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1 Stochastic Gradient Descent and Generalization
A currently held belief in the field of non-convex optimization is that popular optimization methods in
deep learning happen to choose local minima that achieve very small generalization error. Empirically,
stochastic gradient descent (SGD) often results in solutions that generalize relatively well and even over-
trained networks often still result in good performance. On the other hand, it has been observed that
sufficiently large neural networks can easily fit random noise perfectly [1]. This implies that commonly
used generalization bounds, such as VC-dimension and Rademacher complexity (see Lecture 3), are not
sufficient theoretical tools to explain the generalization behavior of neural networks that we observe
in practice. In this lecture, we will try to investigate some abstract properties of local minima that
generalize well and we will present some attempts towards an explanation of the belief that SGD chooses
this type of local minima and hence can benefit generalization.

2 Flatness of Local Minima
In the past lectures, we introduced the concept of flatness and its relation to SGD. We mentioned that
one of the reasons for the superior performance of SGD is that it tends to converge to flat minima, which
are schematically illustrated in Figure 1. The figure clearly demonstrates why flat minima, which are
characterized by a low curvature, tend to generalize well: A small shift in the objective function, which
is assumed to be representative of the differences between testing and training data, does not strongly
affect the value of the objective function at the flat minimum, whereas the value at the sharp minimum
changes drastically. Fewer bits are required for the description of a flat minimum, which implies that
these generalize better [2].

Figure 1: An illustration of flat and sharp minima [3].

It should be noted that flatness is not an easy notion to measure, especially in the high-dimensional
spaces that neural networks live in, and the one-dimensional representation in Figure 1 certainly does
not capture the complete notion of flatness. Another possible definition relates to the Hessian of the
objective function. At a local minimum, the Hessian is positive definite, so a flat region would correspond
to the space in which the eigenvalues of the Hessian are small. Essentially, a small determinant of the
Hessian can be associated with flatness.
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However, recent research has shown that the notion of flatness is intricately tied to the chosen
parameterization of the model and cannot be used generally to explain generalization [4]. For example,
in ReLU networks, the model can be reparameterized to yield sharp minima that generalize equally well
as the flat ones. All of this implies that flatness is only a sufficient condition for generalization and that
it cannot be examined separately from the algorithm used for the training of the network.

3 Batch Size vs. Flatness of Minima vs. Generalization
The iteration of the SGD algorithm with a mini-batch of size n is given by

wt+1 = wt −
η

n

∑
x∈B
∇`(x;wt), (1)

where wt is the vector of parameters at steps t, `(x;wt) is the value of the loss function for the input x
under the weights wt, η is the learning rate. The set of samples in the mini-batch, B, is a random subset
of all samples. Changing the size of B strongly affects the flatness of the minimum solutions discovered
by SGD and, in turn, their generalization performance. This was investigated in detail by Keskar et al.
and will be reviewed here briefly [3].
Remark 1 (Details on the architecture of deep nets used in this lecture). All of the experiments conducted
by Keskar et al. were done using Adam [5], a variant of SGD. In the following, we investigate their results
for two different network architectures, F2 and C1. F2 uses a 360-dimensional input layer, 7 ReLU layers
with 512 units each and batch-normalization, and an output layer with 1973 units and softmax activation
(Figure 2). F2 is trained on the TIMIT data set [6], which is a speech recognition data set. C1 is very
similar to the often-used AlexNet architecture [7]. It first uses 2 sets of layers, each with 64 5× 5 filters
with stride 2 followed by max pooling, then 2 fully-connected layers with 384 and 192 units, respectively,
and an output layer with 10 units (Figure 3). All units are ReLU and all layers use batch normalization.
A dropout of 0.5 is used for the two fully-connected layers. C1 is trained on the CIFAR-10 data set [8].

3.1 Superior generalization of small batch solutions
It is empirically observed that smaller batch sizes lead to flatter minima and to better generalization.
The non-rigorous reasoning for this is that for small batches, the gradient approximations are more noisy,
which allow the algorithm to escape from sharp minima and thus make it more likely to remain in flat
regions of the objective. Not yet considering flatness, there is a clear gap in accuracy when comparing
small batch (SB) and large batch (LB) solutions as shown in Figure 4. Evidently, the SB leads to better
training and test accuracy, which implies that training is more successful with small batches (e.g., we
avoid undesired regions of the objective function) and that the resulting solution generalizes better.

3.2 Flatness of small batch solutions
The results in Figure 4 already indicate that better generalization is obtained for smaller batches, but it
is not yet clear if the flatness of the obtained minima are responsible for this. Denoting the SB solution
by x∗s and the LB solution by x∗` , the model solutions can be smoothly interpolated in a parametric
plot shown in Figure 5 using the expression f(αx∗` + (1 − α)x∗s), where f is the loss and α is the
interpolation parameter. The basin of attraction around α = 0, which corresponds to the SB solution,
is clearly much larger for both train and test data. When moving beyond the α = 1 solution, accuracy
decreases very rapidly. Consistent results were also obtained with a modified interpolation given by
f(sin(απ/2)x∗` + cos(απ/2)x∗s). Figure 5 is useful for confirming intuition about flatness and batch size,
but there is no guarantee that the chosen measure of flatness is representative of the high-dimensional
space of the network.

3.3 Effect of Varying Batch Size
As shown in Figure 7, the testing accuracy decreases after a certain point with increasing batch sizes
while the sharpness of the solution minimum increases up to a certain point, after which it remains
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Figure 2: A schematic of network F2. For more details see Remark 1.
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Figure 3: A schematic of network C1. For more details see Remark 1.
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Figure 4: Accuracy gap between small and large batches for two different networks showing that small
batch solutions clearly result in superior performance as measured by accuracy on the test set [3]. Left:
Variation of accuracy with epoch for network F2. Right: Network C1. See Remark 1 for a description
of these networks.

Figure 5: Interpolated loss for network F2 (α = 0 corresponds to small batch and α = 1 to large
batch) [3]. The left axis corresponds to the cross-entropy loss function used in the optimization and the
right axis corresponds to the accuracy obtained on the data. Evidently, the region around the small
batch solution is much flatter than the region around the large batch solution, which implies that the
small batch solution will have superior generalization performance. See Remark 1 for a description of
the network F2.
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relatively constant but quite noisy. Keskar et al. [3] argue that there exists a threshold batch size after
which the model performance deteriorates, with the value of the threshold correspond to the point after
which testing accuracy drops off significantly. Sharpness in this context can be formally defined as
follows.

Definition 2. Given x ∈ Rn, ε > 0, A ∈ Rn×p, the (Cε, A)-sharpness of f at x is defined as:

φx,f (ε, A) :=
(maxy∈Cε f(x+Ay))− f(x)

1 + f(x)
· 100 (2)

Cε is a box around the solution:

Cε = {z ∈ Rp : −ε(|(A+x)i|+ 1) ≤ zi ≤ ε(|(A+x)i|+ 1) ∀i ∈ {1, 2, · · · , p}} (3)

A+ is the pseudo-inverse of a matrix A ∈ Rn×p, which is an n × p matrix with randomly generated
columns. ε determines the size of the box.

Defined in this way, the sharpness measure should be relatively invariant to dimension and sparsity.
To demonstrate this invariance, we examine four functions displayed in Figure 6 and we present the
sharness value at each of their minima in Table 1. Based on the results in Figure 7, Keskar et al. suggest
that there exists a threshold batch size after which generalization is poor as indicated by the increase
in sharpness and decrease in testing accuracy. However, it is very likely that this threshold depends on
other parameters of the algorithm, such as the learning rate.

Table 1: Sharpness (φx,f (ε, A)) for functions with flat and sharp minima as calculated by Definition 2.
As can be seen for the 2D functions, Definition 2 treats minima as sharp, even if one of the directions is
relatively flat. In fact, if ε is sufficiently large, the second 2D function will be sharper because the slope
is much greater in the y direction after a certain point.

Dimensions A ε Function Type Fig. φx,f (ε, A) at Min.

1 Identity 0.0010 Sharp 6a 1.0e-02
1 Identity 0.0010 Flat 6b 1.0e-22
1 Identity 0.0005 Sharp 6a 2.5e-03
1 Identity 0.0005 Flat 6b 3.9e-25
1 Random 0.0010 Sharp 6a 2.8e-03
1 Random 0.0010 Flat 6b 6.5e-25
1 Random 0.0005 Sharp 6a 7.1e-04
1 Random 0.0005 Flat 6b 2.5e-27
2 Identity 0.0010 Sharp in X & Y 6c 2.0e-02
2 Identity 0.0010 Sharp in X, Flat in Y 6d 1.0e-02
2 Identity 0.0005 Sharp in X & Y 6c 5.0e-03
2 Identity 0.0005 Sharp in X, Flat in Y 6d 2.5e-03
2 Random 0.0010 Sharp in X & Y 6c 2.1e-02
2 Random 0.0010 Sharp in X, Flat in Y 6d 1.9e-02
2 Random 0.0005 Sharp in X & Y 6c 5.3e-03
2 Random 0.0005 Sharp in X, Flat in Y 6d 4.8e-03

Unfortunately, large batch sizes parallelize much better than smaller ones, so it would be ideal if large
batch sizes could be used while retaining sufficient model accuracy. In the next section, we investigate
how this can be achieved by tuning the learning rate.

4 Batch Size vs. Learning vs. Training Time vs. Generalization
Deeper neural networks and bigger data sets result in longer model training times, which can slow
research and development. Larger mini-batch sizes can train quicker because a single step with mini-
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Figure 6: Functions with flat and sharp minima. The first row corresponds to one-dimensional functions,
f(x) = 100x2 with a relatively sharp minimum and f(x) = x8 with a relatively flat minimum. Both
functions have minima at 0. The second row corresponds to two-dimensional functions, f(x, y) =
100(x2 +y2) with a relatively sharp minimum in both x and y and f(x, y) = 100x2 +y8 with a relatively
sharp minimum in x and a relatively flat minimum in y. Both functions have minima at (0,0).

batch of size kn is faster than k steps with mini-batch of size n. Distributed synchronous SGD offers
a potential solution to the slow training problem by dividing SGD mini-batches over a pool of parallel
GPUs [9]. In order to speed up training, the per-GPU workload must be large, which requires growth in
SGD mini-batch sizes. In order to use large mini-batches in place of small mini-batches while maintaining
training and generalization accuracy, we can employ a linear scaling rule of thumb to the learning rate [9].

Linear Scaling Rule: when the mini-batch size is
multiplied by k, multiply the learning rate by k.

This linear scaling rule means we can scale to multiple GPUs without reducing the per-GPU workload
or model accuracy. Consider a network at iteration t with weights wt, and a sequence of k mini-batches
Bj for 0 ≤ j < k, each of size n. Then, we can compare the effect of executing k SGD iterations with
small mini-batches Bj and learning rate η vs. a single iteration with a large mini-batch

⋃
j Bj of size kn

and learning rate η̂. Then, after k iterations of SGD with learning rate η and a mini-batch size of n we
have:

wt+k = wt − η
1

n

∑
j<k

∑
x∈Bj

∇`(x;wt+j) (4)
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Figure 7: Testing accuracy and sharpness vs. batch size. Sharpness is shown for two values of ε [3]. The
batch size on the x-axis was used for training each network for 100 epochs. The left y-axis corresponds to
the testing accuracy at the final iterate and the right y-axis to the sharpness at that point as evaluated
by Definition 2. Left: Network F2. Right: Network C1. See Remark 1 for a description of the networks.

where `(x;wt+j) is the loss function for the input x under the weights wt+j . Likewise, after a single step
with a large mini-batch

⋃
j Bj of size kn and learning rate η̂, we have:

ŵt+1 = wt − η̂
1

kn

∑
j<k

∑
x∈Bj

∇`(x;wt) (5)

The key intuition here is that these two updates can be similar if we set η̂ = kn. Evidently, this is only
the case if ∇`(x;wt) ≈ ∇`(x;wt+j), which holds approximately true if the parameters do not change too
drastically. This also motivates a warm start on the learning rates: Starting with a small learning rate
and gradually increasing it ensures that the parameter changes are not too drastic.

Figures 8 and 9 present the results of SGD across mini-batch size; larger mini-batches up to 8k
images have both the same out of sample accuracy and training curves as smaller mini-batches [9]. This
empirical finding suggests that the large mini-batch approximation may be valid in large-scale, real-world
data.

Figure 8: ImageNet top-1 validation error vs. mini-batch size [9]. Accuracy of models is invariant to mini-
batch size up to 8k (8192) images, which allowed Goyal et al. 2017 to train an accurate 8k mini-batch
ResNet-50 model on the ImageNet dataset in 1 hour using 256 GPUs.

In order to ensure that small and large mini-batch models produce similar results, it is important to
avoid drastic changes to hyperparameters when changing the mini-batch size. In particular, Goyal et al.
offer 4 cautionary remarks: (1) Scaling the cross-entropy loss is not equivalent to scaling the learning
rate; (2) Apply momentum correction after changing learning rate if using R-CNN; (3) Normalize the
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Figure 9: Training error vs. mini-batch size. Training curves for 256 mini-batches closely match larger
mini-batches up through 8k mini-batches. Validation error, mini-batch size kn, and reference learning
rate η are shown in the legend. It is important to note that these models are trained with gradual
warmup where the learning rate starts at η and increases linearly such that it reaches η̂ = kn after 5
epochs.

per-worker loss by total mini-batch size kn, not per-worker size n; (4) Use a single random shuffling of
the training data (per epoch) that is divided amongst all k workers. In the next section, we will explore
potential theoretical explanations for these results.

5 Using Stochastic Differential Equations

5.1 True loss vs. Mini-batch loss
Goyal et al. hint towards the possibility of an optimal batch size that can help speed-up training while
maintaining test set accuracy. Smith et al. show that this is indeed the case by approximating SGD as
a continuous time Stochastic Differential Equation (SDE). They derive a “noise scale” parameter that
quantifies the underlying random fluctuations in the dynamics of the SGD.

To understand this process, consider the “true” loss function, i.e., the loss calculated on the entire
dataset:

`(w) =

N∑
i=1

`(xi, yi;w) (6)

8



Further, consider the loss for a mini-batch B of size B:

ˆ̀(w) =
N

B

∑
i∈B

`(xi, yi;w) (7)

With equations (6) and (7), the gradient update of SGD can be written as a discrete-time process as
shown below [10]:

∆w = − η

N

(
∇w`+ (∇w ˆ̀−∇w`)

)
(8)

where

- η is the learning rate,

- N is the training set size,

- ∇w` is the true gradient at wt,

- ∇w ˆ̀ is the noisy gradient approximation at wt,

- ∇w ˆ̀−∇w` is the fluctuation about the true gradient.

We note that each mini-batch is chosen with replacement to facilitate the theoretical analysis. The
mini-batch loss has the following properties:

E
[
ˆ̀(w)

]
= `(w) (9)

E
[
∇w ˆ̀(w)

]
= E [∇w`(w)] (10)

Assuming the fluctuation around the true loss, labeled as ψ, to be Gaussian random noise, it can be
defined as:

ψ = ∇w ˆ̀−∇w` (11)

The credibility of this approximation rests on the crucial assumption of the central limit theorem
(CLT), according to which the random error term will tend towards Gaussian noise as N → ∞, B →
∞, and B � N . Smith et al. note that while B and N are both finite, CLT is fairly robust in practice.
In the analysis below, we continue with this critical, but questionable, assumption.

Given equation (10), the expected value of the fluctuation is E[ψ] = 0 and the variance is

Cov(ψ) = E
[
ψψT

]
(12)

If we re-write ψ as

ψ =
N

B

[∑
i∈B

(
∇w`(xi, yi;w)− 1

N

∑
k

∇w`(xi, yi;w)

)]
(13)

the Cov(ψ) term is given by

Cov(ψ) = N ·
(
N

B
− 1

)
· F(w) (14)

where F(w) is a matrix of the gradient covariances, which are a function of the current parameter values.
It measures the variation between the gradient calculated at a random point with weights w and the
true gradient. Under the assumption, N � B, we can approximate the variance as:

Cov(ψ) ≈ N2

B
· F(w) (15)

Hence, we can summarize the fluctuations as a Gaussian variable, such that

ψ ∼ N
(

0,
N2

B
F(w)

)
(16)
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5.2 Re-casting as an SDE
We can re-cast the gradient update from equation (8) as a discrete update of a stochastic differential
equation:

∇t(w) = −∇w`+ ε(t) (17)

where t is a continuous variable, ε(t) is white noise with E[ε(t)] = 0 and E[ε(t)ε(t′)T ] = g ·F(w) ·δ(t− t′).
It is the constant g that controls the random fluctuations of the underlying dynamics. The noise is also
assumed to be uncorrelated at two different time steps.

The gradient update can be computed by integrating the continuous process over N steps as shown
below:

∆w =

∫ η/N

0

∇tw dt (18)

=

∫ η/N

0

∇w` dt+

∫ η/N

0

ε(t) dt (19)

In the first integral of the above equation, w is not going to change much and hence can be approximated
as −η/N . The second integral is the integral of white noise. We can write its variance as:

E

[(∫ η/N

0

ε(t) dt

)(∫ η/N

0

ε(t′) dt′
)]

(20)

=

∫ η/N

0

dt

∫ η/N

0

dt′ E
[
ε(t)ε(t′)T

]
(21)

Using the variance of the error term defined in equation (18), we can write

= g · F(w) ·
∫ η/N

0

dt

∫ η/N

0

dt′ δ(t− t′) (22)

=
η

N
· g · F(w) (23)

Equating the variance obtained here to the one obtained in equation (14), we obtain the “noise scale”,
g, as:

g = η ·
(
N

B
− 1

)
≈ ηN

B
(24)

We can see from equation (24) that the “noise scale” falls as the batch size, B, increases. Hence, given
a set of fixed parameters for the network, there must be an optimal batch size, Bopt, as claimed by
Smith et al.. The authors run some experiments to provide evidence for this claim. We present their
experiments 10a and 11a and the evidence for optimal batch size in figures 10b and 11b.

5.3 Isotropic gradient noise
Jastrzebski et al. 2017 also approximate SGD as a continuous SDE but go one step further and make
a stronger assumption that w is isotropic. More specifically, they assume that F(w) = σ2I. This helps
them get to the stationary equilibrium of the underlying stochastic process. The equilibrium distribution
of the SDE is given by

P (w) = P0 exp

(
−2`(w)
η
Bσ

2

)
(25)

where P0 is a normalization constant.
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(a) Accuracy of the model on the test set as a function
of batch size. Different lines represent different learning
rates. As we increase the learning rate, the performance
peaks with larger batch sizes. However, the overall per-
formance falls once η & 3.

(b) There is a linear relationship between optimal batch
size and the learning rate.

(a) Accuracy of the model on the test set as a function
of batch size. Different lines represent different train-
ing set sizes. The model’s performance peaks at larger
batch sizes as we increase the training set size. Note:
Each curve is averaged over five experiments to reduce
noise.

(b) With, N & 20000, the optimal batch size is propor-
tional to the size of the training data.

Further, suppose that `(w) has well separated minima. Consider one of these minima and call it
A. Let the loss at A be `A and the Hessian at A be HA. We know that HA is positive semi-definite.
Additionally, the smaller the determinant of HA, the flatter the minima would be. The (unnormalized)
probability of ending up in the bowl of such a minima A is proportional to:

P (A) ∝ 1√
det(HA)

exp

(
−`(w)
η
Bσ

2

)
(26)

Both of the last two expressions depend on the ratio of the learning rate to the mini-batch size, i.e., η/B.
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