K-FAC heuristic [MG15]

1.2 Modern Gradient Descent algorithms
In this section, we discuss several more modern first-order methods that are commonly applied in deep
learning. Some of these methods were designed explicitly with applications in deep learning in mind,
others were first proposed in the context of convex optimization.

AdaGrad. In (both full-batch and stochastic) gradient descent, recall that we keep the same (fixed)
learning rate for all the parameters of the model. In practice, however, these parameters might have
drastically different effects on the network output (see for example Figure 2).

Figure 2: Dimensions contributing differently to oscillations. The dashed line represents the algorithms
that induce different learning rates for different parameters based on momentum or by penalizing square
magnitude gradients.

To address this, the AdaGrad algorithm [DHS11] allows each parameter to have its own learning
rate. Specifically, the learning rate for each parameter depends upon how large the magnitude of gradi-
ents along that parameter dimension has been in the previous iterations. For each parameter dimension,
AdaGrad accumulates the square of magnitudes of gradient along that dimension in all the previous
iterations (ri+1 ← ri +g2

i ) and divides the learning rate by square root of ri along each dimension. The
resulting update step can then be written as:

θ(t+1) = θ(t) − η diag

(
t−1∑
τ=1

gτg
>
τ

)−1/2

gt where gτ = ∇(τ)f(θτ ), gradient collected at time τ (1)

As such, AdaGrad heavily reduces the learning rate for parameters that have too large oscillations
(as indicated by high-magnitude gradients), and has much less of an effect on the learning rate for
parameters that do not contribute much to the oscillations (i.e. whose gradient magnitude decreases).

RMSProp. In the above, ri is an accumulator of non-negative terms (magnitudes), and hence always
increases. As a result, the learning rates for all the parameters decrease, and may in fact vanish (become
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infinitesimally small). If the learning rate vanishes too quickly, AdaGrad will not be able to learn
a value for the parameter and it will remain fixed and far from the optimum. (Note that such a
concern only arises because of the non-convex nature of training deep neural networks—in the convex
case, AdaGrad is proven to converge.) The RMSProp algorithm1 was designed as an attempt to
circumvent this issue.

Rather than using an accumulator of the squared gradients, RMSProp uses weighted sum of square
magnitudes of gradients, where the weights exponentially decay (with rate ρ, a hyperparameter) over
time. Thus, gradients of more recent iterations are assigned more weight than those in earlier iterations.

Intuitively, one can think of RMSProp as directly addressing the non-convexity of the training land-
scape. In particular, one might imagine that the steepness/shallowness of this landscape may change
along the trajectory from initialization to final weights. By assigning more weight to recent gradient
magnitudes, one can view RMSProp as implementing AdaGrad “locally," i.e. according to the current
shape of the landscape. This view may help to explain why RMSProp tends to outperform AdaGrad in
practice. Concretely, the update step implemented by RMSProp is as follows:

θ(t+1) = θ(t) − η diag

(
t−1∑
τ=1

ρt−τgτg
>
τ

)−1/2

gt,

with gτ being defined as in (1) and ρ < 1 being a user-defined hyperparameter.

Adaptive Moment Estimate (Adam). The Adam [KB14] method, short for “ADAptive Moment”
estimation, is a combination of ideas from RMSProp and Nesterov’s momentum. The motivation is sim-
ilar to that of AdaGrad and RMSProp , i.e. reducing the learning rate along dimensions contributing
to high oscillation by taking into account historical gradient magnitude. Adam combines this idea with
momentum by exponentially-weighted averaging both the first and second “moments" (the gradient gt
and its outer product gtg>t , respectively). The algorithm also introduces “bias correction terms” 1− βt1
and 1− βt2, which are meant to counteract the fact that we initialize the average squared magnitude as
r = 0. It turns out that this simple unification of RMSProp /AdaGrad is highly effective in many
settings—since its inception Adam has attained widespread popularity (the original paper has 6000+
citations).

Despite this, Adam is still somewhat poorly understood from an optimization perspective. The
original paper provides “recommended hyperparameters" that are not theoretically justified but seem to
work well in practice on a wide variety of tasks. Furthermore, though the original paper presented a proof
of convergence for convex functions, the proof was later shown to be incorrect, and a counterexample of
convergence was recently published [RKK18] for a simple convex problem.

In fact, we still lack conclusive evidence that Adam provides significant benefit over stochastic gra-
dient descent in a general sense (although it has been empirically shown to help in many specific cases).

Potential downsides of adaptive methods. A recent paper [WRS+17] shows some evidence that
adaptive methods can in fact overfit when their non-adaptive counterparts don’t. Consider, for example,
the setting of overparameterized (i.e. underdetermined) linear regression. In this setting, we have a data
matrix X ∈ Rk×d and a label matrix y ∈ Rk, and we are trying to fit a linear mapping between them
parameterized by w ∈ Rd, where k << d. In particular, we are looking for w∗ such that:

w∗ = arg min
w
‖Xw − y‖2

In the underdetermined setting, there are actually infinite solution to the above minimization. The
solution with the minimum norm (and minimum expected error, c.f. [Mei94]) is: w∗ = X>(XX>)−1y.
In practice SGD converges to such a solution. [WRS+17] construct a synthetic dataset where adaptive
method find a different solution that does not generalize well.

The samples are generated as follows. For the ith vector xi with label yi,
1Interestingly, the RMSProp algorithm was never published—it was originally described by Geoff Hinton in a Coursera

lecture.
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• The first feature is the label itself,

• The second and third features are always 1,

• The features from {4 + 5(i− 1), . . . , 4 + 5(i− 1) + (1− yi)} are set to 1 (Note that this induces a
unique set of features for each example).

• The remaining features have value 0.

The yi’s are 1 with probability p > 0.5 and −1 otherwise, so that for large enough values of k, the
majority of the examples are positively labeled. Observe that the only discriminative feature is the first
one— the rest are either constant or unique to a single example.

If we initialize training with w = 0, the weight on the unique features of the test will be zero.
Furthermore, SGD will converge to a solution where the weight of the first feature is larger that the
total weight of the second and third one hence achieving perfect accuracy on the test set (perfect
generalization).

However, all adaptive methods we considered (AdaGrad , RMSProp , Adam ) will converge to a
solution w′αsign(X>y). Giving equal weight to all features. While this performs well on the training
set due to the unique features each example has, on the test set these unique features do not help in
classification. Instead, the classifier will consider consider the first three features with equal weight and
always predict 1, bringing test-set accuracy arbitrarily close to random (in particular, ≈ p).

2 Issues with Applying Gradient Descent Methods in Deep Learn-
ing Setting

Last time we talked about different types of gradient descent methods, including the ones used in deep
learning. Now, it is time to discuss several issues that may arise when we use first-order methods to
train deep neural networks.

Just to build some intuition, consider a fully connected neural network (with a softmax layer on top).
Let X0 denote the data matrix, i.e., the m-by-n matrix whose each of n columns corresponds to one of
the data points. One can view this neural network as a sequence of layer-wise transformations of that
data matrix. That is, the “data matrix” after passing through i-th layer of that network is given by

Xi = σ(W iXi−1 +Bi),

where W i is the weight matrix of the i-th layer, Bi is the matrix of added (and learnable) biases, and
Xi−1 is the “data matrix” after passing the previous layers. Here, σ denotes the non-linear activations
applied coordinate-wise. A typical choice of the non-linear activation σ is the ReLU activation function
given as σ(a) = max{a, 0}.

Now, to get a feel for how the information about the gradient updates propagate during training,
let us ignore the bias matrices and focus on some specific data point j and its representation X1

j after
passing through the first layer. In that case, the gradient of the change ∇X1

j
X`
j of the representation

X`
j of that data point after the final (`-th) layer with respect to change in X1

j is given by:

∇X1
j
X`
j = D`W ` · · ·D2W 2, (2)

where each Di is a diagonal matrix with Di
kk = 1{(Xi

j)k ≥ 0}, where (Xi
j)k is the k-th coordinate of the

representation Xi
j . (Note that, strictly speaking, in training we can’t directly modify the representation

vector X1
j—we can do it only indirectly via modifying W 1.)

Vanishing/exploding gradients. The formula (2) should already hint that training neural networks
can be tricky. In particular, the gradient signal can exhibit bad behavior.

For example, suppose each weight matrix W i is a random orthogonal matrix (i.e. a rotation)—then,
due to the fact that each matrix Di is “killing” half of the dimensions on average, the gradient ∇X1

j
X`
j
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would be of magnitude exp(−`) (if not 0), decreasing exponentially with the number of layers in the
network. This would be an instance of a broader phenomenon known as the vanishing gradient effect.

Another illustration of what can go wrong is the situation if the entries of each W i are larger than
1. Then, the “signal” in each layer could build up uncontrollably, making the gradient ∇X1

j
X`
j be of

magnitude exp(`). This corresponds to the exploding gradients effect.2

Issues at initialization. The above discussion should already have hinted that one needs to be careful
about how to initialize deep neural networks. Indeed, issues with initialization extend to far more complex
cases than this, and there have been a multitude of recent studies showing that initialization can actually
cause large issues for network training (see, for example [HR18]).

2.1 Proposed solutions to issues in DNN training
The above problems were plaguing early (modern) deep neural network architectures. Fortunately, over
time, we managed to come up with architectural changes (as well as corresponding initialization schemes)
that improved the situation considerably. We briefly describe the two most important ones below.

Batch normalization [IS15] Batch normalization was originally proposed to address the hypothe-
sized problem of internal covariate shift. Specifically, internal covariate shift refers to the fact that the
“data matrix” Xi that the optimization/learning process at the corresponding layer i has as an input
constantly changes due to updates to the lower layers of the network. Ioffe and Szegedy viewed this effect
as very detrimental to network training and proposed to alleviate it via so-called batch normalization
layers.

The goal of batch normalization is to ensure that the distribution of activation in each data matrix is
more stable. This is achieved by normalizing the distributions to have the same first and second moments
for the distributions in each layer. In particular, consider a size-k minibatch of inputs to layer i (i.e., the
subset of k columns of the matrix Xi), which we denote as {x(1), . . . , x(k)}, and let {y(1), . . . , y(k)} be
the corresponding vectors of activations after leaving the layer i. Batch normalization involves adding
a new layer after layer i whose goal is to reparametrize activations so as they become {ŷ(1), . . . , ŷ(k)},
where each coordinate ŷ(b)

r of ŷ(b) is given by:

ŷ(b)
r =

y
(b)
r − 1

k

∑k
s=1 y

(s)
r√

1
k

∑k
s=1

(
y

(s)
r − 1

k

∑k
l=1 y

(l)
r

)2
.

Intuitively, this transformation whitens the “distribution” {y(1)
r , . . . , y

(k)
r } so as it has zero mean and

unit variance. (In practice, one sometimes allows this whitened mean and variance to be a (trainable)
parameter as well.)

It turns out that adding such batch normalizing layers after each original layer—and, crucially, al-
lowing the training to back-propagate through these layers—leads to dramatic improvement of training
reliability. In particular, vanishing and exploding gradients become much less of an issue. (And gener-
alization tends to be somewhat improved as well.)

But, does it mean that the internal covariance shift was indeed the root of the problem here? Recent
work [STIM18] has cast doubt that it is the case. Specifically, it demonstrated that for a number of
natural ways of measuring internal covariate shifts, batch norm does not seem to have visible effect on
reducing that measure. Still, it has an important beneficial effect: it makes the loss landscape be much
more navigable for first order methods.

Residual Neural Networks [HZRS16]. Residual networks were proposed as a way to try and
address a number of issues related to training networks with large depth (think 30+ layers). An intriguing
problem observed with networks of such a large depth is that addition of layers after a certain point start

2Note, however, that both these two examples are very cartoonish/unrealistic. An interesting question is though: why
do we observe vanishing/exploding gradients in practice?
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to degrade the performance (and this is not due to overfitting as even the training loss degrades). The
authors who proposed residual networks hypothesized that this is potentially due to the signal “learnt”
by the lower layers getting lost by the time we reach the higher layers. To overcome this, they propose
that each layer learns a residual function instead. That is, to have our activation matrices Xi evolve as

Xi = σ(W iXi−1 +Bi) +Xi−1.

That is, instead of a set of stacked layers learning a function H(x) the authors propose to let them learn
the “residual” function F (x) = H(x)−x instead. (This assumes that the input x and output H(x) are of
the same dimension which roughly holds for deep networks.) Architecturally, this corresponds to adding
“shortcut” (referred to as residual) connections bypassing each one of the layers. The resulting architec-
tures indeed perform significantly better in training, making ResNets (the architectures implementing
residual connections) a very popular class of models.

3 Visualizing the landscape of Loss Functions
It is quite hard to visualize the landscape of the loss function because of the extremely high dimensionality
of the space.

Towards the goal of visualizing the landscape, Goodfellow et al [GVS14] considered the line joining
the initial point θ0 and the final point θT , and plotted the empirical loss on the training set along this
line for both MNIST and CIFAR (Figure 3). Things actually look surprisingly convex! Observe that
zooming in on the first part of the loss on CIFAR (??), there is a clear non-convexity that training got
around.

Figure 3: Empirical loss along the line connecting θ0 and θT for MNIST (left) and CIFAR (right) [GVS14]

Another work along this line is by [LTSM18], where they plot the empirical loss function along ran-
dom directions and also along the gradient directions. looks nice along a random direction but rather
complicated in the ’total gradient’ direction. Figure 4. Figure 4 shows how the empirical loss changes
along certain parameter dimensions. Along some directions, the loss is smooth and convex quadratic-like
curve, while on other directions (blue curve) it is extremely non-convex. One good comment made in
class to give a possible explanation was as follows: Because the neural network has many layers, some
directions will involve parameters in the first layer, while other directions will involve parameters in the
last layer. So, it is likely that the loss value is smoother with respect to the parameters in the last
layer, while very non-convex with respect to parameters in the first layer. Hence, it is unfair to compare
the loss values along randomly chosen parameter dimensions. A fairer comparison would be to choose
parameters from the same layer, and evaluate the loss landscape along those parameters.

Figure 4: Empirical loss along random and gradient directions [LTSM18]

7



Another recent work [LXTG17] proposes a method for generating visualizations of the loss landscape
based on a technique which the authors call filter normalization. Filter normalization tries to address the
exact issue we previously raised—how should we (fairly) pick parameter directions along which the loss
should be plotted? In particular, filter normalization tries to account for the scale-invariance of many
of the parameters in a deep neural network by carefully scaling the plotted directions according to the
actual values of the parameters. We refer the reader to [LXTG17] for more details on the technique—in
general, the resulting visualizations are at least compelling:

The authors of [LXTG17] also claim that visualizations which employ filter normalization tend to
actually be predictive of generalization performance.
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4 Extra Figures

Figure 5: The Adaptive Moment (Adam) algorithm for first-order optimization.
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