

The Rotten Truth of Deep RL

The Rotten Truth of Deep RL

Deep RL can successfully solve tasks, but...

> Poor reliability over repeated runs

(((((((
=
33000
02000
@

>
((((((((

[Henderson et al, 2017a,b] [Lewis et al, 2018]

The Rotten Truth of Deep RL

Deep RL can successfully solve tasks, but...

> Poor reliability over repeated runs
> High sensitivity to hyperparameters

[Henderson et al, 2017a,b] [Lewis et al, 2018]

The Rotten Truth of Deep RL

Deep RL can successfully solve tasks, but...

> Poor reliability over repeated runs
> High sensitivity to hyperparameters
» Lack of robustness to environmental artifacts

[Henderson et al, 2017a,b] [Lewis et al, 2018]

The Rotten Truth of Deep RL

Deep RL can successfully solve tasks, but...

> Poor reliability over repeated runs
> High sensitivity to hyperparameters
» Lack of robustness to environmental artifacts

Notably, benchmarks don’t reveal these issues

[Henderson et al, 2017a,b] [Lewis et al, 2018]

What's going on?

[llyas Engstrom Santurkar Tsipras Janoos Rudolph M 201 8]

Implementation Obscures
Deep RL Algorithms

openai / baselines O Watch~ 383 W Star 5061 @ YFork 1,455
<> Code Issues 137 Pull requests 71 Projects 0 Wiki Insights

OpenAl Baselines: high-quality implementations of reinforcement learning algorithms

¢ Differences between the policies.
'mportant modification

o Huge architectural differences.

e Nontrivial changes to the paper, part 2. The code is sprinkled with small tricks.

¢ Nontrivial changes to the paper.

There is one thing_; between PPO1 and PPO2 that | don't understand

big difference between ppo and ppo

Source: GitHub issues

Implementation Obscures
Deep RL Algorithms

B Without Optimization M With Optimization

Maximum Reward

“Orthogonal” NN initialization

Implementation Obscures
Deep RL Algorithms

B Without Optimization M With Optimization

Maximum Reward

“Orthogonal” NN initialization

Implementation Obscures
Deep RL Algorithms

B Without Optimization M With Optimization

Maximum Reward

“Orthogonal” NN initialization

Implementation Obscures
Deep RL Algorithms

B Without Optimization B With Optimization

1200

900

600

Maximum Reward

300

0

Reward LR Orthogonal Value
Normalization Annealling init Clipping

Back to First Principles

>

Back to First P

Gradient Estimates

tttttttttt

Back to First Principles

lteration: 450

c 0 TRPO
" - @ PPO

> Gradient Estimates
0
% : # Iteration: 150
; o o Baselilnes:
3: 0.20

-0.5

o
=
w

102 103 10* 105 10°® 107
State-Action Pairs

> Value Prediction

o
o
a

Avg. pairwise cos sim
o o
o =
o o

0 2000 4000 6000 8000 100
State-action pairs

Back to First Principles

lteration: 450

1.0 TRPO

£
. . 5 PPO
> Gradient Estimates
9
% . # Iteration: 150
; 00 £ e Baselilnes:
Z 2 0.20
102 100 10* 105 10° 107 ¢ *
. . # State-Action Pairs ‘é’ o1
> Value Prediction
~
£ 0.00

580
560
540
520
500
480
460

0 2000 4000 6000 8000 100
State-action pairs

440
420

> Loss Landscape

% 2.0
[e]

Back to First Principles

lteration: 450

1.0 TRPO

e
. . 7 PPO
Gradient Estimates :
O o5 i
(O]
kv
E # lteration: 150
g_ 0.0 E 0.25 _'
% ‘ £ Baselines:
Z 20.20
—05 ' S
T 102 100 104 105 106 107 @ O1°
. . # State-Action Pairs =
Value Prediction
|-
alue edqictio £
Q 0.05
»
Eo.oo
260 0 2000 4000 6000 8000 100
220 # State-action pairs
500 r
480
460
440
420
Loss Landscape
p P
O?;l.s 1200 — TRPO
%; ' 2.5 3.0 'O 1000
0.0 o5 10 12 :20 E
0.0 Step d 1T 00
o
. 600
8 00
4
>

Trust Region

0 100 200 300 400
lterations

Back to First Principles

lteration: 450

TRPO
PPO
PPO-M

Gradient Estimates

lteration: 150

1
Baselines:

£
]
(%]
o
O
0]
2
2
i
©
Q
o
>
<<

103 104 10° 106 107
State-Action Pairs

Value Prediction -

Avy. Pairwise cos sim

520 v # State-action pairs

500 '
480 -
460
440
420
> Loss Landscape
P 2.5
%%2.0 § .
215 1200 — TRPO
2 1.0
%05 3.0
S 2.5 ©
2 0.0 10 15 2.0 —
00 03 étep direction (';U
~ Q
o
C
©
Q
=

> Trust Region

0 100 200 300 400
lterations

Gradient Estimation

Key assumption of policy gradient framework:

Gradient Estimation

Key assumption of policy gradient framework:

How well does this work?

Gradient Estimation

®
Qt(current policy parameters)

Gradient Estimation

(1)

’0
*
*

@t(current policy parameters)

Gradient Estimation

(1) _li
." gt - k

R l=1
,.o”(k-sample gradient estimate)

. *
Qt(current policy parameters)

Gradient Estimation

2
gt()
b

.

@t(current policy parameters)

Gradient Estimation

3
gt()
A

@t(current policy parameters)

Gradient Estimation

®
Qt(current policy parameters)

Gradient Estimation

Gradient q
Variance

(pairwise correlation) o

@t(current policy parameters)

Gradient Estimation

gt()

®
Qt(current policy parameters)

Gradient Estimation

(") _ 1

51 T 0 &

(“true gradient”)

Qt(current policy parameters)

Gradient Estimation

(") _ 1

51 T 0 &

(“true gradient”)

Qt(current policy parameters)

Gradient Estimation

(") _ 1

T ~

(“true gradient”)

Gradient #
Concentration

(g* correlation)

®
Qt(current policy parameters)

Gradient Variance

Avg. pairwise cos sim

1.0

0.5

—-0.5

TRPO
PPO
PPO-M

102 103 104 10° 106
State-Action Pairs

10’

>

Black line: relevant
sample regime

Gradients are less
concentrated than
they could be

Less correlated for
“harder” tasks, later
iterations

Gradient Concentration

& & =
o %) o

Avg. cos sim with true grad

|
O
Ul

TRPO
PPO
PPO-M

102 103 104 10° 106
State-Action Pairs

10’

>

Black line: relevant
sample regime

Gradients are less
concentrated than
they could be

Less correlated for
“harder” tasks, later
iterations

Gradient Estimation

> No good understanding of training dynamics
> How does variance influence optimization?
» Can we use insights from stochastic opt?

> Missing a link from reliability to sample size

Value Prediction

Value Prediction

Policy gradient is a sum weighted by returns

Value Prediction

Policy gradient is a sum weighted by returns

Concentration is hindered by high variance

Value Prediction

Policy gradient is a sum weighted by returns

Concentration is hindered by high variance

Observation: If we can estimate the value
of a state, can significantly lower variance

Value Prediction

Variance reduction needs good value estimates
In Deep RL, values come from a neural network

To what degree do we actually reduce variance?

Value Prediction

lteration: 150

Baselines:

True value function

Agent’s value function
No value function

Av(Q. pairwise cos sim
o
o

0 2000 4000 6000 8000 100
State-action pairs

The agent’s value network helps in variance

reduction, but not nearly as much as the true value

Value Prediction

> Might look small, but using a value network
makes big difference

> How would using the true value affect training?

» Can we get better value estimates (info barrier)

More analysis (from the paper)

Similar conclusions from:

Optimization landscape is often noisy/misleading

23 20
1200 — TRPO — TRPO — TRPO: KL

» — PPO — PPO: KL =

-(gu 2 — PPO-M -2 — TRPO: KL ax

; — PPO KLmaX

() _

[

[(v)

)

0 100 200 300 400 200 300 400 200 300 400
lterations # Iterations # [terations

Enforcement of “trust regions” has theoretical and practical caveats

Does Al translate from
simulation to reality?

Simulation

-

Does Al translate from
simulation to reality?

Simulation

Also: Are we even optimizing the right thing?

Takeaways

How do we proceed?

> Reconciling RL with our conceptual framework
> How predictive are theoretical principles in practice?

> What is the right way to model the RL setting?

> Rethinking primitives for modern settings
> How do we deal with high dimensionality?
> Delayed rewards?
> Better evaluation for RL systems
> Benchmarks don’t capture reliability, safety, or

robustness of RL agents

