6.883 Science of Deep Learning — Spring 2018 February 21, 2018

Lecture 5: Generalization in Deep Learning

Lecturer: Aleksander Madry Scribes: Nadiia Chepurko, Irina Degtiar, Molei Liu
(Revised by Andrew Ilyas and Dimitris Tsipras)

1 Introduction

Deep neural nets (DNNs) tend to generalize well, but we don’t yet have a good understanding as to why.
Let’s recall the general setup for supervised learning: we are sampling m samples from a distribution D,
Sm ={(z1,11), -+, (Tm,ym)}, and we have a learning algorithm A that given S,, tries to find the best
classifier fy out of the class F to fit .S,,, e.g:

argmin Lg, (6)
0

Ls, (0) = %Zloss(fe(ﬂfi),yi)

where Lg, () is the empirical loss, fo(x;) the prediction, and y; the true label. In practice, however, we
want to minimize the population loss, where we sample (z,y) from the true distribution D:
Lp(0) = E [loss(fo(z),y)].
z,y)~
The difference between the empirical and population loss is called the generalization gap. The gener-

alization gap is therefore the difference in loss between optimizing over the entire true data distribution
and optimizing over our sampled data, for a training algorithm A:

Am(A) = Lp(0) — Ls,, (0).

Ideally, by ensuring a small sample loss and a small generalization gap we can obtain a small population
loss, which is the ultimate goal. The next sections outline several approaches to proving generalization
bounds.

2 Rademacher Complexity

Recall that in Lecture 3 we defined Rademacher complexity as:

T (F) = B _[#s(F)]

Sm~D

where F is a family of classifiers, with f € F, and %s(F) is the empirical Rademacher complexity:

. 1
RB(F)=TFE. |sup — .),

s(F) =Eq l;ggm Zi:cufe(xz)]
where ¢ is a random sign vector, and the maximization over 6 is performed with respect to f € F.
Conceptually, it captures how well our family of classifiers fits random noise when parametrized by 6. If
our classifier does well at fitting random noise, then we probably need to see a lot of samples before we
can actually trust it. Formally, the generalization gap of such an algorithm A can be upper bounded by
the Rademacher complexity:

log &
An(A) < 2%(F) +3) 2oL,

with probability 1 — 4.

3 PAC-Bayesian

Another approach we might consider using to prove generalization for DNNs uses PAC-Bayesian bounds.
In particular, the PAC-Bayes theorem bounds the expected error rate of a classifier chosen from a
distribution Q in terms of the KL-divergence from some a priori fixed distribution P. If the volume of
equally good solutions is large and not too far from the mass of P, we will obtain a nonvacuous bound.

We assume that we have some prior distribution P over the initial set of 6 before seeing the data
(e.g., the initialization parameters for a neural net). In this Bayesian approach, learning using algorithm
A uses data to modify the prior distribution to get the posterior distribution (), from which the classifier

0 is sampled. The corresponding expected loss is: QEQ[L p(0)]. The generalization bounds we get are
instance-specific (they depend on the i.i.d set S of size m). It can be proven that:

Dk (P,Q) +In%
Am(A) = E [Lp(6)] - E [Ls, (0)] < \/ 2(m — 1) :

0

This allows upperbounds on generalization error (specifically, upperbounds on number of samples that
guarantee such an upperbound). The major component in this bound is the KL divergence between our
prior and posterior distributions. KL divergence is defined as:
Dice(P.@) = [10g 20 y(0)as
p(x)

where ¢ and p are densities for @ and P. A smaller KL divergence implies better generalization. So if the
initial parameters didn’t change much between the prior and posterior, the algorithm generalizes well.
Thus, in order to minimize the error on the real distribution, we should try to simultaneously minimize
the empirical error as well as the KL-divergence between the posterior and the prior [?].

4 Meta-theorem of generalization

One way to show that a model is generalizable is to show that it does not have too many degrees of
freedom. The meta theorem states that a generalization gap is bounded by the square root of (effective)
degrees of freedom of a model, A7(6), over m:

One example is Massart’s lemma for the empirical Rademacher complexity, Ry, with finite F:

G 5(F) o 1| 9T

m

However, in the case of deep learning, the number of model parameters is usually larger than the sample
size, which provides a useless generalization gap bound of greater than 1.

This phenomenon was also demonstrated in the work of Zhang et al. [?]. They train a DNN on
standard datasets and on the same datasets with random labels!. In both cases, the same classifier and
training algorithm performed equally well with enough iterations, achieving 0% error on the training set
(Figure ?7). As the amount of label corruption was varied smoothly, generalization deteriorated with
more noise. These findings imply that we cannot hope to prove generalization bounds for DNNs similar
to those of Lecture 3. Traditional generalization theory (VC dimentionality, Rademacher complexity,
and uniform stability) cannot distinguish between models that generalize well and those that don’t, and
explicit regularization such as dropout, data augmentation, and weight decay cannot sufficiently control
generalization error. Since there exists a distribution where the generalization gap is greater than 1,
there do not exist non-vacuous generalization bounds that are independent of the data distribution.

1The inputs remain the same, but the labels y are chosen randomly, having no relationship to x. This is a hopeless
task for any classifier.

25 ; - 4.0 ; - 1.0
=—a true labels =—a [nception 0K ——
2.0} e—e random labels | 357 o—0 AlexNet 0.8
g + shuffled pixels || & 54| [*=+ MLP 1x512 L 07
215 ~— random pixels [{ ¥ g os
. o o
& +—+ gaussian o 2.5 3,
@ =) + 0.5
5 1.0 @ 3
> £ 2.0 = 04 :
o = =—a [nception
0.5 1s 0.3 o—o AlexNet
0.2 #=—+x MLP 1x512 |]
0.0 1.0 0.1
10 15 20 25 00 02 04 06 08 10 00 02 04 06 08 10
thousand steps label corruption label corruption
(a) learning curves (b) convergence slowdown (c) generalization error growth

Figure 1: DNN classifiers are expressive enough to fit random labels in CIFAR10. (a) Under various
settings, training loss reached zero after a sufficient number of steps. (b) With more label corruption,
convergence time increased by only a small constant factor. (¢) With more label corruption, test error
(which equals generalization error since there is no training error) increased |[?].

5 Flatness of Local Minima

Given that the empirical loss function is often non-convex, there may be multiple local minima of
similar (near-optimal) values. How can we identify the ones that generalize well? Intuitively, one would
expect that flat minima generalize better than sharp minima (Figure ?7). Flat minima require less
information to describe them (Occam’s razor) since there are multiple (almost) equally good points in
their neighborhood. Keskar et al. [?] explain the generalization properties of flat minima as follows: a
function increases more rapidly around sharp minima than around flat minima; thus, more precision
is needed in describing sharp minima. This makes them more sensitive to deviations in the parameter
estimates and could impact the model’s ability to generalize. The theory of minimum description length
(MDL) states that statistical models that can be described in fewer bits (with lower precision) generalize
better. When adding random Gaussian noise N(0,0?) to the local minimum 6*, a solution in a flat
minimal will remain at the minimum while a solution in a sharp minimum might jump outside of the
minimum. Since we expect the “true” classifier to be robust to small amount of noise in its parameters,
we expect flat minima to be more suitable for classification.

Figure 2: Flat minima v.s. sharp minima.

Figure 3: Parameter space

When there are more flat minima in a parameter space, fewer minima "fit" into the space and so an
algorithm will have fewer degrees of freedom and will be more likely to converge to one of the mimima
(Figure ?7?). Alternative explanations as to why flat minima generalize better include the Bayesian view
of learning [?] and the free Gibbs energy (entropy) explanation [?].

Evidence exists that stochastic gradient descent (SGD) tends to converge to flat minima more so
than other optimization functions [?]. The noise due to SGD’s stochasticity is therefore often viewed as
a feature and not a bug, resulting in regularization.

So far we have not rigorously defined the notion of flatness. There are multiple ways to do so,
however most of them cannot be directly related to generalization. Note that we can re-parametrize
a DNN by (say) multiplying a layer by a constant and dividing the next layer by the same constant.
This transformation has no effect on its generalization performance (it is the same network after all) but
can greatly change flatness under multiple definitions of it. We explore this concept further in the next
section.

5.1 Sharp minima can generalize for deep nets

As we discussed in the previous section, flat minima tend to generalize better, but Dinh et al. [?]
claim that having sharp minima may not necessarily reduce generalizability for DNNs with certain
properties. Specifically, when focusing on deep networks with rectifier units, we can exploit the particular
geometry of the parameter space induced by the inherent symmetries that these architectures exhibit
to build equivalent models corresponding to arbitrarily sharper minima. Furthermore, if we allow for
function reparametrization, the geometry of its parameters can change drastically without affecting its
generalization properties [?].

Let us define a non-negative homogeneity property and see its implications for rectifier activation
function. For more details refer to [?].

Definition 1 A given function ¢ is non-negative homogeneous if ¥(z,a) € R x RT, ¢p(az) = ap(z)

The parameter space of our model relates a unit of change in the behavior of the model to the
equivalent change in the parameters. This metric is related to non-linear curvature due to model’s non-
linearity properties. There are possibly a large number of symmetric configurations that result in similar
model behavior due to the non-negative homogeneity property of rectifier activation (see ?7).

Theorem 2 The rectifier function @rect(x) = max(z,0) is non-negative homogeneous which implies

¢rect (1' . (0101)) . 92 - ¢)rect (:C . 01) . (0102)

This results in the parameters («fy,02) being observationally equivalent to (61, afs)

Figure 4: An illustration of the effects of non-negative homogeneity. The graph depicts level curves of
the behavior of the loss embedded into the two dimensional parameter space with the axis given by 6;
and 5. Specifically, each line of a given color corresponds to the parameter assignments (6,65) that
result in the same prediction function.

In what follows, we rely on a-scale transformations that will not affect the generalization, as the
behavior of the function is identical.

Definition 3 For a single hidden layer rectifier feed-forward network, the family of alpha-scale trans-

formations is defined as follows:
Ta : (91,92) —> (0401,047192)

Dinh et al. [?] exploit the resulting strong non-identifiability to showcase a few shortcomings of
some of the definitions of flatness. Although an «-scale transformation does not affect the function
represented, it allows us to manipulate the flatness of our minima. For another definition of flatness, the
a-scale transformation shows that all minima are equally flat. Similarly, if we are allowed to change the
parametrization of some function f, we can obtain arbitrarily different geometries without affecting how
the function evaluates on unseen data. The same holds for re-parametrization of the input space. This
implies that the correlation between the geometry of the parameter space (and hence the error surface)
and the behavior of a given function is meaningless if not preconditioned on the specific parametrization
of the model.

(a) Loss function with default parametrization

(b) Loss function with reparametrization

(c) Loss function with another reparametrization

Figure 5: A one-dimensional example on how much the geometry of the loss function depends on the
parameter space chosen. The z-axis is the parameter value and the y-axis is the loss. The points
correspond to a regular grid in the default parametrization. In the default parametrization, all minima
have roughly the same curvature but with a careful choice of re-parametrization, it is possible to turn a
minimum significantly flatter or sharper than the others.

6 Compression

As we already discussed, classifiers with a large number of parameters have many degrees of freedom.
This prevents us from proving meaningful generalization bounds for them. A natural idea is to compress
the function parameterized by 0, fg to f;, where f; is significantly more restricted in its expressive power.

If the compressed classifier fé ~. fp also fits the training data well, we can use its limited expressivity
to prove generalization bounds.

This suggests an intriguing approach for obtaining classifiers with provable generalization. First,
optimize training error over an over-parametrized family of classifiers that is easy to train. Then,
compress the resulting classifier to an (almost) equivalent one from a significantly more restricted family
that we can prove generalization bounds for.

See [?] for the explanation of compression and the motivation behind it.

Briefly, DNNs weight matrices can be compressed using a truncated SVD method. The compression
algorithm applies a randomized transformation to each layer’s matrix that relies on the low stable
rank condition at each layer. This compression introduces error in the layer’s output, but the vector
describing this error is Gaussian-like due to the use of randomness in the compression. Thus, this
error gets attenuated by higher layers. The process can be broken down as follows: take higher level
matrices for trained DNNs, perform SVD, compress each layer by zero-ing out singular values less than
some threshold ¢|A| where A is our original matrix. A simple computation shows that the number of

remaining singular values is at most the stable rank divided by t2. The truncation introduces error
in the layer’s computation, which gets propagated through the higher layers and magnified at most by
the Lipschitz constant. We want to make this propagated error small, which can be done by making
t inversely proportional to the Lipschitz constant. The next sections describe how compression can be
used to obtain the generalizability of classification models.

6.1 Linear Regression

We will first consider the case of linear classifiers. Let ¢ € R, ||c|| = 1 be the classifier of (z,y) in training
dataset S, where z € RY, ||z|| = 1, and y € {—1,1}. The prediction for datapoint z is sign(c’ x). Assume
for all x € S, we have |cTz| > 7 (the confidence margin). We compress ¢ = [c1,ca,- -+ ,cq] to a sparse
vector ¢ = [é1,éa, -+, ¢4] in the following way:

2 2
T w. .min{sc’i71},
G = {8 P 7 (1)

0 otherwise.

This is possible since the classification margin makes the prediction noise resistant. This compres-
sion/discretization makes E|supp(¢)| = O(1/+?), where supp(-) denotes the support of a vector, i.e. the
number of non-zero coordinates:

d d
E|supp(¢)| = EZ 1g20 = ZP(@ # 0)

i=1 i=1 (2)
82 8
i 2 2
<Y = =Se?=001/4%).
= v
Also, we have that
2 2
N v 8¢
B¢ = cilge2/p251 + 8¢; . ~? lge2/2<1 =€ (3)

and thus, for fixed z: E[¢Tz] = ¢Tz. We can also bound Var(¢l'z):

Var(¢'z) = Zm?Var(éZ-)

i=1

= fo[O . 180%/72>1 + Var(éi)]-Scf/’Fgl} (4)
i=1
n 2\ 2 2 2 2

8c; _ v Y
< 2 o [S 2 _ 1
<> (L) S5 =Ther =1

Il
—

K2

and obtain generalization bounds for the compressed classifier. Combine this with the meta theorem:

An(4) <[22,

where the degree of freedom 4" () < E|supp(é)| = O(1/+?%). We have that A,,(A) = O(1/y/m)

6.2 Compressing matrices

We can apply similar ideas to compress matrices. One approach uses the stable rank of a matrix M:
”lf\f\/[”'f, where || - |7 corresponds to the Frobenius norm and || - || to the spectral norm of the matrix.
Recently, Arora et al. [?] showed that matrices typically learned in DNN classifiers have few large

eigenvalues. Using this observation, in combination with properties of the matrix’s sensitivity to noise,

they show that these matrices can easily be compressed. Choosing a small eigenvalue as the threshold,
all values below it can be set to 0; the remaining large eigenvalues correspond to the largest signals
(Figure ?77).

n
(<2}

N
(=]

-
(2]

eigenvalue

[
o

o
o

o
(=)

0 1000 2000 3000 4000 5000
index

Figure 6: Spectrum of a typical matrix learned through training a deep learning classifier [?]. We can
observe that only a few eigenvalues are significant.

7 Stability

An alternative way to bound the generalization gap of learning algorithms is through the notion of
stability. In their seminal work, Bousquet and Elisseeff [?] showed that algorithms that are uniformly

stable have small expected generalization gaps. For training set S = {z; = (z;,y;) : 1 =1,2,--- ,n}, let
Rs[A(S)] = L 37 | loss(A(S), z), R[A(S)] = E.~ploss(A(S), z), and denote the generalization gap as
€gen = Es,4[Rs[A(S)] — R[A(S)]]. (5)

An algorithm A(+) is uniformly stable if changing any single training example does not change the training
loss by more than e. That is, if the training set S; differs from the training set S by one datapoint:

sngA[loss(A(S), z)] —Ealloss(A(S1), 2)] <,

where the expectation is over the randomness of the algorithm. The proof is as follows. Denote S’ =
{2, 2h, - 2h), S = {21, 20, ,2i_1,2), 2it1, ** » Zn}, which differs from S only on z;. Then we have:

Es a[R[A(S)]] =Es.a l Zloss]
=Eg 5.4 [z”: loss(1)
Zn: loss(A) + €

1
= Es,s/,ARs[A(S/)] +n-—e€

= ES’AR[A(S)] + €,

<Ess.a

3\'—‘

by the uniform stability of A. This indicates that the generalization error
€gen = Eg,a[Rs[A(S)] — RIA(S)]] < e.

Gradient descent is not stable since a change in a single datapoint affects every step of training and
can lead to different classifiers, especially when the loss landscape is non-convex (Figure ??7). SGD, on
the other hand, is uniformly stable and quickly obtains small generalization errors [?] because updates
are usually performed according to the same objective function for S and S’ and only approximately
every m steps will the two diverge. For a finite number of steps (when the number of iterations is linear
in the number of data points), the divergence will not be too great, providing further justification for
early stopping as a means to improve generalizability. Generalization error will then be bounded even for
large numbers of parameters and when no other regularization is used (although further regularization
improves generalizability).

Stability bounds can be formally derived under Lipschitz and smoothness assumptions [?]. For
strongly convex problems, S and S’ will never diverge by more than a fixed amount since the two
solutions will move closer together on most steps. For convex functions, when encountering the same
training samples, S and S’ will not diverge, and they will only diverge a little when encountering different
samples. For non-convex functions, generalization can be achieved when one uses small steps and few
iterations, O(m¢), ¢ > 1, so that when the differing point is observed, the divergence is not too great.
Empirically, the derived bounds are too pessimistic and far from the stability observed during actual
experiments.

a S @IQ
Ca .Afﬁ/\/k/f;o@*‘g :
S 1
b

Figure 7: Difference in training error for training sets S and S’, which differ by one data point. (a) For
stochastic gradient descent, results diverge every 1/m steps on average so resulting solutions are within
a loss of € of each other with early stopping. (b) For non-convex functions, with gradient descent, the
resulting solutions can differ substantially.

References

(1]

2]

13l

4]

[5]
[6]

7]

18]

19]

Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. (2016). Understanding deep learning requires
rethinking generalization. arXiv preprint arXiv:1611.03530.

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Dziugaite, G.K. and Roy, D.M. (2017). Computing Nonvacuous Generalization Bounds for Deep
(Stochastic) Neural Networks with Many More Parameters than Training Data. arXiv preprint
arXiv:1703.11008.

Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M. and Tang, P.T.P. (2016). On large-batch
training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836.

MacKay, DJC. "Bayesian interpolation." Neural computation 4.3 (1992): 415-447.

Chaudhari P, Choromanska A, Soatto S, LeCun Y. (2016). Entropy-sgd: Biasing gradient descent
into wide valleys. arXiv preprint arXiv:1611.01838.

Arora, S.; Ge, R.; Neyshabur, B.; Zhang, Y. (2018). Stronger generalization bounds for deep nets
via a compression approach. arXiv preprint arXiv:1802.05296.

Hardt, Moritz, Benjamin Recht, and Yoram Singer. "Train faster, generalize better: Stability of
stochastic gradient descent." arXiv preprint arXiv:1509.01240 (2015).

Bousquet, Olivier, and Andre Elisseeff. "Stability and generalization." Journal of machine learning
research 2.Mar (2002): 499-526.

[10] Dziugaite, Gintare Karolina and Roy, Daniel M. "Computing Nonvacuous Generalization Bounds

for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data" . arXiv
preprint arXiv:1703.11008 (2017)

[11] D. A. McAllester. “PAC-Bayesian Model Averaging”.Proceedings of the Twelfth Annual Confer-

ence on Computational Learning Theory. COLT ’99. Santa Cruz, California, USA: ACM, 1999, pp.
164-170.

[12] J. Langford and M. Seeger. Bounds for Averaging Classifiers. Tech. rep. CMU-CS-01-102. Carnegie

Mellon University, 2001.

[13] Laurent Dinh, Razvan Pascanu, Samy Bengio, Yoshua Bengio. Sharp Minima Can Generalize For

Deep Nets. ICML 2017.

[14] Arora, Sanjeev. COS597A: Machine Learning Seminar 2017. Generalization bounds.

[15] Arora, Sanjeev. Blog-post "Proving generalization of deep nets via compression".

10

