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The Rotten Truth of Deep RL

Deep RL can successfully solve tasks, but...

> Poor reliability over repeated runs
> High sensitivity to hyperparameters
» Lack of robustness to environmental artifacts

Notably, benchmarks don’t reveal these issues

[Henderson et al, 2017a,b] [Lewis et al, 2018]



What's going on?

[llyas Engstrom Santurkar Tsipras Janoos Rudolph M 201 8]



Implementation Obscures
Deep RL Algorithms

openai / baselines O Watch~ 383 W Star 5061 @ YFork 1,455
<> Code Issues 137 Pull requests 71 Projects 0 Wiki Insights

OpenAl Baselines: high-quality implementations of reinforcement learning algorithms

¢ Differences between the policies.
'mportant modification

o Huge architectural differences.

e Nontrivial changes to the paper, part 2. The code is sprinkled with small tricks.

¢ Nontrivial changes to the paper.

There is one thing_; between PPO1 and PPO2 that | don't understand

big difference between ppo and ppo

Source: GitHub issues
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Key assumption of policy gradient framework:

How well does this work?
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Gradient Estimation

(") _ 1

T ~

(“true gradient”)

Gradient #
Concentration

(g* correlation)

®
Qt(current policy parameters)



Gradient Variance
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Gradient Concentration
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Gradient Estimation

> No good understanding of training dynamics
> How does variance influence optimization?
» Can we use insights from stochastic opt?

> Missing a link from reliability to sample size
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Value Prediction

Policy gradient is a sum weighted by returns

Concentration is hindered by high variance

Observation: If we can estimate the value
of a state, can significantly lower variance



Value Prediction

Variance reduction needs good value estimates
In Deep RL, values come from a neural network

To what degree do we actually reduce variance?



Value Prediction
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The agent’s value network helps in variance

reduction, but not nearly as much as the true value



Value Prediction

> Might look small, but using a value network
makes big difference

> How would using the true value affect training?

» Can we get better value estimates (info barrier)



More analysis (from the paper)

Similar conclusions from:

Optimization landscape is often noisy/misleading
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Enforcement of “trust regions” has theoretical and practical caveats



Does Al translate from
simulation to reality?

Simulation

-




Does Al translate from
simulation to reality?

Simulation

Also: Are we even optimizing the right thing?



Takeaways



How do we proceed?

> Reconciling RL with our conceptual framework
> How predictive are theoretical principles in practice?

> What is the right way to model the RL setting?

> Rethinking primitives for modern settings
> How do we deal with high dimensionality?
> Delayed rewards?
> Better evaluation for RL systems
> Benchmarks don’t capture reliability, safety, or

robustness of RL agents



