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Reminder of 9/26 lecture: Causal effects

» Potential outcomes under treatment and control, Y(1),Y(0)

» Covariates and treatment, X, T .

» Conditional average treatment effect (CATE)
CATE(X) = E[Y(1) —Y(0) | X] s

Potential outcomes  Features



Today: Sequential decision making

» A policy T assigns treatments to patients
(typically depending on their medical history/state)

>Single time-pOint example: “Treat if effect is positive”
For a patient with medical history x, m(x) = I[CATE (x) > 0]

» Many clinical decisions are made in sequence
» Choices early may rule out actions later

» Can we optimize the policy by which actions are made?



Example: Sepsis management

» Sepsis is a complication of an infection which [ @i | 2n, [

!!!!!

can lead to massive organ failure and death
(® Vasopressin ]

» One of the leading causes of death in the ICU

» Primary way to treat is to resolve the infection,

e.g. with antibiotics

» Other symptoms need management: breathing

difficulties, low blood pressure, ...




Just one action? Easy!

Septic patient with
breathing difficulties

Mechanical ventilation?
|

Y(0)

Blood
oxygen

Y (1)

1. Should the patient be put on
mechanical ventilation?

With a single action & outcome, suffices to
directly reason about potential outcomes —
reduce to what we know from 9/26 lecture



Example: Sepsis management

Septic patient with
breathing difficulties

Mechanical ventilation?
|

Sedation?
|

2. Should the patient be
sedated?

(To alleviate discomfort due to
mech. ventilation)



Example: Sepsis management

Septic patient with
breathing difficulties

Mechanical ventilation?
|

Sedation?
|

eo

&

Vasopressors?
|

3. Should we
artificially raise
blood pressure?

(Which may have
dropped due to
sedation)



Example: Sepsis management

Exponentially many
potential outcomes — no

Septic patient with y longer can reason about
breathing difficulties

eo

6\ .
% 3 them directly
eo ‘)é *Q)
@'L
%
@”'é,) & Observed
decisions
& response
)
Q
Oé(é +Q)fo
Mechanical ventilation? Sedation? Vasopressors?

| | | Time




No prob, we’ll use reinforcement learning

»AlphaStar
»AlphaGo 7 | i "

» DQN Atari

»Open Al Five




Reinforcement learning

Game state S,
» Maximize reward!

Possible actions A4

»
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Figure by Tim Wheeler, tim.hibal.org



Decision processes

» An agent repeatedly, at

times t takes actions 4, r_ m

to receive rewards R;
from an environment, Reward R; Action 4,

the state S; of which is

(partially) observed [

State S,




Decision process: Mechanical ventilation

- __ pvitals vent of f vent on
i > Agent Rt = Rt -I— Rt + Rt
[ .
) Reward R; Action A;
l 4
1 Environment |
| . eo
State S,
%
S eO oé/é AQQ
A Reinforcement t Learning Approach to Weaning of Mechanical Ventilation in O A
Intensive Care Units O
%
/‘/9//‘0‘ Y
%
S 1, R 1 R T
%
Oé/é AQQ
Mechanical ventilation? Sedation? Spontaneous breathing trial?

| | | Time




Decision process: Mechanical ventilation

» State S; includes
demographics, physiological
measurements, ventilator
settings, level of
consciousness, dosage of = 5
sedatives, time to Sz
ventilation, number of
iIntubations



Decision process: Mechanical ventilation

» Actions A; include intubation
and extubation, as well as
administration and dosages of
sedatives A,



Decision processes

» A decision process specifies how states §;, actions 4,, and
rewards R; are distributed: »(S,, ..., S, A4q, ..., A7, Ry, ..., RT)

» The agent interacts with the environment according to a
behavior policy p = p(4; | -+ )"

* The ... depends on the type of agent



Markov Decision Processes

» Markov decision processes (MDPs) are a special case

» Markov transitions: p(s; | So, ..., St—1, Ao, s Ar—1) = (S¢ | Sp—1, Ap_1)
» Markov reward function: p(Rr, 1Sy, ...,S;—1,4¢, ) A1) =D(Re | Se—1, A1)

» Markov action policy u = p(4,15,,..,,,4q, ... 4, ) =p(4, | S,)



Markov assumption

» State transitions, actions and reward depend only on most
recent state-action pair




Contextual bandits (special case)*

» States are independent: p(S; | S;—1,4:—1) = p(Sy)
» Equivalent to single-step case: potential outcomes!

Ao

So \_| 515 Sy

R

Ar
Rt

* The term “contextual bandits” has connotations of efficient exploration, which is not addressed here



Contextual bandits & potential outcomes

» Think of each state S; as an i.i.d. patient, the actions A; as the
treatment group indicators and R; as the outcomes

AO AT




Goal of RL

»Like previously with causal effect estimation, we are interested
in the effects of actions A; on future rewards

Ar




Maximize expected cumulative reward

» The goal of most RL algorithms is to maximize the expected
cumulative reward—the value V. of its policy =

»Return: G, = Y!_, R

Sum of future rewards

»Value: I = E4,..[Go]

Expected sum of rewards under policy

» The expectation is taken with respect to scenarios acted out according
to the learned policy «



Example

Value
n
1
=y )6
»Let’s say that we have data from a policy u i=1
@ =0 al=1 Return
1=1 1
a Ry Rl G'=R{ + R} +Rj}
1
Patient 1 R3
i 5 aj=1
Pat'entz aj =0 a%zl , GZ — R]Z_ _l_ R% _l_ Rszv
R% RZ R3
Patient 3 2
ai=0 Rf a; =0
RS’ a3=0
R3

G® = R} +R; +R;



1. Decision processes
2. Reinforcement learning
3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Paradigms™

Model-based RL

Transitions
P(St | St—liAt—l)

G-computation
MDP estimation

*We focus on off-policy RL here

Value-based RL

Value/return
p( Ge | St A )

Q-learning
G-estimation

Policy-based RL

Policy
p(As | S¢)

REINFORCE

Marginal structural models



Paradigms™

*We focus on off-policy RL here

Value-based RL

Value/return
p( G | St;At)

Q-learning
G-estimation



Q-learning

»Q-learning is a value-based reinforcement learning method
» The value of a state-action pair (s,a) is

Qr(s,a) = Eg[G¢ | St = 5,A; = a
(the expectation is over future states and rewards, for future
actions taken according to m)

*Mathematical tool more than anything



Q-learning

» Instead of directly optimizing over m, Q-learning optimizes over
functions Q(s,a). m is assumed to be the deterministic policy
n(s) = arg max, Q(s, a)

» The best Q is the best state-action value function

0 (5,0) ='max Qx (s, @)



Bellman equation

» For the optimal Q-function Q*, “Bellman optimality” holds

Q*(S, a) = [En [Rt + )/H}la,lx Q*(St+1;a’) | St — S;At = a]

State-action value Immediate reward Future (discounted) rewards*

» ook for functions with this property!



Q-learning (from last Thursday, 10/10)

Algorithm 3 Q-learning

Qo(s,a) < 0 forall s € S;a e A
for k=1...N do

Collect sample (s,a,s’,7) by playing with a policy induced from @ (we will discuss choices for
this policy)

A

Q(s,a) = 7 +ymax Q(s', a')
a’ e

Qk:—i-l(sa CL) — (1 - O‘)Qk(sv CL) + &Q(S7 CL)

end for

» Fitted Q-learning

» If s is not discrete, we cannot maintain a table for Q(s, a)

» Instead, we may represent Q(s,a) by a function Qg



Q-learning (from last Thursday, 10/10)

Algorithm 3 Q-learning

Qo(s,a) < 0 forall s € S;a e A
for k=1...N do

Collect sample (s,a,s’,7) by playing with a policy induced from @ (we will discuss choices for
this policy)

O(s,a) « 7 YA If only single time/action, fitted Q-
a’€A A learning is identical to covariate
Qri1(s,a) « (1 — a)Qr(s,a) + aQ(s,a) adjustment
end for

» Fitted Q-learning

» If s is not discrete, we cannot maintain a table for Q(s, a)

» Instead, we may represent Q(s,a) by a function Qg



1. Decision processes
2. Reinforcement learning paradigms
3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Off-policy learning

» Trajectories (sq,a4,1), ..., (s7, ar, rp),0f states s;, actions a;, and
rewards r; observed in e.g. medical record

» Actions are drawn according to a behavior policy u, but we want to
know the value of a new policy «

» Learning policies from this data is at least as hard as estimating
treatment effects from observational data



Assumptions for (off-policy) RL

» Sufficient conditions for identifying value function

Single-step case Sequential case
Strong ignorability: Sequential randomization:
Y(0),Y(D)LTIX G(.) WA |S;,A_;
“No hidden confounders” “‘Reward indep. of policy given history”
Overlap: Positivity:
vx,t: p(T=t|X=x)>0 Va,t: p(A;=a | S, A, ) >0

“All actions possible” “All actions possible at all times”



The problem of overlap shows up all over deep RL

“Our results demonstrate that the
performance of a state of the art deep
actor-critic algorithm, DDPG (Lillicrap et al.,
2015), deteriorates rapidly when the data is
uncorrelated... These results suggest that
off-policy deep reinforcement learning
algorithms are ineffective when learning
truly off-policy.”

Fujimoto, Meger, Precup, ICML 2019
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Assumptions for (off-policy) RL

» Sufficient conditions for identifying value function

Single-step case Sequential case

Sequential randomization:
G(.) WA S, A4

“‘Reward indep. of policy given history”




Recap: Learning potential outcomes

atmin
i May 15 | = Sep 15

Medication A =

Anna Control %
t=20

Age =54 Blood sugar = ?

Gender = Female f Y(O)

Race = Asian

~ ~

Blood pressure = 150/95
WBC count = 6.8*10%L

Temperature = 36.7°C . . {Mk
Medication B

Blood sugar = High “Treated” Blood sugar = ?

t=1 Y (1)




Treating Anna once

» We assumed a simple causal graph. This let us identify the causal effect
of treatment on outcome from observational data

Treatment, A

Ignorability
State, S Effect of treatment R@LAIS

Potential outcome under
Outcome, R action a



Treating Anna over time

» Let’s add a time point...

Ignorability
Ri(a) L A; | S,




Treating Anna over time

» What influences her state?

Anna’s health status depends on how we treated her

Ignorability
Ri(a) L A; | S,

It is likely that if Anna is diabetic, she will remain so



Treating Anna over time

» What influences her state?

The outcome at a later time point may depend on earlier choices

A, l A,

IgnOgabifty
S, R¢( e | St

Rq R,

The outcome at a later time may depend on an earlier state



Treating Anna over time

» What influences her state?

If we already tried a treatment,

If we know that a we might not try it again
patient had a
symptom previously, Ay i A,
it may affect future
decisions

If the last treatment was unsuccessful,
it may change our next choice

Re(

e | Se



State & ignorability

» To have sequential ignorability, we need to remember history!

History H,

Ignorability
Ri(a) L A | H,




Summarizing history

» The difficulty with history is that its size grows with time

» A simple change of the standard MDP is to store the states and
actions of a length k window looking backwards

» Another alternative is to learn a summary function that
maintains what is relevant for making optimal decisions, e.g.,
using an RNN



State & ignorability

» We cannot leave out unobserved confounders

Unobserved confounder, U
Unobserved confounder, U -~

o~
\
(\




What made success possible/easier?

» Full observability
Everything important to optimal action is observed

» Markov dynamics
History is unimportant given recent state(s)

» Limitless exploration & self-play through simulation
We can test “any” policy and observe the outcome

» Noise-less state/outcome (for games, specifically)



How do we build trust in RL policies?

» Goal: Apply reinforcement learning
in high risk settings (e.g., healthcare)

» Problem: How to safely evaluate a
policy? No simulator, and off-policy
evaluation can fail due to

» Unobserved confounding
» Small sample sizes & lack of overlap

» Poorly specified rewards




Building trust in RL policies

» Goal: Apply reinforcement learning in

I _—1

high risk settings (e.g., healthcare) 1.01 —— | —— ——1 :
» Problem: How to safely evaluate a § 05 :ﬁ| : I
policy? No simulator, and off-policy % —= : | : [
evaluation can fail due to E 0.0 . : I
» Unobserved confounding g I [ | [
» Small sample sizes & lack of overlap =059 , - [ , , ._:,?l

obs [ wis MB cF b True

» Poorly specified rewards

» Could try to interpret the policy directly,
but if not possible, what can we do?

» Approach: look at the proposed policy
in the context of a specific individual

Obs: Observed Reward of behavior policy
WIS: Weighted Importance Sampling
MB: Model-Based Rollouts

CF: Counterfactual Rollouts

True: Actual RL reward, not known




Building trust in RL policies

Suppose we are given:
 Markov Decision Process (MDP)

_ _ Markov Decision Process (MDP)
e Policy (e.g., learned using MDP)

P(S',R|S,A) S:Current State
A: Action

R: Reward
» S’: Next State

Observational Data Policy

m(A|S)



Using counterfactuals to “sanity check”

S: State
A: Action

E ...patient - ..drug - E ...Significant »
has infection reaction agitation

Antibiotics . Mechanical Sedation

Ventilation

| | | Time
[Balke & Pearl, 1994]



Using counterfactuals to “sanity check”

If the new policy had been applied to this patient... S: State
A: Action

E ...patient - ..drug - E ...Significant »
has infection reaction agitation

Antibiotics . Mechanical Sedation

Ventilation

| | | Time
[Balke & Pearl, 1994]



Using counterfactuals to “sanity check”

If the new policy had been applied to this patient... S: State
A: Action

Antibiotics

...patient -
2 has infection

E ...patient - E | ..drug - E ...Significant »
has infection reaction agitation
Antibiotics Mechanical Sedation
| Ventilation
|

| | | Time
[Balke & Pearl, 1994]



Using counterfactuals to “sanity check”

If the new policy had been applied to this patient... S: State
A: Action

Antibiotics

...patient - ...infection
has infection cleared

E ...patient - E | ..drug - E ...Significant »
has infection reaction agitation
Antibiotics Mechanical Sedation
| Ventilation
|

| | | Time
[Balke & Pearl, 1994]



Using counterfactuals to “sanity check”

If the new policy had been applied to this patient... S: State
I Model-based rollout A: Action
Antiblotics not a fair comparison

...patient - ...infection
has infection cleared

E ...patient - E | ..drug - E ...Significant »
has infection reaction agitation
Antibiotics Mechanical Sedation
| Ventilation
| |

| | | Time
[Balke & Pearl, 1994]



Using counterfactuals to “sanity check”

If the new policy had been applied to this patient... S: State
A: Action

Antibiotics

...patient -
has infection

E ...patient - E | ..drug - E ...Significant »
has infection reaction agitation
Antibiotics Mechanical Sedation
| Ventilation
|

| | | Time
[Balke & Pearl, 1994]



Using counterfactuals to “sanity check”

If the new policy had been applied to this patient... S: State
: A: Action
Antibiotics Counterfactual influenced

by actual outcome

..patient - ..drug
has infection reaction

E ...patient - El ..drug - E ...Significant »
has infection reaction agitation

Antibiotics Mechanical Sedation
| |

Ventilation

| | | Time
[Balke & Pearl, 1994]



Using counterfactuals to “sanity check”

If the new policy had been applied to this patient... S: State
A: Action
Antibiotics No action Discharge

...patient - ...drug - ...patient
has infection reaction recovers

E ...patient - El ..drug - E ...Significant »
has infection reaction agitation

Antibiotics Mechanical Sedation
| |

Ventilation

| | | Time
[Balke & Pearl, 1994]



Using counterfactuals to “sanity check”

If the new policy had been applied to this patient... S: State
A: Action
Antibiotics No action Discharge

...patient - ...drug - ...patient
has infection reaction recovers

E ...patient - El ..drug - E ...Significant »
has infection reaction agitation

Antibiotics Mechanical Sedation
|

\/Iantilatinn

| Idea: If the counterfactual trajectory is unreasonable given

(Balke & Pearl, 1994] full context of patient, the model / policy may be flawed



Using counterfactuals to “sanity check”

Approach Example
1 Decomposition of average SEJ
. ©
revyard over realeplsodes, S _g, 0% 4% 16%
to identify interesting cases g
©
)
c O
3 2 0% 10% WAz
-
@)

Died N/A Lived

Counterfactual Outcome



Using counterfactuals to “sanity check”

Approach Example

1 Decomposition of average 9C_J g s
reward over real episodes, S E 0% 4%I16% )
to identify interesting cases 5 y /

@) So -

2 Examine counterfactual o

trajectories under new polic c
‘ POty 5 € 0% 10%
3 Validate and/or criticize S

conclusions, using full patient Died N/A  Lived

information (e.g., chart review)
Counterfactual Outcome



Simulating counterfactual trajectories

What we need

1 Observed trajectories

2 Policy to evaluate
m(A|S)

3 Model of discrete dynamics,
e.g., Markov Decision Process

S: Current State —

A: Action 4 /

S’: Next State



Simulating counterfactual trajectories

What we need

1 Observed trajectories Structural Causal Model (SCM)

2 Policy to evaluate
n(A|S) +

3 Model of discrete dynamics,
e.g., Markov Decision Process 5"=1(S,4,Ug)
Us, ~ P(Us’)
S: Current State —

A: Action 4 /

S’: Next State



Simulating counterfactual trajectories

What we need

1 Observed trajectories Structural Causal Model (SCM)

2 Policy to evaluate

n(A|S) +
3 Model of discrete dynamics,
e.g., Markov Decision Process 5"=1(S,4,Ug)
Us) ~ P(Us’)
S: Current State — i )
A: Action | / Form of SCM is an assumption:

. . . |
§'- Next State SCM is not identifiable from datal!



Structural Causal Models (SCMs)

Causal Graph (Example)

S,S’, AareR.\.s

Use post-
treatment
information to
reveal exogenous
factors

Structural Causal Model (SCM)

U’sareRV.s / S, S, A are functions

Example: U, ~ Unif (0, 1),

,_ )L Uy <p _ r_
S = {O, U, > p wherep =Pr[S'=1]5,A4]



Counterfactuals with SCMs

Structural Causal Model

Observed
Treatment A Ya
Response to treatment A Uy ~ UTllf(O, 1):
Vo= |0 SR, PrlY =1|T = t,X
! = where = PrlY = =t,
CZ?&?S;;N X Treatment B ? Yb t 0 , U y > D¢ Pt | ]

Response to treatment B

1 Infer the posterior of
Uy given X, Y, =1

P(U, -
2 IntervenetosetT = b % ‘ P(Uy < pp Uy <py) =1
% s - Yb == 1
0

3 Predict co;nterfactual 1 This SCM has the monotonicity (Pear/
outcome X, Pa  Pb 2000) property, which implies that if
Pp = Dq, thenY, =1 Y, =1




SCMs for Markov Decision Processes

Causal Graph (one step)  Choosing a structural mechanism

What is an appropriate SCM for categorical transitions?

Dijsa =P(S"'=i|S=5s,A=a)

Criteria 1: Want to choose f.(S;, A, U) and P(U) such
that:

Structural Causal Model E [ fs(Se = 5,4, =a,U) =1i] =pjsq

Criteria 2: Given unidentifiability of counterfactuals,
want to make a “reasonable assumption” analogous to
monotonicity (Pearl, 2000)




Counterfactual Stability & Gumbel-Max SCM

Counterfactual Stability Gumbel-Max SCM
New counterfactual stability condition: Use the Gumbel-Max trick to sample from
a categorical distribution with k
If we observe S' = i under A = a, then categories:
under counterfactual A = @,
. Di
%>p71i:>5’¢j- gj ~ Gumbel

S’ = argmax; {logP(S’ =j IS A)+g;}

Theorem 1 (Oberst, Sontag 2019): Theorem 2 (Oberst, Sontag 2019):
Counterfactual stability implies The Gumbel-Max SCM satisfies the
monotonicity (Pearl, 2000) when k = 2 Counterfactual Stability condition



summary

e Causal inference is a special case of off-policy reinforcement learning

* As a result, off-policy reinforcement learning is subject to the same
assumptions:

* Overlap
* No unobserved confounding

* We suggested one approach of using introspection to help detect
errors

* Much more work needed to get safe & robust algorithms



