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1 Recap: Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs) have been the focus of much attention recently. The aim of
this lecture will be to understand whether GANs really work (in theory and in practice), and how to
tell when they don’t. Recall that a GAN consists of a generator neural network G and a discriminator
network V which are obtained by solving the following minimax optimization problem:

min
G

max
V

E
x∼D

[log(V (x))] + E
u∼N (0,I)

[log(1− V (G(u)))].

The first term in the loss samples from the true distribution D; the second term samples from G
by seeding it with a random input (e.g. N (0, I)). Viewed as a two-player game, the goal of V is to
maximize its discriminative ability, i.e. maximize the expectation of the output on samples from the true
distribution and minimize the expectation on samples generated from G from the latent distribution.
The goal of G is to model the true distribution as closely as possible, so that V is unable to distinguish
between samples from G and samples from D. In addition, since the logarithmic function is strictly
increasing, we consider each element of the loss function in log scale without consequence.

There is really no theory to support the fact that GANs can be effectively trained. The original paper,
for instance, makes several assumptions which do not hold in most situations to which GANs are applied
[7]. For instance, the authors assume arbitrarily expressive generator and discriminator neural networks
and the ability to completely optimize the discriminator network between steps of updating the generator
network. Assumptions are also made about the function over which we are optimizing, as the model of
a concave-convex game results in certain well-defined convergence properties that are not necessarily
generalizable. Nagarajan and Kolter are able to show that

Under suitable conditions on the representational powers of the discriminator and the generator,
the resulting GAN dynamical system is locally exponentially stable. [7]

That is, if generator and discriminator neural networks (G,V ) are initialized sufficiently close to the
optimal (G∗, V ∗), then training with gradient descent will converge to this equilibrium. However, this
sort of local result is of little practical use.

There is no consensus on the best way to train GANs in practice either. Some have suggested that
GANs be trained via alternating gradient descent steps on G and V , whereas, others suggest that training
should take multiple steps on V , i.e. further optimize the discriminator, for each step on G since the job
of the discriminator is “harder.” Yet other papers state that in fact V should not be near-optimal, since
this kills the gradient in G and can cause the training to settle in a local optima.

To understand better what GANs are actually learning, and if they are learning at all, we turn our
attention to analyzing how and in what aspects people have tried to evaluate GANs and to understanding
exactly what they produce.

2 Learning Gaussian Distributions with GANs
To begin understanding the dynamics of training and convergence in GANs, Li, Mądry, Peebles, and
Schmidt [5] investigate the GAN dynamics in simple cases related to Gaussian distributions, with the goal
of finding an example simple enough to mathematically analyze but complex enough to still encapsulate



all of the relevant phenomena and potential complications—in particular, vanishing gradients and mode
collapse—that arise in GAN convergence.

As Li et. al. find that is easily provable that, when the true distribution is a single univariate Gaussian,
convergence of the generator to the true distribution is guaranteed, they focus mainly on analyzing true
distributions constructed as uniform mixtures of two univariate Gaussian distributions with unit weights,
showing ultimately that the optimal discriminator always converges, whereas the first order dynamics
does not always converge nicely. Formally, they define the generator G to be

G =

{
1

2
N (µ1, 1) +

1

2
N (µ2, 1) | µ1, µ2 ∈ R

}
,

and the discriminator to be

D = {I[l1,r1] + I[l2,r2] | l, r ∈ R2 | l1 ≤ r1 ≤ l2 ≤ r2},

namely the set of indicator functions of sets expressible as two disjoint intervals, a simplification we
can make due to the restriction to mixtures of Gaussian distributions and the resulting simplifications in
the total variation distance between generators [5]. The optimization task of finding the best fit in total
variation distance to the generator is thus

µ̂ = arg min
µ

max
l,r

L(µ, l, r), where

L(µ, l, r) = E
x∼Gµ∗

[D(x)] + E
x∼Gµ

[1−D(x)]

Li et. al. consider two common approaches to solve this optimization problem, optimal discriminator
dynamics and first order dynamics.

Optimal discriminator dynamics involves performing stochastic gradient descent onG(µ̂) = maxl,r L(µ̂, l, r).
Formally, given an initial µ̂(0) and step size ηg, we have updates defined as

l(t), r(t) = arg max
l,r

L(µ̂(t), l, r),

µ̂(t+1) = µ̂(t) − ηg∇µL(µ̂(t), l(t), r(t))

Because this is difficult to perform in general for more complicated generators and discriminators, one
often uses simultaneous gradient iterations on the generator and discriminator, as in first order dynamics.
Formally, given initial µ̂(0), l(0), r(0) and step sizes ηg, ηd, we have

µ̂(t+1) = µ̂(t) − ηg∇µL(µ̂(t), l(t), r(t))

r(t+1) = r(t) + ηd∇rL(µ̂(t), l(t), r(t))

l(t+1) = l(t) + ηd∇lL(µ̂(t), l(t), r(t))

In applying each to the mixture of Gaussian distributions, it was found that optimal discriminator
dynamics always converged to the true distribution, whereas first order dynamics exhibited a variety
of behaviors—either converging, experiencing mode collapse, or converging to a wrong value due to
vanishing gradients. Figure 2 shows graphically some of the results of both, in particular demonstrating
the different end outcomes that could result from first order dynamics.

We see in figure 2 that, in (a) and (c), the discriminators, or specifically the µ̂ values converge stably
to the correct means. On the other hand, more often than not the first order dynamics fail, either when
gradients vanish or when modes collapse, i.e. µ̂0 and µ̂1 converge on each other, resulting in only one
mean represented.
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Figure 1: Different GAN behaviors for optimal discriminator dynamics and first order dynamics. The true
distribution was Gµ∗ with µ∗ = (−0.5, 0.5), and the step size was taken to be 0.1. Solid lines represent
the coordinates of µ̂, and the dotted lines represent discriminator intervals.

Li et. al. also study a phenomenon they call discriminator collapse, in which the local optimization
landscape around the current discriminator encourages change in such a way that it loses representational
power.

In figure 2 we see an example of discriminator collapse. In each graph, the difference of the true
distribution and the generator distribution is given, with regions covered by the discriminator shaded.
plot (a) shows the initial configuration of the example, plot (b) shows the result of the globally optimal
discriminator for the initial condition, and plots (c), (d), and (e) each show the state of the generator
and discriminator after 1000 steps, in slightly different variations—the first after just updating the
discriminator against a fixed generator, and the other two after applying first order dynamics. From these
we see discriminator collapse: the discriminator has incentive to have mass only on regions where the
difference between the true distribution and generator distributions is positive, so it risks the collapsing
of one of its intervals if in a negative region.

Ultimately, the results of the first order dynamics suggest that they are fundamentally flawed, or
at least that any promising implementation of them should somehow be able to resolve the issues of
vanishing gradients and mode collapse. The idea of analyzing a restricted set of simple but still interesting
distributions helps to give us starting insight into the convergence behavior of GANs at more complicated
levels.
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Figure 2: Example of Discriminator Collapse. Initial configuration has µ∗ = {−2, 2}, µ̂ = {−1, 2, 5}, left
discriminator [−1, 0.2], and right discriminator [−1, 2.5]. The step size for plots (c) through (e) was 0.3.

3 What Is the Promise of GANs?
Even assuming that training converges to the equilibrium (G∗, V ∗), it is not obvious that the result is
the model we want. It is natural to hope that G∗ has learned a distribution close to the true underlying
D, but is this true? And if so, how might one certify it?

The generator G∗ determines a distribution PS ← G∗(u); consider fixing PS and solving for the best
discriminator V among all functions. The loss is

Loss =

∫ (
PD(x) log V (x) + PS(x) log(1− V (x))

)
dx

where V is non-parametric, so we can simply optimize it pointwise. Setting the derivative w.r.t. V
equal to 0 and solving yields

V (x) =
PD(x)

PD(x) + PS(x)

Thus if (G∗, V ∗) correspond to a GAN loss of 0,

0 =

∫
PD(x) log

(
PD(x)

PD(x) + PS∗(x)

)
+ PS∗(x) log

(
PS∗(x)

PD(x) + PS∗(x)

)
=

1

2
KL(PD||

PD + PS∗

2
) +

1

2
KL(PS∗ ||PD + PS∗

2
)

= JS(PD||PS∗),

where KL is the Kullback-Leibler divergence and JS is the Jensen-Shannon divergence.

Hence a GAN (G∗, V ∗) that has 0 loss has in fact succeeded in learning a distribution PS∗ which
is close to PD in an information-theoretic sense. However, we have assumed that

1. it’s possible to find optimal G∗, V ∗, and that we have a large number of examples to do so, and

2. the discriminator is infinitely expressive.
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The second assumption is quite significant (and perhaps should not be take for granted), since we
find that limiting the expressive power of the discriminator to something more feasible, i.e. assuming
smoothness rather than infinite expressibility and training examples, we find that the discriminator is
less able to discriminate between distributions in a way that makes minimizing the distance between the
generated and real distribution, and moreover the generalization of the estimated generator distribution,
more difficult. Arora, Ge, Liang, Ma, and Zhang [1] observed, for instance, that a discriminator V with
n parameters cannot distinguish between the true distribution PD and an N -sample approximation PŜ ,
in the sense of minimizing the population distance between the two distributions to within a margin, i.e.
ĴS(PŜ ||PD) < ε. They first show the following lemma:

Lemma 3.1. Let µ be uniform Gaussian distributions N (0, 1dI) and µ̂ be empirical versions of µ with m
examples. Then we have ĴS(µ, µ̂) = log 2, Ŵ (µ, µ̂) ≥ 1.1.

The proof for JS divergence follows from the fact that µ is a continuous distribution while µ̂ is discrete.
For the Wasserstein distance, given empirical examples x1, . . . , xm and letting y be a sample of the
normal distribution, we have by concentration and union bounds that

P [∀i ∈ [m]‖y − xi‖ ≥ 1.2] ≥ 1−m exp(−Ω(d)) ≥ 1− o(1).

By the earth-mover interpretation of the Wasserstein distance, we get then that dW (µ, µ̂) ≥ 1.2P [∀i ∈
[m]‖y − xi‖ ≥ 1.2] ≥ 1.1.

In a more general case, consider the following metric:

Definition 3.1 (F -distance). Let F be a class of functions from Rd to [0, 1] such that if f ∈ F , 1−f ∈ F .
Let φ be a concave measuring function. Then the F-divergence with respect to φ between two distributions
µ and ν supported on Rd is defined as

dF,φ(µ, ν) = sup
D∈F

Ex∼µ[φ(D(x))] + Ex∼ν [φ(1−D(x))]− 2φ(1/2).

In the case of GANs, we define our class F to be the class of neural nets with at most p parameters,
which Arora et. al. [1] find to be a better distance metric than JS or Wasserstein through the following
theorem, by the guarantees of generalization. From this we, work toward a more generalized theorem
about the limits of a smooth or finitely expressible discriminator, in effect showing that because of the
limited number of discriminators a sufficient number of samples guarantees up to a high probability
convergence of the empirical distribution to the true distribution for all discriminators. To show this,
Arora et. al. [1] propose the following theorem:

Theorem 3.1. Let µ, ν be two distributions supported on Rd, and µ̂, ν̂ be empirical versions with at least

m samples each. There is a universal constant c such that when m ≥ cp∆2 log(LLφp/ε)

ε2
, we have with

probability at least 1− exp(−p) over the randomness of µ̂ and ν̂,

|dF,φ(µ̂, ν̂)− dF,φ(µ, ν)| ≤ ε
The proof follows from concentration bounds. We can show that with high probability, for every

discriminator Dv,

|Ex∼µ[φ(Dv(x))]− Ex∼µ̂[φ(Dv(x))]| ≤ ε/2

|Ex∼ν [φ(1−Dv(x))]− Ex∼ν̂ [φ(1−Dv(x))]| ≤ ε/2.
To show this, we can in essence use the Chernoff bound applied with the stated bound in the proof,

O(
p∆2 log(LLφp/ε)

ε2
), and union bound, assuming a sufficiently large c, gives us the above inequalities,

from which the generalization claim of the theorem follows.
Thus a model with a finite parameterization can be fooled with a finite number of samples – the GAN

has learned nothing but a very coarse approximation of PD. While we would like to be able to prove that
training does not settle to such (Ĝ, V̂ ) in practice, in the next section we will focus on ways to verify this
for a GAN that has been trained.
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4 Verification of GANs
Given a GAN G ∼ PS and a distribution PD, there are a number of heuristics which can be used to check
whether G ∼ PD, i.e. whether G has learned the target distribution. While heuristics are not themselves
sufficient to conclude that G ∼ PD, they can provide evidence for or against the claim that GANs are
truly distribution learners.

One simple idea is to just compare the supports. In particular, one can generate samples from PS and
verify that that they look approximately like samples from PD. Historically this was done by inspection,
so if a GAN was trained on a distribution of e.g. human faces, its output would be examined in the
hopes that the results were indeed “face-like.”

One heuristic to quantify this quality is the inception score[3]:

inception score = exp (Ex∼PS [DKL(p(y | x)||p(x))]) ,

where DKL(p(y | x)||p(x)) is the Kullback-Leibler distance between the distribution of labels p(y) and
the distribution of softmax probabilities p(y|x).

To calculate the inception score, a neural network is first trained on ImageNet and then fed images
sampled from the GAN. Note that, if DKL(p(y | x)||p(y)) is high, then the inception score is high. Thus,
the intuition behind this metric is clear: if the output of a GAN is meaningful, then the neural network
should have a low-entropy belief about the label of any particular image, and thus the KL distance should
be high.

Although the inception score is an intuitive heuristic, it can be artificially high even if the GAN in
question has learned nothing about the target distribution. Consider, for example, a potentially complex
distribution with three modes of different labels. A GAN which simply randomizes over the modes will
earn a high inception score, but it has clearly failed to learn the target distribution. For this reason, it is
encouraged to first train on a dataset and only then evaluate the result using the inception score (which
can check the support, but does not guarantee correctness).

Another approach to GAN verification is to show that the GAN has not simply memorized the
training data. In concrete terms, consider sampling from a GAN and measuring the distance of the
sample to its nearest neighbor in the training set. If the GAN has done more than just memorize its
training data, then this value should not be too small. However, it is not clear what notion of distance is
appropriate for this sort of estimation. The usual `2-norm, for instance, is not robust to transformations
such as shifts or changing of pixel values which have little impact in the image-space.

Radford, Metz, and Chintala [8] propose using the latent space embedding to understand the output of
GANs. Namely, the authors interpolate a seed x from u to u′ and study how the output G(x) varies from
G(u) to G(u′). Rather than obtaining images that were simply a convex combination of the endpoints
G(u) and G(u′), they found the output was semantically meaningful (à la word2vec) 4. This evidence
would seem to support the fact that GANs truly are learning.

Figure 3: Interpolating between points in latent space yields semantically meaningful outputs.
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Another property of a GAN that has truly learned the target distribution is that its support should
not be too small. Arora and Zhang [2] suggest a heuristic based on the birthday paradox: if after sampling
s images from the GAN there is a duplicate, then one would expect the support of the distribution to
have size O(s2). There are, however, a couple of subtleties here.

First, the birthday paradox only applies when the distribution over images is roughly uniform. If, for
instance, the distribution assigns 10% probability to a single image and is uniform on a large number of
other images, then a duplicate is likely with just 20 samples. The authors address this point by noting
that non-uniformity over the images should itself be considered a failure mode for GAN training.

More importantly, it’s not clear how to apply the birthday paradox argument when the support is
infinite (as it is for a GAN), or even what is meant by a duplicate. The authors resolve this issue by
looking instead at near-duplicate: from a finite sample the e.g. 20 closest pairs are selected using some
heuristic for distance, and those 20 pairs are visually inspected to determine whether any of them would
be considered duplicates by a human.

There is still the question of what distance heuristic is best to use. For the CelebFaces dataset the
authors chose to use standard Euclidean distance, since the samples are centered and aligned so Euclidean
distance is effectively robust. For CIFAR-10 data, they instead trained a CNN on the images and used
the top-layer representation as a latent space embedding; these embeddings were then compared via
Euclidean distance.

Using this birthday-paradox heuristic, the authors were able to experimentally verify the not-so-
surprising result that as the number of parameters of the discriminator grew, so did the diversity of
the learned distribution. Unfortunately, their experiments also suggest that current GAN approaches
(especially for images of high quality) fall short of learning the target distribution since their support is
too small, indicating the possibility of mode collapse.

Figure 4: An illustration of the mode collapse problem from [4] on a toy dataset. The first image is the
model that the GANs should learn, whereas the bottom ones are the models that are actually learned.

Santurkar, Schmidt, and Mądry [9] studied the diversity of the generated distributions of several
popular GANs with a focus on mode collapse using automated classification-based measures. Their
methodology involved taking the Large-Scale CelebFaces Attributes dataset [6] and the Large-Scale Scene
Understanding datasets [10], both of which are rich with annotations—for instance, the faces are labeled
as male or female and smile or no smile—and training a simple classifier to distinguish attributes based on
image input, which proved to do so successfully with high confidence. The intent of such a classifier was
to be able to label images sampled from the generator trained on these datasets and so give a measure
of the distribution of the generator output, all in a fairly automated process as opposed to via manual
annotation. While the distribution of the annotations among the four classes was close to uniform for
some GANs, like ALI, there were many other GANs for which the distribution of annotations were highly
asymmetric. This is further evidence that mode collapse can be a problem in practice (see figure 4).

There are a plethora of other evidence that further encourage this skeptical take on GANs. For
example, when the authors compared the spectrum of the covariance matrix of the GAN-generated
images to that of the true training data they found that most directions were dropped. In addition,
classifiers trained on the GAN distribution generalized considerably more poorly than those trained on
the actual images due to severe overfitting. Only the simplest model, a linear classifier, was able to avoid
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Figure 5: Distributions of images generated from GANs within classification categories, based on trained
annotator

Figure 6: Underfitting of linear classifier on GAN distribution. A simple linear classifier misclassifies
much of the original data when applied to the output from a GAN trained on the original data.

overfitting but in turn significantly underfit on the training set (4).
Yet another piece of empirical evidence is that the authors found training with hundreds of thousands

of GAN-generated images to be just as effective as using a few hundred samples from the actual training
data. Taken as a unified corpus, these bits of evidence support the idea that GAN-generated data is
derived from a distribution that is much less diverse than the true training distribution. If we are to
believe that GANs do indeed learn the underlying distributions on which they are trained then the
various aforementioned heuristics should confirm this fact; however, this does not appear to be the case.
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