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(Revised by Andrew Ilyas and Manolis Zampetakis)

1 Recap: Generative Adversarial Networks

Gθz ∈ ℝk ∼ $

x ∈ ℝd

Figure 1: An example of a GAN mapping a low-dimensional random Gaussian vector to high-dimensional
pictures of faces.

Generative adversarial networks (GANs) [7] map white noise to high-dimensional objects with structure
(e.g. images of faces, as in Figure 1 above) by setting up a game between a generator (usually a
deep neural network, with parameters θg) and a discriminator (also usually a deep neural network,
with parameters θd). In the case of the Wasserstein GAN [2] (WGAN), which was the focus of our
introduction to GANs last lecture, this game is inspired by minimization of the Wasserstein distance:

inf
θg

sup
θd

Ex∼F [Dθd(x)]− Ez∼N(0,I)[Dθd(Gθg (z))] (1)

The generator and discriminator are traditionally trained by running gradient descent and ascent
respectively, on the loss function above. The expectations are estimated via finite-sample averages
across batches of real or fake images (see Figure 2 for the training mechanism).

Figure 2: A schematic demonstrating the training procedure for GANs.
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Even assuming we can estimate the expectations given in (1) with finite-sample means, will paired
gradient descent/ascent dynamics converge? If so, to what? In this lecture we’ll investigate these
problems from the perspective of game theory and online convex optimization.

2 A Brief Introduction to Game Theory
Definitions. We begin with some basic game-theoretic definitions. A two-player game consists of two
agents who, given an environment, play an action from a permissible action space. Given the actions
from each player, the environment then distributes an appropriate reward. The agents’ method for
choosing an action from the action space is known as a strategy. Strategies can be deterministic (pure
strategies), or they can be selected by sampling a probability distribution over multiple actions (mixed
strategies). After each player takes an action according to their strategies, they each receive a payoff.
Payoffs are specified by a payoff matrix, where rows correspond to actions taken by the first player and
columns corresponds to actions taken by the second player. Each entry in the matrix specifies the payoff
for both players.

Finally, a Nash equilibrium is the notion of an “optimal solution” to a game. In two-player games,
Nash equilibria have a quite intuitive definition: the two players are in a Nash equilibrium if each player
cannot improve their strategy given that they know the other player’s strategy.

To illustrate the concepts we just introduced, we walk two classic game-theoretic examples of two-
player games.

Movie night. Consider a scenario in which two friends are deciding between seeing Avengers: Infinity
War and Black Panther. Friend 1 would prefer to see Infinity War and Friend 2 would rather see Black
Panther. However, they want to attend the same movie together.

Let action IW correspond to seeing Infinity War and action BP correspond to Black Panther. Table
1 shows an example of a payoff matrix for this scenario.

Friend 2

IW BP

Friend 1
IW (7, 4) (0, 0)

BP (0, 0) (4, 7)

Table 1: A payoff matrix for the movie-picking scenario described. We note the presence of three Nash
equilibria: the top-left cell, the bottom-right cell, and the mixture of cells given by each Friend deploying
a mixed strategy.

There are three Nash equilibria associated with this payoff matrix. First, observe that if both players
use pure strategies where they end up playing the same action, then they each would be worse-off if
they changed their strategy. Thus, the top-left and bottom-right entries of the payoff matrix correspond
to Nash equilibria. There also exists a Nash equilibrium of this game that involves mixed strategies.
Suppose Friend 1 used a mixed strategy, picking IW with probability p and BP with probability 1− p.
Friend 2’s expected payoff when playing IW is then 4p. And his expected payoff when playing BP is
7(1−p). The expected payouts for playing IW and BP must be identical since, if they were not, Friend
2 would have a pure strategy where he always played the action with higher expected payoff (this, in
turn, would cause Friend 1 to move back to a pure strategy) [11]. Thus, we see 4p = 7(1− p)→ p = 7

11 .
We can repeat this analysis to show that the probability Friend 2 picks IW is 4

11 (and thus he picks BP
with probability 7

11 ). The mixed strategy Nash equilibrium thus corresponds to the case when Friend 1
plays IW with probability 7

11 , plays BP with probability 4
11 , and Friend 2 plays IW with probability

4
11 and BP with probability 7

11 .

2.1 The Min-Max Theorem
This brings us to one of the foundational results of game theory, namely the min-max theorem:
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Theorem 1 [10] If X ⊂ Rn, Y ⊂ Rm are compact and convex, and f : X × Y → R is convex-concave
(i.e. f(x, y) is convex in x for all y and is concave in y for all x), then

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y). (2)

For illustration, Figure 3 shows a visualization of a convex-concave function f(x, y).
A solution to (2) corresponds to a Nash equilibrium. To see why, consider the min player. The

equality in (2) tells us that the payoff received as a result of the min player’s best move does not change
depending if the min player goes first (LHS) or second (RHS). This means that–even if the min player
knows the strategy of the max player–the min player cannot change its strategy to obtain an improved
payoff. By symmetry, the same must be true of the max player. Thus, we see that solutions to (2) meet
the definition of a Nash equilibrium.

Figure 3: f(x, y) = x2−y2+xy, a convex-
concave function

Figure 4: f(x, y) = x2 + y2, a non-convex
concave function.

Also note that in the case of convex-concave functions, the min-max optimal point is essentially
unique (if f is strictly convex-concave, otherwise there exists a convex set of solutions that all attain the
same value). However, if f is not convex-concave (which is the case for GAN objective), then there can
be multiple saddle points with different values, or no solution at all.

The min-max theorem is often considered as the starting point of game theory, since the min-max
points of f are precisely the Nash equilibria of a zero-sum game with payoff f(x, y) and −f(x, y). John
von Neumann, to whom the theorem is credited, said: “As far as I can see, there could be no theory
of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax
Theorem was proved”.

An interesting connection. When f is a bilinear function (linear in both x and y), for example
f(x, y) = xTAy+ bTx+ cT y, min-max theorem is equivalent to strong LP duality [3, 1]. Thus, min-max
solutions can be found using linear programming—this connection is arguably a crucial component in
the recent success of computers in beating humans at two-player zero-sum games (chess, poker, Go, etc).

3 Repeated Games and Online Convex Optimization
In this section, we extend the basic definitions and intuitions covered in the last section to the setting of
repeated (or online) games. In the simplest such setting, we consider a repeated zero-sum game between
a player and “nature” (in other words, we can imagine a single player performing the minimization in
minx maxy f(x, y)). The online/repeated nature of the game being played means that rather than simply
maximizing payout at any one time, the player’s goal is maximize their cumulative payoff from playing
the game repeatedly.

Concretely, we can describe the online game setup as follows:

• For every timestep t = 1, 2, · · · , T

– The learner/player chooses xt ∈ X ⊂ Rn
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– Nature chooses a convex function ft(·)
– The learner incurs loss ft(xt) and observes function ft(·)

• Learner’s goal is to minimize the average regret, defined as the average loss (negative payoff) minus
the loss of the best fixed action in hindsight:

R(T ) =
1

T

∑
t

ft(xt)−
1

T
min
x∈X

∑
t

ft(x)

.

Why only fixed actions in hindsight? We give a brief example demonstrating that it is not possible
in general to attain the total reward of the best sequence of actions in hindsight with an online policy.
This motivates the definition of regret as the total loss compared to the best fixed action. Consider
the following repeated game: at each timestep, the action space available to the player is [0, 1]. Nature
chooses loss function ft(x) = x with probability 1/2 and ft(x) = 1−x with probability 1/2. Observe that
without knowledge of ft (i.e. in the online case), and for any algorithm the learner adopts, E[ft(xt)] = 1

2 ,

and thus E
[∑T

t=1 ft(xt)
]

= 1
2T . However, in hindsight one can just choose x = 1 or x = 0 based on ft

and obtain a loss of zero in hindsight.

In contrast, we will find that defining regret via the best fixed action in hindsight allows for online
strategies that attain vanishing regret (R(T )→ 0 as T →∞).

3.1 No-Regret Learning
First, we formalize this concept of vanishing regret:

Definition 2 We say that an online learning algorithm is a no-regret algorithm if it achieves regret
R(T )→ 0 as T →∞.

One of the central results in online convex optimization tells us that under some conditions on the loss
functions ft (namely, Lipschitz continuity1, no-regret algorithms are indeed attainable:

Theorem 3 Suppose, ∀t = 1, · · · , T , ft is convex and L-Lipschitz. There exists a learning algorithm
such that R(T ) ≤ O(L/

√
T )

Before proving Theorem 3, we first propose a natural algorithm that does not attain vanishing regret on
its own, but is a key building block in our construction of no-regret algorithms.

3.1.1 First attempt: follow-the-leader(FTL)

A natural approach that a learner might use to minimize regret is as follows: after playing an action xt
and observing the loss function ft, the player can compute what the best (loss-minimizing) action was
in hindsight, i.e. arg minx

∑
τ≤t fτ (x). On the next day, the learner simply uses this “best x” as their

action for the next loss function.
This algorithm, known as follow-the-leader (FTL), bears an interesting resemblance to our definition

of the regret R(T ) (Definition 2). In particular, one might hope that by playing the best action in
hindsight at each timestep, the player minimizes the difference in total loss between itself and the overall
best action in hindsight.

Unfortunately, this turns out not to be the case: in the following example, we show that there exist
games where FTL incurs constant average regret. Specifically, by making the functions at times t and
t+ 1 dramatically different, the environment can force the player to always play poorly:

1Recall that a function f is L-Lipschitz continuous if for all x and y, |f(x)− f(y)| ≤ L · |x− y|.
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Example. The permissible action space is X = [−1, 1]. Nature chooses function ft as:

ft(x) =


1
2x if t = 1

−x if t 6= 1 is even
x if t 6= 1 is odd

Then for any even t, ft(xt) = −xt, with xt set according to hindsight:

xt = arg min
x∈[−1,1]

∑
τ<t

fτ (x) = arg min
x∈[−1,1]

1

2
x = −1,

and thus ft(xt) = 1. Similarly, for any odd t,

xt = arg min
x∈[−1,1]

∑
τ<t

fτ (x) = arg min
x∈[−1,1]

−1

2
x = 1,

while the loss function at time t is ft(x) = x, making the incurred loss again 1. Thus, the total loss of
FTL is thus R(T ) = T , while playing the fixed action 0 at each timestep yields a loss of

∑
t ft(0) = 0 (an

upper bound on the loss of the best fixed action in hindsight). Thus, FTL has constant average regret
(also known as linear total regret), and is thus not a no-regret algorithm.

As we find in the following section, however, a slight modification to the FTL algorithm does in fact
yield a no-regret playing strategy.

3.1.2 A Second Attempt: Follow-the-Regularized-Leader(FTRL)

The fatal flaw of the proposed FTL algorithm, we claim, was its instability: by changing the loss function
dramatically from timestep to timestep, the environment was able to induce highly suboptimal play from
the learner. To address this, we consider the addition of a convex regularizer to FTL—specifically, rather
than simply choosing the best action in hindsight, the learner now chooses:

xt ∈ arg min
x∈X

[∑
τ<t

fτ (x) +
1

η
R(x)

]
,

for some value of η, and a strongly convex function R(·). The algorithm resulting from this decision
model is known as follow-the-regularized-leader, or FTRL. For the sake of clarity, we recall here the
definition of a strongly convex function:

Definition 4 R : X → R is α-strongly convex w.r.t norm ‖ · ‖ iff for all x, x0 ∈ X:

R(x) ≥ R(x0) +∇R(x0)T (x− x0) +
α

2
‖x− xo‖2

Adding this strongly convex regularizer to the decision of the learner actually turns out to be the
key in designing a no-regret algorithm. In fact, the following theorem (which we leave unproved, as the
proof is rather long and outside of the scope of the class) demonstrates that for any strongly convex
regularizer R(·), there is a setting of η that turns FTRL into a no-regret algorithm:

Theorem 5 Suppose, ∀t = 1, · · · , T , ft is convex and L-Lipschitz w.r.t some norm ‖ · ‖, and R is

α-strongly convex w.r.t ‖ · ‖. Then FTRL with parameter η =

√
maxR(x)−minR(x)

αL
√
T

, the regret R(T ) is

upper bound by L
√

maxR(x)−minR(x)
T .
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Illustration. Although a proof of the above theorem is beyond the scope of these notes, the perfor-
mance of FTRL on the counterexample to the vanishing regret of FTL proposed in the previous section
is quite illustrative. Recall the “pathological” game presented in our discussion of FTL:

ft(x) =


1
2x if t = 1

−x if t 6= 1 is even
x if t 6= 1 is odd

In the case of FTL, this sequence of loss functions caused the learner to alternate between playing −1
and 1, which in turn were actually the worst actions at their corresponding times. Now we consider
FTRL, with the simplest 1-strongly convex regularizer, R(x) = 1

2x
2, and η = 2T−1/2 set according to

Theorem 5. Then, at even values of t the learner instead plays:

xt = arg min
x∈[−1,1]

∑
τ<t

fτ (x) +
1

η
R(x) = arg min

x∈[−1,1]

1

2
x+

1

4

√
Tx2 = − 1√

T
,

and by symmetry the learner plays 1/
√
T on odd timesteps, leading to average regret 1/

√
T (or total

regret
√
T ). Intuitively, adding regularization to FTL prevented it from “overfitting” x to the past—the

learner oscillates between 1/
√
T and −1/

√
T , rather than −1 and 1.

Special cases of FTRL. It turns out that under specific choices of regularizer R(·), FTRL is reduced
to other well-known learning algorithms. We illustrate this through the following two claims:

Claim 6 FTRL with an `2-regularizer is approximately gradient descent, when ft are linear functions.

Proof Let R(x) = 1
2‖x‖

2
2 and gt(·) be the gradient of ft(·). Let ct(x) =

∑
τ<t fτ (x) + 1

2η‖x‖
2
2 and

xt = arg minx ct(x), which implies ∇ct(xt) =
∑
τ<t gτ + 1

ηxt = 0. Thus, for any t, xt = −η
∑
τ<t gτ .

Rewrite the above equation, we have xt = xt−1 − ηgt−1, where x1 = 0.

In fact, the connection between FTRL with an `2 regularizer and gradient descent runs even deeper.
In general, FTRL with `2-regularizer on function sequence ht(x) = ft(xt) + ∇ft(xt)(x − xt), t =
1, 2, · · · , T is the same as gradient descent on fucntion sequence ft(x), t = 1, 2, · · · , T .

Claim 7 FTRL on simplex with negative entropy regularizer, which is approximate to multiplicative-
weights-update method.

Proof The proof proceeds in a similar manner to that of Claim 6.

3.2 Follow The Regularized Leader and the Min-Max Theorem
In this subsection, we describe a crucial connection between FTRL and the central Min-Max theorem
presented earlier. Suppose f(x, y) convex-concave, and both x and y players run FTRL, that is:

• The x player chooses xt by applying FTRL to losses f(·, yt)

• The y player chooses yt by applying FTRL to losses −f(xt, ·)

The following theorem connects the actions of the players using FTRL with minimax equilibria:

Theorem 8 If x and y players play as above, then

1

T

T∑
t=1

f(xt, yt) = min
x

max
y

f(x, y)±O
(

1√
T

)
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Moreover, the average strategies x̄T = 1
T

∑
t xt and ȳT = 1

T

∑
t yt are a O

(
1√
T

)
-approximate Nash

Equilibrium, i.e.

f(x̄T , ȳT ) ≤ min
x
f(x, ȳT ) +O

(
1√
T

)
f(x̄T , ȳT ) ≥ max

y
f(x̄T , y)−O

(
1√
T

)
Proof Since both min and max players run FTRL, following Theorem 5, for x-player we have

1

T

T∑
t=1

ft(xt, yt) ≤ min
x

1

T

T∑
t=1

ft(x, yt) +O

(
1√
T

)
Theorem 5

≤ min
x
f(x,

1

T

∑
t

yt) +O

(
1√
T

)
f is convave w.r.t y

≤ min
x

max
y

f(x, y) +O

(
1√
T

)
(3)

Similarly, for y-player,

1

T

T∑
t=1

ft(xt, yt) ≥ max
y

1

T

T∑
t=1

ft(xt, y)−O
(

1√
T

)
Theorem 5

≥ max
y

f

(
1

T

∑
t

xt, y

)
−O

(
1√
T

)
f is convex w.r.t x

≥ max
y

min
x
f(x, y)−O

(
1√
T

)
= min

x
max
y

f(x, y)−O
(

1√
T

)
(4)

Combining the two inequalities as above, we have

min
x

max
y

f(x, y)−O
(

1√
T

)
≤ 1

T

T∑
t=1

ft(xt, yt) ≤ min
x

max
y

f(x, y) +O

(
1√
T

)
Moreover,

f(x̄T , ȳT ) ≤ max
y

f(x̄T , y)
(4)

≤ 1

T

∑
t

ft(xt, yt) +O

(
1√
T

)
(3)

≤ min
x
f(x, ȳT ) +O

(
1√
T

)

f(x̄T , ȳT ) ≥ min
x
f(x, ȳT )

(3)

≥ 1

T

∑
t

ft(xt, yt)−O
(

1√
T

)
(4)

≥ min
x
f(x̄T , y)−O

(
1√
T

)
Thus, (x̄T , ȳT ) is an approximate Min-Max equilibrium.

4 Back to GANs

4.1 On the Convergence of Parameters
Recall the formulation of the Wasserstein GAN [2]:

7



inf
θg

sup
θd

f(θg, θd) (5)

where

f(θg, θd) = Ex∼F [Dθd(x)]− Ez∼N(0,I)[Dθd(Gθg (z))]. (6)

In a typical GAN, f will not be convex-concave w.r.t. θg and θd. This makes the direct use of
Min-Max Theorem inapplicable to the above GAN formulation. Even if f were convex-concave, then
using the results from Section 3 we could at best argue that θ̄g and θ̄d when optimized via FTRL would
approach a saddle point, where:

θ̄g =
1

T

∑
t

θgt (7)

θ̄d =
1

T

∑
t

θdt (8)

However, this analysis does not have any guarantees on what the final parameters θgT and θdT
will converge to, even in the case where f is convex-concave. To illustrate this problem, consider
f(x, y) = (x− 1

2 )(y − 1
2 ). Alternating between optimizing x and y with gradient ascent/ descent yields

to divergence as we can see in Figure 5.

Figure 5: f(x, y) = xy. x and y are initialized at the purple diamond. Alternating between gradient
ascent/ descent on x and y leads to divergent behavior, spiraling away from the optimum, but the average
of the parameters is close to the optimal solution.

In this example, while averaging x and y would be close to the optimal solution x = y = 1
2 , the final

values xT and yT diverge away from the optimum.

4.2 Optimistic Mirror Descent
Oscillatory behavior can also be observed in the GAN setting. Consider the case when the GAN is
attempting to learn the isotropic normal distribution N(V, I). Let Gθg (z) = z + θg and Dθd(x) = θd · x
(where z, x, θg and θd are all vectors). Figure 5 depicts oscillatory behavior when optimizing using
gradient descent.
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Figure 6: [4] Gradient descent fails to converge to a solution for a two-dimensional θg and θd. The
optimal solution is θg1 = 3, θg2 = 4 and θd = ~0.

One recently proposed solution to address the above oscillatory behavior is to use optimistic mirror
descent in place of gradient descent [4] for training Wasserstein GANs [2]. The update rule for optimistic
mirror descent is given by:

xt = xt−1 − 2η∇f(xt−1) + η∇f(xt−2) (9)

4.2.1 Momentum

To provide some intuition on optimistic mirror descent, we begin by reviewing momentum. Recall the
update rule for gradient descent with momentum:

vt = γvt−1 − η∇f(xt−1) (10)
xt = xt−1 + vt (11)

To obtain an ε-accurate solution for a quadratic f , it is well-known that gradient descent takes
O
(
κ log

(
1
ε

))
iterations, where κ denotes the condition number of f ’s Hessian. For poorly condition

Hessians, the linear dependence on κ can cause gradient descent to converge very slowly. It can be
shown that momentum reduces the number of steps to O

(√
κ log

(
1
ε

))
[6], which makes the algorithm

significantly faster than gradient descent in such cases. This speed-up is often referred to as “acceleration”
in the literature.

Importantly, while the above bound on the number of steps gradient descent takes to converge
applies to general strongly convex functions, it has yet to be shown that momentum leads to accelerated
convergence in the general strongly convex case. However, it has been shown that momentum can
converge for strongly convex function asymptotically in the same number of steps as gradient descent
[5].

In non-convex optimization (notably, for training deep networks), momentum commonly outperforms
gradient descent in speed of convergence. A common justification for this tendency is that vt strengthens
the components of the gradient that consistently point in the same direction for multiple t [13] and
weakens the components that do not. This ultimately means that the updates quickly move xt in
directions of the gradient that are consistent over prior t compared to gradient descent which does not
use prior gradient history in its updates.

Interestingly, in non-convex settings momentum often converges to better local minima than gradient
descent. [13] presented several experiments training recurrent networks and deep autoencoders where
using momentum lead to significantly lower losses compared to gradient descent. Momentum remains
one of the most widely used optimization algorithms in deep learning due to its empirical successes.
For example, many architectures that have won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) have been trained with momentum. This includes ResNet [8], which won in 2015, as well as
Squeeze-and-Excitation networks [9], which won in 2017.
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4.2.2 Returning to Optimistic Mirror Descent

Both optimistic mirror descent and momentum incorporate prior observed gradients in their update
rules. However, whereas momentum moves partially in the direction of past gradients, optimistic mirror
descent moves partially in the opposite direction of the gradient observed in the prior timestep. To this
extent, optimistic mirror descent can be roughly interpreted as employing a “reverse” momentum that
undoes some of its past progress.

Using optimistic mirror descent, it has been shown that the final timestep parameters θg and θd
will converge to the optimum for bilinear games. For example, it fixes the oscillatory behavior in the
isotropic normal distribution example whereas other variants of gradient descent fail.

Outside of convex-concave problems, optimistic mirror descent (as well as other variants of gradient
descent) provides no guarantees that stable solutions will be local min-max points. Optimistic mirror
descent has been shown to produce samples from a WGAN trained on CIFAR-10 of quality comparable
with GANs trained using other popular gradient descent-based optimization algorithms when measured
using the Inception score.

Figure 7: [4] Optimistic mirror descent converges to the optimal solution for θg and θd.

4.3 Mode Collapse
A significant challenge with evaluating the performance of GANs is that it is unclear which saddle points
in f correspond to a Gθg that has learned the underlying distribution of data it is trying to model and
a Dθd that is competent at distinguish data coming from synthetic distribution created by Gθg versus
the true one. There may be many local saddle points in f , but we do not know how to identify which
ones have these properties. It is also possible that f contains no local saddle points at all, in which case
it is unclear where a good final solution would converge to.

One particularly problematic solution that f can converge to involves a discriminator that is good at
distinguishing between real samples and synthetic samples from a subset of modes in the true distribution.
When this happens, no matter what move θg makes (i.e. regardless of a small change in θg), the
discriminator can clearly distinguish between the two distributions at such modes. Such a solution can
result in the problem of mode collapse, when the generator becomes incapable of producing diverse
samples that cover the full underlying distribution it is trying to model. Instead, the generator focuses
only on producing samples from a subset of the distribution’s modes where it is still capable of confusing
the discriminator.
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Figure 8: [12] Various GAN architectures’ attempt to learn underlying data ((a) and (f)). The original
GAN suffers from mode collapse since it generates samples from only a few modes in the true distribution
((b) and (g)). ALI has completely failed to generate samples from any modes in the distribution in (c),
and it seemingly suffers from mode collapse in (h).
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