
6.883 Science of Deep Learning – Spring 2018 February 28, 2018

Lecture 7: Generative Models and Expectation-Maximization
Lecturer: Constantinos Daskalakis Scribes: Mucong Ding, Sirui Lu, Wei-Ning Hsu

(Revised by Andrew Ilyas and Manolis Zampetakis)

1 Introduction

1.1 Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning

Data: (x, y) x is data, y is label raw data x, no labels!
Goal: Learn a function to map x→ y Learn some underlying structure

Examples: Classification, regression, object detection,
semantic segmentation, image captioning, etc.

Clustering, feature learning,
dimensionality reduction,
density estimation, etc.

(a) Classification: Cat (b) Object Detection:
{DOG, DOG, CAT}

(c) Semantic Segmenta-
tion: {GRASS, CAT,
TREE, SKY}

(d) Image captioning: A
cat sitting on a suitcase
on the floor

Figure 1: Supervised Learning

So far in this course, we’ve been talking about supervised learning, where the data is labeled. Specif-
ically, we have a collection of pairs (x, y) where x is data, and y is the corresponding label. The goal is
to learn the mapping from data to labels. Some examples of supervised learning are given in Figure 1.
When training set consists of images, our goals can be: determining what do images contain (Figure 1a),
identifying objects from images (Figure 1b), image captioning (Figure 1d), or finding segmentations
(Figure 1c). All these examples are instances of supervised learning.

In contrast, in unsupervised learning, we only have raw data. Some examples of supervised learning
are given in Figure 2, and include clustering (Figure 2a) and principal component analysis (Figure 2b).

Unsupervised learning is an essential topic in AI for the following two reasons:

1. Training data is cheap, while labeling is an expensive task.

2. By solving unsupervised learning, we gain better understanding the structure of the data.

1

(a) K-means clustering (b) Principal Compo-
nent Analysis (Dimen-
sionality reduction)

(c) Autoencoders (Fea-
ture learning)

(d) 1-d & 2-d density es-
timation

Figure 2: Unsupervised learning: (a) Clustering problems involve partitioning unlabeled data into groups
based on similarity between the datapoints themselves. (b) Principal component analysis (PCA) aims
to find the most important components of high-dimensional input data, and as such is often used for
dimensionality reduction. (c) In deep learning, autoencoders (Figure 2c) aim to learn a representation
(encoding) for a set of data, typically for dimensionality reduction and extracting crucial features. Au-
toencoders attempt to accomplish this by jointly optimizing an encoder, which reduces the dimensionality
of the data, and a decoder, which tries to reconstruct the original data from the encoding (thus ensuring
that the encoding does not lose information). (d) Finally, density estimation (Figure 2d) is another
vital problem, which is the construction of an estimate, based on observed data, of an unobservable
underlying probability density function.

1.2 Generative Models
One of the most important goals of unsupervised learning is understanding the inherent structure of the
given unlabeled data. One popular approach to achieving this goal is the use of generative models. In
this approach, we assume that our data has been generated by some unknown probability distribution,
and our goal is to construct a model which captures this distribution as accurately as possible.

There are mainly two categories of generative model: explicit density estimators and implicit density
estimators. Explicit density estimation attempts to learn the distribution pmodel(x) directly—the end
result is a model which, for any input x, can estimate pdata(x). Examples of explicit density estimators
are image classifiers (which, as we recall, can be viewed as models of p(label|image), sequence models
in natural language processing, and other likelihood-estimating models. In contrast, implicit density
estimation models do not directly yield estimates of pdata(x), but instead produce samples from pmodel(x)
directly. Such models are sometimes the more natural approach to modeling probability distributions—
for example in climate, weather, and ecology, our physical understanding of systems can be used to create
implicit generative models via simulation (while by contrast assigning a likelihood to specific chains of
events would be rather difficult).

1.3 Taxonomy of Generative Models
Despite the unified goal of understanding the underlying distribution of a dataset, different types of
generative models are best suited for different tasks. In particular, exact problem circumstances often
dictate uses of different solutions within generative modeling. These circumstances lead to the so-called
“taxonomy” of generative models given in Figure 3. In this section, we briefly elaborate on this taxonomy
in the context of the main models we will look at in this lecture.

Approaches to explicit density estimation. Explicit density estimation is the most common way
to define a generative model. The most trivial example of explicit density estimation is to postulate your
data comes from Gaussian distribution and try to find the mean and variance of this Gaussian. Under
this hypothesis, the log-likelihood is well-behaved and the parameters of the model even have a closed
form (namely, the empirical mean and variance). More broadly, there exists a class of models/probems

1Figure copyright Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.[2]

2

Generative Models

Explicit density Implicit density

Approximate density

Variational

Markov Chain

Direct

Tractable density

Markov

▪ Fully visible Bayesian Networks
▪ Hidden Markov Models

▪ Variational Autoencoder
▪ Graphical Models
▪ Bayesian Networks

▪ Boltzmann Machines

▪ Deep Boltzmann Machines

▪ Generative Adversarial Networks

▪ Generative Stochastic Networks

Figure 3: Taxonomy of generative models1: Generative models can differ by whether estimate
density explicitly (by providing probability/likelihood) or implicitly (by providing samples). Within
explicit models, learning the underlying distribution is sometimes tractable, otherwise an approximation
method is needed (VAEs, which we discuss further later on, correspond to the case where approximation
is chosen to be a variational one). Within implicit models, some models can transform an initial state
into a sample, while others (such as GANs, which we also discuss later) generate samples from scratch.

for which we can provably find optimal parameters, such as (fully-visible) Bayesian Networks, and Hidden
Markov Models.

On the other hand, there are many examples where the computation of a maximum likelihood es-
timate is a very hard or even simply intractable problem. In these cases, to get an explicit density
estimate, we have to use some sort of heuristic or approximation in order to find optimal model pa-
rameters. In this lecture, we will discuss the use of a variational approximation to solve the explicit
density estimation, starting with the classical Expectation-Maximization algorithm, and leading up to
a discussion of Variational Autoencoders.

Approaches to implicit density estimation As we previously noted, sometimes constructing a
model that provides densities explicitly is difficult or unrealistic. These cases are better suited to implicit
generative models, which abandon the goal of explicitly modeling the system and instead attempt to
construct a model which provides samples from a distribution approximating that of the natural data.
Here, we’ll look at implicit density estimation in the context of Generative Adversarial Networks (GANs).

2 Variational Inference

2.1 Pearson’s crabs
The paradigmatic use of variational inference comes from a problem motivated by Karl Pearson in the
late 19th century in his paper [5]. In this paper, Pearson set out to analyze data provided by the
zoologist Weldon and his wife, regarding the forehead widths and heights of a population of crabs.
When conducting his analysis, however, Pearson found something rather peculiar—contrary to the rest
of the zoological data he had analyzed, the forehead widths and heights did not seem to follow a normal
distribution. Instead, Pearson notes:

In the case of certain biological, sociological, and economic measurements there is, however,
a well-marked deviation from this normal shape, and it becomes important to determine the
direction and amount of such deviation. The asymmetry may arise from the fact that the
units grouped together in the measured material are not really homogeneous. It may happen
that we have a mixture of 2, 3, · · · , n homogeneous groups, each of which deviates about its

3

own mean symmetrically and in a manner represented with sufficient accuracy by the normal
curve.

5 10 15 20 25 30

20

40

60

80

Figure 4: The analysis reproduces Pearson’s
original fit with two normal components. The
presence of two components was interpreted by
Pearson as evidence that there were two species
of crabs.

Width Length

Crab Species

Figure 5: The probabilistic graphical model
representation of Pearson’s crabs. Z(species of
a crab) is the only latent variable, while both
X1(width of a crab) and X2(length of a crab)
are observable variables.

This observation and the analysis that followed was (a) the first example of a so-called mixture model
used to characterize a natural phenomenon, and (b) the very first example of a Bayesian network with
a hidden variable, which Pearson used in order to explain the data. In particular, he interpreted the
presence of two components as evidence that there were two species of crabs. The label of species was
a hidden variable that Pearson couldn’t observe, and based on this label, the measurement was drawn
from a separate (Gaussian) distribution. Pearson’s assumption about the presence of an unobserved
latent variable allowed him to solve for the parameters of the model, and thus accurately model the
measurement in question.

It turns out that the this “latent variable" observation extends well beyond this simple setting, and
is essential to modeling a wide variety of natural and synthetic data. Unfortunately, while the presence
of latent variables allows for better modeling of the world around us, it also makes the optimizing the
parameters of these models significantly harder.

As an example, consider once again our model for the crab population, where an unobserved latent
variable z (species) influences an observed variable x (forehead size). We have a good model of our
observed variable given the latent one, i.e. pθ(x|z) ∀z, and we can also parameterize a distribution over
the latent variable pθ(z). Now, when we are given i.i.d. samples from the distribution, S = {xi}, our
log-likelihood is given by:

`(S) =
∑
x∈S

log

(∑
z

pθ(x|z)pθ(z)

)
.

Crucially, note that the summation inside the log in the above is necessitated by the fact that we
have no access to the latent variable z (and thus need to marginalize it out of the likelihood). If z was
observable, we could simply compute the log-likelihood of both variables as the sum of log(pθ(x|z)pθ(z)).
Unfortunately, the log of the summation above also makes the likelihood highly non-convex and difficult
to optimize directly.

Variational inference is a heuristic used to circumvent this intractability, in which we opt to maximize
a lower bound of the likelihood function, rather than optimizing the likelihood directly. The most
prominent example of a variational inference algorithm is the expectation-maximization (EM) algorithm.

2.2 The Expectation-Maximization Algorithm
The expectation-maximization (EM) algorithm is one of the most popular ways to deal with the non-
convexity of the likelihood function caused to the presence of latent variables. Although it is a single
framework, the EM algorithm can be derived and interpreted in a variety of ways—here, we view EM as
a way of constructing progressively better lower bounds for the likelihood and maximizing these lower
bounds, thus ensuring that the likelihood continues to increase. EM can also be interpreted as the
construction of artificial latent variables, or as an alternating maximization algorithm [?].

4

Consider our equation for the log-likelihoods of observable variables x given latent variables z:

`S(θ) =
∑
x∈S

log

(∑
z

pθ(x, z)

)
(1)

=
∑
x∈S

log

(∑
z

q(z)

q(z)
pθ(x, z)

)
for any distribution q(·) (2)

=
∑
x∈S

log

(
Ez∼q

[
pθ(x, z)

q(z)

])
. (3)

Now, since log(x) is a concave function, we can apply Jensen’s inequality, which says that for any concave
function f and random variable X, f(E[X]) ≥ E[f(X)]:

`S(θ) ≥
∑
x∈S

Ez∼q

[
log

(
pθ(x, z)

q(z)

)]
(4)

=
∑
x∈S

∑
z

q(z) log

(
pθ(x, z)

q(z)

)
=: QS(θ) (5)

Thus, introducing the distribution q(z) solves our problem and takes the summation outside of the
logarithm. The question becomes: what should we choose q(z) to be? Observe that our new function
QS(θ) differs from the likelihood `S(θ) only due to Jensen’s inequality. As such, a natural way to
proceed is to set q(z) such that Jensen’s inequality is tight at the current guess for the best parameter,
θ(t). Noting that Jensen’s inequality is tight when X is a constant random variable, we find that we
want:

pθ(t)(x, z) α q(z) ∀ z.

Combining this constraint with the fact that q must be a probability distribution gives that:

q(z) =
pθ(t)(x, z)∑
z pθ(t)(x, z)

= pθ(t)(z|x)

This is all we need to introduce the EM algorithm: at some timestep t when our current guess for
the parameter θ is θ(t), we alternate between:

1. E Step: For each sample x ∈ S, compute the distribution q as follows:

q(z;x, θ(t)) = pθ(t)(z|x)

2. M Step: Maximize the following lower bound on the likelihood, which is tight at θ(t):

QS(θ; θ(t)) =
∑
x∈S

∑
z

q(z; x, θ(t)) log

(
pθ(x, z)

q(z; x, θ(t))

)

θ(t+1) = arg max
θ

QS(θ; θ(t))

We can show that using the above algorithm, we actually increase the likelihood `S(θ) at each
iteration. In fact, this turns out to be a straightforward argument. First, we know that Q(θ(t+1); θ(t)) ≤
`S(θ(t+1)) (since we proved via Jensen’s inequality that Q lower bounds `). Then, by construction we
know that Q(θ(t+1); θ(t)) ≥ Q(θ(t); θ(t)), and since we designed Q(·; θ(t)) to be equal to `(θ) at θ(t), we
can combine these inequalities to yield `(θ(t+1)) ≥ `(θ(t)).

An illustration of the EM algorithm is given in Figure 6.

5

Figure 6: An illustration of the approach taken by the expectation-maximization (EM) algorithm in
maximizing likelihood. The x-axis represents the parameter θ. The top (red) line is the log-likelihood
`S(θ). In the E step, we compute a lower bound of `(θ) using the current value of θ, θ(t). This lower
bound, which we denote Q(θ|θ(t)), is shown as purple curve in the figure. In the M step, we maximize
Q with respect to θ, and let θ(t+1) be the next value of θ.

2.2.1 EM algorithm in the case of mixture of Gaussian distributions

To better illustrate the EM algorithm, we now apply it the aforementioned problem: learning a mixture
of k Gaussians. Here, our parameters θ are the means and covariance matrices of the Gaussians in the
mixture, {µi} and {Σi}. Now, suppose we are given a set of samples S = {xi} drawn from the mixture
of Gaussians. (We’ll assume the Gaussians are mixed uniformly; in reality we can also optimize over the
mixing ratios α.)

Starting at some initial estimate θ(0), the EM algorithm takes the following form:

1. E Step: We let the indicator variable zij indicate whether sample xi was drawn from the jth
Gaussian of the mixture. Then,

qij := q(zij ;xi, µ
(t)
j ,Σ

(t)
j) = p

µ
(t)
j ,Σ

(t)
j

(zij |xi) =
N (xi;µ

(t)
j ,Σ

(t)
j)∑k

l=1N (xi;µ
(t)
l ,Σ

(t)
l)

2. M Step: Plugging in the above into Q(θ) as derived above, and setting ∇µjQ(θ) = 0 and
∇ΣjQ(θ) = 0 gives the update:

µj =

∑
i qijxi∑
i qij

Σj =

∑
i qij(xi − µj)(xi − µj)>∑

i qij

Although EM algorithm is used widely and local convergence nearly follows by construction, there
are few known global convergence guarantees for this method. In fact, global convergence for mixtures of
two Gaussians with known covariance matrices was only established by relatively recent work (2016) [17].
In particular, the authors show that in the population model, where the algorithm is given access to
infinitely many samples from the mixture, converges geometrically to the correct mean vectors. A simple,
closed-form expressions for the convergence rate is also given. Using the convergence rate from their
result gives that, in one dimension, ten steps of the EM algorithm initialized at infinity result in less
than 1% error estimation of the means.

6

3 Variational Auto-encoders (VAEs)

3.1 Introduction
EM provides a method for managing low-dimensional, discrete latent variables; however, in many settings
this turns out to be insufficient. Variational Auto-encoders (VAEs) provide a canonical way to factor in
high-dimensional or continuous latent variables.

In this section, we’ll consider the following running example: suppose we have a high-dimensional
x ∈ Rn depending on a latent z ∈ Rm (where m << n, but is usually also high-dimensional). Then, the
marginal likelihood of x is given by:

pθ(x) =

∫
z

pθ(z)pθ(x|z)dz, (6)

Just as with EM, we can optimize the lower bound of the likelihood function; this time, however, we
use a VAE to access this loss function, rather than exploiting Jensen’s inequality (as we did in the last
section).

3.2 Intuition: Auto-encoders
Recall that one of the crucial goals of unsupervised learning is to discover the hidden structure of data,
and to learn a lower-dimensional feature representation from unlabeled training data. An auto-encoder
provides a simple and intuitive model for solving this problem.

A standard auto-encoder consists of two key parts: an encoder and a decoder. The encoder is a
function Eθ : Rn → Rm (typically parameterized by a neural network) that maps the high-dimensional
input x to the lower-dimensional latent space z.

In turn, the decoder is a function Dθ : Rm → Rn (usually also parameterized by a neural network)
that attempts to map vectors from the latent space Rm back to their corresponding inputs in the higher-
dimensional input space.

The key intuition behind this model is that if the decoder is able to successfully reconstruct the inputs
from the latent space, then the encoder must have successfully “embedded" all the necessary information
about the input into the latent space. To induce this sort of behavior, Eθ and Dθ are usually trained
in tandem, minimizing some sort of reconstruction error between original inputs and the corresponding
output of the decoder. Concretely, we often solve the following optimization problem:

θ∗ = arg min
θ

Ex [d (x, Dθ (Eθ(x)))] ,

under some distance measure d. Auto-encoders are often used in tasks requiring dimension reduction
(throwing away the decoder leaves just an encoder which is able to compress the “useful” information
contained in x into a smaller latent space), or in visualization.

In the following, we consider how we might be able to generate realistic vectors x ∈ Rn. It turns out
that this exactly the problem that the VAE attempts to solve.

3.3 Decoders as Generative Models
In the previous section, we introduced the decoder of an auto-encoder as a function that attempts to
recover an encoded input z := Eθ(x). Note that perhaps the most important role of the decoder was
just to ensure that the encoder embedded useful information into the latent space.

In the context of the variational auto-encoder, however, the decoder takes on a much larger role in
the training process. First, we define a prior distribution over the latent space Rm, which we denote
pθ(z). The role of the decoder then, is to provide access to pθ(x|z).

Assuming that the decoder is able to somewhat accurately capture p(x|z), the VAE framework
provides a simple way of generating new points in Rn. In particular, we can sample a vector z ∼ pθ(·),
then This raises the question: how can we train a decoder to match this conditional likelihood function?

7

3.4 Encoders as Inference Models and the Variational Lower Bound
To tackle the intractable likelihood function issue, VAEs pair the generative model provided by the de-
coder with a complementary inference model, qφ(z|x) meant to approximate the true posterior pθ(z|x).
Just as with pθ(x|z), we typically parameterize qφ with the weights of a neural network—in particular,
we reuse the encoder from the auto-encoder setup to model this posterior distribution.

Recall our original problem was dealing with the intractable likelihood function given in Equation 6.
Equipped with encoder and decoder networks as described, we can now derive a lower bound for the log-
likelihood function that we can optimize instead. We start by writing the log-likelihood as an expectation
over the latent variable z, for a single sample x := x(i):

log pθ(x) = Ez∼qφ(z|x) [log pθ(x)] (7)

= Ez∼qφ(z|x)

[
log

pθ(x|z)pθ(z)
pθ(z|x)

]
via Bayes’:

P (A|B)P (B)

P (A)P (B|A)
= 1 (8)

= Ez∼qφ(z|x)

[
log

pθ(x|z)pθ(z)
pθ(z|x)

qφ(z|x)

qφ(z|x)

]
multiplying by 1 (9)

= Ez∼qφ(z|x) [log pθ(x|z)]− Ez∼qφ(z|x)

[
log

qφ(z|x)

pθ(z)

]
+ Ez∼qφ(z|x)

[
log

qφ(z|x)

pθ(z|x)

]
(10)

= Ez∼qφ(z|x) [log pθ(x|z)]−DKL (qφ(z|x)||pθ(z)) +DKL (qφ(z|x)||pθ(z|x)) (11)

≥ Ez∼qφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||pθ(z)) since DKL(·||·) ≥ 0 (12)

=: L(x; θ, φ), (13)

Examining the loss function. First, we examine each term in Equation 11 separately. The first term
can be viewed as a re-derivation of the (auto-encoder) reconstruction loss. In particular, we want to
ensure that the generative model pθ(x|z) (the decoder), assigns high probability to x given the encoding
qφ(z|x). The second term represents the distance between the distribution induced by the encoder, and
our enforced prior distribution on z. The third term penalizes the distance between the posterior qφ(z|x),
and the posterior induced by pθ, pθ(z|x). This term is actually intractable to compute, and is thus what
leads us to having a lower bound on the log-likelihood, rather than the log-likelihood itself.

We now seek closed-form expressions for the first and second terms. It turns out that these term
can actually be greatly simplified if we force the distributions in question to be Gaussian. Setting
pθ(z) ∼ N (0, 1) and qφ(z|x) ∼ N (µz|x, diag(σ2

z|x)) allows us to simplify the second term. Recall that
the KL divergence between two multivariate normal distributions with means µ1 and µ2 and covariance
matrices Σ1 and Σ2 is given by:

DKL(N1||N2) =
1

2

[
tr
[
Σ−1

2 Σ1

]
+ (µ2 − µ1)>Σ−1

2 (µ2 − µ1)− d+ log
|Σ2|
|Σ1|

]
. (14)

Substituting (0, I) for (µ2,Σ2) and (µz|x, diag(σ2
z|x)) for (µ1,Σ1) yields:

DKL(qφ(z|x)||pθ(z)) =
1

2

[∣∣∣∣σz|x∣∣∣∣2 +
∣∣∣∣µz|x∣∣∣∣2 − d− ∣∣∣∣log σz|x

∣∣∣∣2] , (15)

where the logarithm in the above is taken element-wise. Similarly, setting pθ(x|z) ∼ N (µx|z, I) allows
us to write the first term (which we suggested might correspond to the reconstruction loss) as:

Ez∼qφ(z|x) [log pθ(x|z)] = Ez∼qφ(z|x)

[
−1

2

(
log |I|+ (x− µx|z)>I(x− µx|z) + d log(2π)

)]
(16)

= −1

2
Ez∼qφ(z|x)

[∣∣∣∣x− µx|z∣∣∣∣2]− d log(
√

2π), (17)

which is precisely the `2 reconstruction loss if we let the output of the decoder be µx|z!

8

Ensuring backpropagation. A natural choice for maximizing L where pθ and qφ are neural networks
would be gradient ascent. The barrier that we face with this approach, however, is an inability to
differentiate through the random sampling in the expectation, z ∼ qφ(·|x). Fortunately, the same
simplifying assumption we made to make DKL(qφ(z|x)||pθ(z)) tractable (namely that pθ(z) and qφ(z|x)
are normally distributed) also lends itself to circumventing the non-differentiability issue. In order to
back-propagate the gradient to the encoder, one can use the following reparameterization trick:

z̃ = µz|x + σz|x · ε, ε ∼ N (0, 1), (18)

which rewrites a sample drawn from qφ(z|x) as a deterministic function of its mean and covariance, with
an auxiliary variable ε. Thus, by making the encoder network output a mean and covariance explicitly
and using these to parameterize a normal distribution, we can ensure that gradients can be propagated
through the entirety of the expectation.

3.5 Generating Data
After a VAE model is trained, we can traverse the latent space in order to see what factors each latent
space dimension captures. Figure 7 shows examples of data generated by two VAEs, trained on the
MNIST digit dataset and a face dataset respectively. In the latter example, we can see that varying one
dimension changes the degree of the smile while varying the other dimension changes the head pose.

(a) VAE-generated numbers (b) VAE-generated faces

Figure 7: Data generated by VAEs.

3.6 Summary: VAEs
A variational auto-encoder is a probabilistic version of an auto-encoder, which (in addition to performing
dimensionality reduction), enables us to sample from the model to generate data. The VAE accomplishes
this task by considering a latent variable model z → x, and deriving a lower bound on an intractable
log-likelihood.

Disadvantages and future work. Samples generated by VAEs tend to be blurry or noisy, par-
ticularly when compared to other generative models such as generative adversarial networks (GANs).

9

Furthermore, while the variational lower bound is a tractable objective for optimization, it only relates
with the true objective of interest (the marginal likelihood) loosely. The gap between the variational
lower bound and the marginal likelihood is determined by how well the inference model can approximate
the true posterior, measured in terms of the KL divergence.

To improve the capacity of variational autoencoders, one line of research has focused on introducing
more powerful inference models, instead of neural network-parameterized factorial Gaussian distribu-
tions. A few examples are normalizing flows [8] and inverse auto-regressive flows [9] that transforming a
simple Gaussian into more complex ones. Another line of research takes into account the characteristics
of the data being modeled, and introduces graphical models of richer structures, such as hidden Markov
models [11], Kalman filters [10], factorized hierarchical prior [12], state space models [13].

4 Generative Adversarial Network (GAN)
What if we give up on explicitly modeling the density, and just want the ability to sample from an under-
lying distribution? This is precisely the question that motivates the approach of generative adversarial
networks (GANs), which do not work with any explicit density function. Instead, using inspiration from
game theory, GANs attempt to learn to generate from a training distribution by setting up a two-player
game between two concurrently trained agents.

One agent, the generator Gθ, is designed to take in a simple, low-dimensional random input (for
example, z ∼ N (0, I)) and transform it into a high-dimensional structured signal. This structured signal
is “mixed in” with the training distribution, and is then fed to a discriminator Dw, which in turn tries
to discern between the inputs generated by Gθ, and those directly from the training set. The generator
receives rewards for “fooling” the discriminator (i.e. generating an image that the discriminator labels
as being from the training set). Conversely, the discriminator receives rewards for correctly classifying
between real and fake inputs.

The method by which this reward is incurred by Gθ and Dw is a subject of intense research, and
varies from implementation to implementation. In the original GAN formulation (Goodfellow, 2014), a
log-likelihood based objective was used. Here, we give the formulation of Wasserstein-GAN (WGAN),
one of the most popular and simple objective functions for training GANs. In the next lecture, we
elaborate more on the ties between GAN training and traditional game theory.

4.1 Wasserstein-GAN
Suppose the data we are trying to model resides in Euclidean space Rn. We denote the true high-
dimensional distribution of data by F and the modeled distribution (i.e., the distribution of the outputs
of the generator network Gθg (z)) as Q.

Since our goal is for the generator Gθ to learn the true distribution, a reasonable approach would
simply be to minimize the statistical distance between F and Q. In Wasserstein-GAN (WGAN), the
authors find that the Wasserstein distance has certain properties that make it well-suited for measuring
this distance. Formally, the Wasserstein distance between F and Q is defined as:

W (F,Q) = inf
γ∈Π(F,Q)

(
E(X,Y)∼γ

[
‖X − Y ‖1

])
, (19)

where Π(F,Q) is the set of all distributions in Rn × Rn whose marginals are F and Q respectively, i.e.,
the couplings of F and Q. This definition is very intuitive, and essentially represents the `1 distance
under the best possible coupling of the two distributions.

Unfortunately, optimizing this kind objective function is not practical—in particular, calculating an
infimum over the set of all couplings is almost always intractable. It turns out, however, that there is
a dual representation of the Wasserstein distance. Using Kantorovich duality, we can W (F,Q) as the
following supremum over the set of all 1-Lipschitz functions from Rn to R:

W (F,Q) = sup
D:Rn→R,1-Lipschitz

(
EX∼F

[
D(X)

]
− EX∼Q

[
D(X)

])
. (20)

10

Intuitively, this supremum represents the performance of the best 1-Lipschitz “separator” of the two
distributions. In a perfect world, we could simply train a Gθ that would minimize this Wasserstein
distance,

θ = inf
θg

sup
D:Rn→R,1-Lipschitz

(
EX∼F

[
D(X)

]
− Ez∼N (0,I)

[
D(Gθg (z))

])
. (21)

In practice, we actually run into the same problem as with the primal formulation of the Wasserstein
distance: a seemingly intractable supremum over the set of all 1-Lipschitz functions. This intractability,
however, turns out to be circumventable (though with a few caveats). In particular, we can instead
minimize an upper bound on the Wasserstein distance between F and Q, by taking the inner supremum
over a smaller model class—the set of 1-Lipschitz deep neural networks. This simplification yields a
simple min-max objective that can be solved through first-order methods:

inf
θg

sup
θd

(
EX∼F

[
Dθd(X)

]
− Ez∼N (0,I)

[
Dθd(Gθg (z))

])
. (22)

The Lipschitzness of the neural network “discriminator” can be enforced in various ways, such as weight
clipping, gradient penalties, or spectral normalization of the weights. To train WGAN, we simply
alternate between gradient ascent on w, and gradient descent on θ. While this approach seems to work
in practice, research has shown that the simplifying assumptions made when training GANs often reflects
back through difficulty training or inability in learning distributions. We revisit these issues in depth in
the coming lectures.

References
[1] Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

[2] Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Z Ghahramani, M Welling,
C Cortes, N D Lawrence, and K Q Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

[4] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[5] Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Transactions of
the Royal Society of London. A, 185:71–110, 1894.

[6] Pearson’s polynomial, http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html, 22-04-
2014

[7] Karl Pearson’s crab data, http://icarus.math.mcmaster.ca/peter/mix/demex/excrabs.html

[8] Rezende, Danilo Jimenez, and Shakir Mohamed. "Variational inference with normalizing flows."
arXiv preprint arXiv:1505.05770 (2015).

[9] Kingma, Diederik P., et al. "Improved variational inference with inverse autoregressive flow." Ad-
vances in Neural Information Processing Systems. 2016.

[10] Fraccaro, Marco, et al. "A Disentangled Recognition and Nonlinear Dynamics Model for Unsuper-
vised Learning." Advances in Neural Information Processing Systems. 2017.

[11] Ebbers, Janek, et al. "Hidden Markov Model Variational Autoencoder for Acoustic Unit Discovery."
Proc. Interspeech 2017 (2017): 488-492.

11

http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html
http://icarus.math.mcmaster.ca/peter/mix/demex/excrabs.html

[12] Hsu, Wei-Ning, Yu Zhang, and James Glass. "Unsupervised Learning of Disentangled and Inter-
pretable Representations from Sequential Data." Advances in neural information processing systems.
2017.

[13] Krishnan, Rahul G., Uri Shalit, and David Sontag. "Structured Inference Networks for Nonlinear
State Space Models." AAAI. 2017.

[14] Wikipedia contributors, "Generative model," Wikipedia, The Free Encyclopedia, https://
en.wikipedia.org/w/index.php?title=Generative_model&oldid=837781569 (accessed April 25,
2018).

[15] Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. "Maximum likelihood from incomplete
data via the EM algorithm." Journal of the royal statistical society. Series B (methodological) (1977):
1-38.

[16] Balakrishnan, Sivaraman, Martin J. Wainwright, and Bin Yu. "Statistical guarantees for the EM
algorithm: From population to sample-based analysis." The Annals of Statistics 45.1 (2017): 77-120.

[17] Daskalakis, Constantinos, Christos Tzamos, and Manolis Zampetakis. "Ten steps of EM suffice for
mixtures of two Gaussians." arXiv preprint arXiv:1609.00368 (2016).

12

https://en.wikipedia.org/w/index.php?title=Generative_model&oldid=837781569
https://en.wikipedia.org/w/index.php?title=Generative_model&oldid=837781569

	Introduction
	Supervised vs Unsupervised Learning
	Generative Models
	Taxonomy of Generative Models

	Variational Inference
	Pearson's crabs
	The Expectation-Maximization Algorithm
	EM algorithm in the case of mixture of Gaussian distributions

	Variational Auto-encoders (VAEs)
	Introduction
	Intuition: Auto-encoders
	Decoders as Generative Models
	Encoders as Inference Models and the Variational Lower Bound
	Generating Data
	Summary: VAEs

	Generative Adversarial Network (GAN)
	Wasserstein-GAN

