
6.S979 Topics in Deployable ML, Fall 2019

Causal Inference and Predicting 
Counterfactuals II

David Sontag

Acknowledgement: several slides adapted from Fredrik 
Johansson and Michael Oberst



Reminder of 9/26 lecture: Causal effects

►Potential outcomes under treatment and control, 𝑌 1 , 𝑌 0

►Covariates and treatment, 𝑋, 𝑇

►Conditional average treatment effect (CATE)
𝐶𝐴𝑇𝐸 𝑋 = 𝔼 𝑌 1 − 𝑌 0 ∣ 𝑋

FeaturesPotential outcomes

𝑋 𝑇

𝑌



Today: Sequential decision making

►A policy 𝝅 assigns treatments to patients
(typically depending on their medical history/state)

►Single time-point example:
For a patient with medical history 𝑥, 𝜋(𝑥) = 𝕀[𝐶𝐴𝑇𝐸 𝑥 > 0]

►Many clinical decisions are made in sequence
►Choices early may rule out actions later
►Can we optimize the policy by which actions are made?

“Treat if effect is positive”



Example: Sepsis management

► Sepsis is a complication of an infection which 
can lead to massive organ failure and death

► One of the leading causes of death in the ICU

► Primary way to treat is to resolve the infection, 
e.g. with antibiotics

► Other symptoms need management: breathing 
difficulties, low blood pressure, …



Just one action? Easy! 

Time
Mechanical ventilation? Sedation? Vasopressors?

M. ventilation No

Sedate

Yes

No

Unobserved
responses

Observed 
decisions 
& response

No

Sedate

Yes
No

Septic patient with
breathing difficulties

1. Should the patient be put on 
mechanical ventilation?

𝑌(0)

𝑌(1)
𝑇

𝑋

Blood 
oxygen

With a single action & outcome, suffices to 
directly reason about potential outcomes –
reduce to what we know from 9/26 lecture



Example: Sepsis management

Time
Mechanical ventilation? Sedation? Vasopressors?

M. ventilation No

Sedate

Yes

No

Unobserved
responses

Observed 
decisions 
& response

No

Sedate

Yes
No

Septic patient with
breathing difficulties

2. Should the patient be
sedated?

(To alleviate discomfort due to 
mech. ventilation)



Example: Sepsis management

Time
Mechanical ventilation? Sedation? Vasopressors?

M. ventilation No

Sedate

Yes

No

Unobserved
responses

Observed 
decisions 
& response

No

Sedate

Yes
No

Septic patient with
breathing difficulties 3. Should we 

artificially raise 
blood pressure?

(Which may have 
dropped due to 

sedation)



Example: Sepsis management

Time
Mechanical ventilation? Sedation? Vasopressors?

M. ventilation No

Sedate

Yes

No

Observed 
decisions 
& response

No

Sedate

Yes
No

Septic patient with
breathing difficulties

Exponentially many 
potential outcomes – no 
longer can reason about 

them directly



No prob, we’ll use reinforcement learning

►AlphaStar

►AlphaGo

►DQN Atari

►Open AI Five



Reinforcement learning
Game state 𝑆8

Possible actions 𝐴8

Figure by Tim Wheeler, tim.hibal.org

Next state 𝑆9 Reward 𝑅9
(Loss)

►Maximize reward!



Decision processes

►An agent repeatedly, at 
times 𝑡 takes actions 𝐴<
to receive rewards 𝑅<
from an environment, 
the state 𝑆< of which is 
(partially) observed Environment

Agent

Action 𝐴<Reward 𝑅<

State 𝑆<



Decision process: Mechanical ventilation

Time
Mechanical ventilation? Sedation? Spontaneous breathing trial?

M. ventilation No

Sedate

Yes

No

No

Sedate

Yes
No

𝑆9, 𝑅9

𝐴8
𝐴9 𝐴=

𝑅>

Environment

Agent

Action	"#Reward	$#

State	%#

𝑆=, 𝑅=

𝑅< = 𝑅<?@<ABC + 𝑅<
?EF< GHH + 𝑅<?EF< GF

𝑆8



Decision process: Mechanical ventilation

𝑆9

𝑆=

𝑆8

► State 𝑆< includes 
demographics, physiological 
measurements,  ventilator 
settings, level of 
consciousness, dosage of 
sedatives, time to
ventilation, number of 
intubations



Decision process: Mechanical ventilation

𝐴9
𝐴=

𝐴8

► Actions 𝐴< include intubation 
and extubation, as well as 
administration and dosages of 
sedatives



Decision processes

►A decision process specifies how states 𝑆<, actions 𝐴<, and 
rewards 𝑅< are distributed: 𝑝(𝑆8, … , 𝑆>, 𝐴8, … , 𝐴>, 𝑅8, … , 𝑅>)

►The agent interacts with the environment according to a 
behavior policy 𝜇 = 𝑝(𝐴< ∣ ⋯ )*

* The … depends on the type of agent



Markov Decision Processes

►Markov decision processes (MDPs) are a special case

►Markov transitions: 𝑝 𝑆< 𝑆8, … , 𝑆<M9, 𝐴8, … , 𝐴<M9 = 𝑝(𝑆< ∣ 𝑆<M9, 𝐴<M9)

►Markov reward function: 𝑝 𝑅< 𝑆8, … , 𝑆<M9, 𝐴8, … , 𝐴<M9 = 𝑝 𝑅< 𝑆<M9, 𝐴<M9

►Markov action policy 𝜇 = 𝑝 𝐴< 𝑆8, … , 𝑆<, 𝐴8, … , 𝐴<M9 = 𝑝(𝐴< ∣ 𝑆<)



Markov assumption

►State transitions, actions and reward depend only on most 
recent state-action pair

𝑆8 𝑆9 𝑆>

𝐴8

𝑅8

…

𝐴>

𝑅>



Contextual bandits (special case)*

►States are independent: 𝑝 𝑆< 𝑆<M9, 𝐴<M9 = 𝑝(𝑆<)

►Equivalent to single-step case: potential outcomes!

𝑆8 𝑆9 𝑆>

𝐴8

𝑅8

…

𝐴>

𝑅>
* The term “contextual bandits” has connotations of efficient exploration, which is not addressed here



Contextual bandits & potential outcomes

►Think of each state 𝑆@ as an i.i.d. patient, the actions 𝐴@ as the 
treatment group indicators and 𝑅@ as the outcomes

𝑆8 𝑆>

𝐴8

𝑅8

…

𝐴>

𝑅>



Goal of RL

►Like previously with causal effect estimation, we are interested 
in the effects of actions 𝐴< on future rewards

𝑆8 𝑆9 𝑆>

𝐴8

𝑅8

…

𝐴>

𝑅>



Maximize expected cumulative reward

►The goal of most RL algorithms is to maximize the expected 
cumulative reward—the value 𝑉O of its policy 𝜋

►Return: 𝐺< = ∑CR<> 𝑅C

►Value: 𝑉O = 𝔼ST∼O 𝐺8

►The expectation is taken with respect to scenarios acted out according 
to the learned policy 𝜋

Sum of future rewards

Expected sum of rewards under policy 𝜋



Example

►Let’s say that we have data from a policy 𝜇

𝑅99

𝑅=9
𝑅V9

𝐺9 = 𝑅99 + 𝑅=9 + 𝑅V9

𝐺= = 𝑅9= + 𝑅== + 𝑅V=

𝐺V = 𝑅9V + 𝑅=V + 𝑅VV

𝑅9= 𝑅==
𝑅V=

𝑅9V

𝑅=V
𝑅VV

Patient 1

Patient 2

Patient 3

𝑎99 = 1

𝑎9= = 0

𝑎9V = 0

𝑎== = 1
𝑎V= = 1

𝑎=V = 0

𝑎VV = 0

𝑎=9 = 0 𝑎V9 = 1

𝑉X ≈
1
𝑛
[
@R9

F

𝐺F

Return 

Value



1. Decision processes

2. Reinforcement learning

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Paradigms*

Model-based RL

Transitions
𝑝 𝑆< 𝑆<M9, 𝐴<M9

G-computation
MDP estimation

Value-based RL

Value/return
𝑝 𝐺< 𝑆<, 𝐴<

Q-learning
G-estimation

Policy-based RL

Policy
𝑝(𝐴< ∣ 𝑆<)

REINFORCE
Marginal structural models

*We focus on off-policy RL here



Paradigms*

Model-based RL

Transitions
𝑝 𝑆< 𝑆<M9, 𝐴<M9

G-computation
MDP estimation

Value-based RL

Value/return
𝑝 𝐺< 𝑆<, 𝐴<

Q-learning
G-estimation

Policy-based RL

Policy
𝑝(𝐴< ∣ 𝑆<)

REINFORCE
Marginal structural models

*We focus on off-policy RL here



Q-learning

►Q-learning is a value-based reinforcement learning method

►The value of a state-action pair 𝑠, 𝑎 is
𝑄O 𝑠, 𝑎 ≔ 𝔼O 𝐺< ∣ 𝑆< = 𝑠, 𝐴< = 𝑎

(the expectation is over future states and rewards, for future 
actions taken according to 𝜋)

*Mathematical tool more than anything



Q-learning

►Instead of directly optimizing over 𝜋,Q-learning optimizes over 
functions 𝑄(𝑠, 𝑎). 𝜋 is assumed to be the deterministic policy

𝜋 𝑠 = arg maxd 𝑄(𝑠, 𝑎)

►The best 𝑄 is the best state-action value function
𝑄∗ 𝑠, 𝑎 =:max

O
𝑄O(𝑠, 𝑎)



Bellman equation

►For the optimal Q-function 𝑄∗, “Bellman optimality” holds

𝑄∗ 𝑠, 𝑎 = 𝔼O 𝑅< + 𝛾maxAh
𝑄∗(𝑆<i9, 𝑎h) ∣ 𝑆< = 𝑠, 𝐴< = 𝑎

►Look for functions with this property!

Immediate reward Future (discounted) rewards*State-action value



Q-learning (from last Thursday, 10/10)

Unfortunately, we do not have direct access to the reward function r or the transition probabilities
P (·|s, a). However, it turns out that we can use empirical transitions and rewards seen during play to
form approximations of the Q function.

Suppose that we have some approximation to Q⇤, Q. Now, when we observe a sample (s, a, s0, r̂),
representing a state transition from s! s0 after action a was played with instantaneous reward r, we can
use it to update our estimate of Q⇤. Let the empirical Q̂ for this step, which uses the current estimate
Q, be:

Q̂(s, a) = r̂ + �max
a02A

Q(s0, a0)

Now, we use the following update rule to change our current estimate of Q:

Q(s, a) = (1� ↵)Q(s, a) + ↵Q̂(s, a)

We can now use this update step as inspiration for the Q-learning algorithm below in Algorithm 3.
This algorithm is different from the methods described above: it actually plays the game repeatedly to
learn a good agent. This is typical in RL algorithms – many settings are too complicated to learn a
closed form solution so instead we rely on sampling the environment repeatedly. Note that this algorithm
requires a parameter ↵ that could impact convergence rates.

Algorithm 3 Q-learning
Q0(s, a) 0 for all s 2 S, a 2 A
for k = 1 . . . N do

Collect sample (s, a, s0, r̂) by playing with a policy induced from Qk (we will discuss choices for
this policy)

Q̂(s, a) r̂ + �max
a02A

Q(s0, a0)

Qk+1(s, a) (1� ↵)Qk(s, a) + ↵Q̂(s, a)
end for

Again, once we find a Q function we can use Equation (4) to build a policy.
A good way to set the “learning rate” ↵ is to control a separate ↵ for each state, action pair (s, a)

(which itself corresponds to playing action a in state s); that is, set the learning rate with a function
↵k(s, a), where k is the number of times that the state, action pair (s, a) has been observed in training.
It turns out that, to ensure convergence, we require 2:

X

k

↵k(s, a)!1,
X

k

↵2
k(s, a)! 0

A good choice in practice could be something like (where c a constant):

↵k(s, a) =
c

c+ k

A common way of adapting Q-learning to solve RL problems with continuous state and action spaces
is to quantize the state and action spaces and then proceed as usual with a method like Algorithm 3.
However, if the discretized state spaces/action spaces are very large the algorithms could become too
computationally costly to execute.

3.2 Exploration vs. Exploitation

An important aspect of Algorithm 3 is the sampling method used in the inner loop. At every step, the
algorithm views a state, plays some action based on the current Q estimate, watches the transition and
reward, then uses this information to update Q before repeating the process at the next state seen.

2See: http://www.jmlr.org/papers/volume5/evendar03a/evendar03a.pdf

5

►Fitted Q-learning
►If 𝑠 is not discrete, we cannot maintain a table for 𝑄 𝑠, 𝑎
►Instead, we may represent 𝑄 𝑠, 𝑎 by a function 𝑄j



Q-learning (from last Thursday, 10/10)

Unfortunately, we do not have direct access to the reward function r or the transition probabilities
P (·|s, a). However, it turns out that we can use empirical transitions and rewards seen during play to
form approximations of the Q function.

Suppose that we have some approximation to Q⇤, Q. Now, when we observe a sample (s, a, s0, r̂),
representing a state transition from s! s0 after action a was played with instantaneous reward r, we can
use it to update our estimate of Q⇤. Let the empirical Q̂ for this step, which uses the current estimate
Q, be:

Q̂(s, a) = r̂ + �max
a02A

Q(s0, a0)

Now, we use the following update rule to change our current estimate of Q:

Q(s, a) = (1� ↵)Q(s, a) + ↵Q̂(s, a)

We can now use this update step as inspiration for the Q-learning algorithm below in Algorithm 3.
This algorithm is different from the methods described above: it actually plays the game repeatedly to
learn a good agent. This is typical in RL algorithms – many settings are too complicated to learn a
closed form solution so instead we rely on sampling the environment repeatedly. Note that this algorithm
requires a parameter ↵ that could impact convergence rates.

Algorithm 3 Q-learning
Q0(s, a) 0 for all s 2 S, a 2 A
for k = 1 . . . N do

Collect sample (s, a, s0, r̂) by playing with a policy induced from Qk (we will discuss choices for
this policy)

Q̂(s, a) r̂ + �max
a02A

Q(s0, a0)

Qk+1(s, a) (1� ↵)Qk(s, a) + ↵Q̂(s, a)
end for

Again, once we find a Q function we can use Equation (4) to build a policy.
A good way to set the “learning rate” ↵ is to control a separate ↵ for each state, action pair (s, a)

(which itself corresponds to playing action a in state s); that is, set the learning rate with a function
↵k(s, a), where k is the number of times that the state, action pair (s, a) has been observed in training.
It turns out that, to ensure convergence, we require 2:

X

k

↵k(s, a)!1,
X

k

↵2
k(s, a)! 0

A good choice in practice could be something like (where c a constant):

↵k(s, a) =
c

c+ k

A common way of adapting Q-learning to solve RL problems with continuous state and action spaces
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5

►Fitted Q-learning
►If 𝑠 is not discrete, we cannot maintain a table for 𝑄 𝑠, 𝑎
►Instead, we may represent 𝑄 𝑠, 𝑎 by a function 𝑄j

If only single time/action, fitted Q-
learning is identical to covariate 
adjustment 



1. Decision processes

2. Reinforcement learning paradigms

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Off-policy learning

►Trajectories 𝑠9, 𝑎9, 𝑟9 , … , 𝑠>, 𝑎>, 𝑟> ,of states 𝑠<, actions 𝑎<, and 
rewards 𝑟< observed in e.g. medical record

►Actions are drawn according to a behavior policy 𝜇, but we want to 
know the value of a new policy 𝜋

►Learning policies from this data is at least as hard as estimating 
treatment effects from observational data



Assumptions for (off-policy) RL

►Sufficient conditions for identifying value function 

Strong ignorability:
𝑌(0), 𝑌(1) ⫫ 𝑇 ∣ 𝑋

“No hidden confounders”

Overlap: 
∀𝑥, 𝑡: 𝑝 𝑇 = 𝑡 𝑋 = 𝑥 > 0

“All actions possible”

Single-step case Sequential case

Sequential randomization:
𝐺 … ⫫ 𝐴< ∣ n𝑆<, ̅𝐴<M9

“Reward indep. of policy given history”

Positivity: 
∀𝑎, 𝑡: 𝑝 𝐴< = 𝑎 n𝑆<, ̅𝐴<M9 > 0

“All actions possible at all times”



The problem of overlap shows up all over deep RL

“Our results demonstrate that the 
performance of a state of the art deep 
actor-critic algorithm, DDPG (Lillicrap et al., 
2015), deteriorates rapidly when the data is 
uncorrelated... These results suggest that 
off-policy deep reinforcement learning 
algorithms are ineffective when learning 
truly off-policy.”

Fujimoto, Meger, Precup, ICML 2019



Assumptions for (off-policy) RL

►Sufficient conditions for identifying value function 

Strong ignorability:
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“Reward indep. of policy given history”



Recap: Learning potential outcomes

Medication B
“Treated”
! = 1

Medication A
“Control”
! = 0

Age = 54
Gender = Female

Race = Asian

Blood pressure = 150/95

WBC count = 6.8*109/L

Temperature = 36.7°C

Blood sugar = High

Anna

Sep 15 

Blood sugar = ?
%(0)

Blood sugar = ?
%(1)

May 15 



Treating Anna once

►We assumed a simple causal graph. This let us identify the causal effect 
of treatment on outcome from observational data

Treatment, 𝐴

Outcome, 𝑅

State, 𝑆 Effect of treatment 𝑅(𝑎) ⫫ 𝐴 ∣ 𝑆
Ignorability

Potential outcome under
action 𝑎



Treating Anna over time

►Let’s add a time point…

𝐴9

𝑅9

𝑆9

𝑅=

𝐴=

𝑆=

𝑡 = 1 𝑡 = 2

𝑅<(𝑎) ⫫ 𝐴< ∣ 𝑆<

Ignorability



Treating Anna over time

►What influences her state?

𝐴9

𝑅9

𝑆9

𝑅=

𝐴=

𝑆=

It is likely that if Anna is diabetic, she will remain so

Anna’s health status depends on how we treated her

𝑅<(𝑎) ⫫ 𝐴< ∣ 𝑆<

Ignorability



Treating Anna over time

►What influences her state?

𝐴9

𝑅9

𝑆9

𝑅=

𝐴=

𝑆=

The outcome at a later time may depend on an earlier state

The outcome at a later time point may depend on earlier choices

𝑅<(𝑎) ⫫ 𝐴< ∣ 𝑆<

Ignorability



Treating Anna over time

►What influences her state?

𝐴9

𝑅9

𝑆9

𝑅=

𝐴=

𝑆=

If we already tried a treatment,
we might not try it again

If the last treatment was unsuccessful, 
it may change our next choice

If we know that a 
patient had a 

symptom previously, 
it may affect future 

decisions

𝑅<(𝑎) ⫫ 𝐴< ∣ 𝑆<

Ignorability



State & ignorability

►To have sequential ignorability, we need to remember history!

𝐴9

𝑅9

𝑆9

𝑅=

𝐴=

𝑆=

History 𝐻=
𝐴9

𝑅9

𝐻9

𝑅=

𝐴=

𝐻= 𝑅<(𝑎) ⫫ 𝐴< ∣ 𝐻<

Ignorability



Summarizing history

►The difficulty with history is that its size grows with time 

►A simple change of the standard MDP is to store the states and 
actions of a length 𝒌 window looking backwards

►Another alternative is to learn a summary function that 
maintains what is relevant for making optimal decisions, e.g., 
using an RNN



State & ignorability

►We cannot leave out unobserved confounders

𝐴9

𝑅9

𝐻9

𝑅=

𝐴=

𝐻=

Unobserved confounder, 𝑈

𝐴9

𝑅9

𝐻9

𝑅=

𝐴=

𝐻=

Unobserved confounder, 𝑈

…



What made success possible/easier?
►Full observability

Everything important to optimal action is observed

►Markov dynamics
History is unimportant given recent state(s)

►Limitless exploration & self-play through simulation
We can test “any” policy and observe the outcome

►Noise-less state/outcome (for games, specifically)



How do we build trust in RL policies?
►Goal: Apply reinforcement learning 

in high risk settings (e.g., healthcare)

►Problem: How to safely evaluate a 
policy?  No simulator, and off-policy 
evaluation can fail due to
► Unobserved confounding
► Small sample sizes & lack of overlap
► Poorly specified rewards



Building trust in RL policies
►Goal: Apply reinforcement learning in 

high risk settings (e.g., healthcare)

►Problem: How to safely evaluate a 
policy?  No simulator, and off-policy 
evaluation can fail due to
► Unobserved confounding
► Small sample sizes & lack of overlap
► Poorly specified rewards

►Could try to interpret the policy directly, 
but if not possible, what can we do?

►Approach: look at the proposed policy 
in the context of a specific individual

Obs: Observed Reward of behavior policy
WIS: Weighted Importance Sampling
MB: Model-Based Rollouts
CF: Counterfactual Rollouts
True: Actual RL reward, not known



Building trust in RL policies

Observational Data

𝑃 𝑆h, 𝑅 𝑆, 𝐴)

Markov Decision Process (MDP)

Policy

𝜋 𝐴 𝑆)

𝑆: Current State
𝐴: Action
𝑅: Reward
𝑆′: Next State

Suppose we are given:
• Markov Decision Process (MDP)
• Policy (e.g., learned using MDP)



Using counterfactuals to “sanity check”

Time

Antibiotics Mechanical 
Ventilation

Sedation

…patient 
has infection

…drug 
reaction

…significant 
agitation

𝑆: State
𝐴: Action

𝐴9 𝐴= 𝐴V

[Balke & Pearl, 1994]



If the new policy had been applied to this patient…

Using counterfactuals to “sanity check”

Time

Antibiotics Mechanical 
Ventilation

Sedation

…patient 
has infection

…drug 
reaction

…significant 
agitation

𝑆: State
𝐴: Action

𝐴9 𝐴= 𝐴V

[Balke & Pearl, 1994]



If the new policy had been applied to this patient…

Using counterfactuals to “sanity check”

Antibiotics

…patient 
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by actual outcome

[Balke & Pearl, 1994]
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Antibiotics No action Discharge
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recovers𝑆8

𝐴9
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𝐴=

𝑆=
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Ventilation
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has infection

…drug 
reaction

…significant 
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Idea: If the counterfactual trajectory is unreasonable given 
full context of patient, the model / policy may be flawed

𝑆: State
𝐴: Action

𝐴9 𝐴= 𝐴V

[Balke & Pearl, 1994]



Using counterfactuals to “sanity check”

1 Decomposition of average 
reward over real episodes, 
to identify interesting cases

Approach Example

take the most common outcome across the counterfactual trajectories to assign each

individual to one of six categories, based on their factual outcome of 90-day survival

and their counterfactual outcome, which can include ‘no outcome’ (see Section 7.5 for

more discussion on this point).

Most notably, we find that only a single patient has a negative outcome in the

counterfactual, and most of the patients who died would have lived. In the next

section we investigate this further by selecting a random trajectory from the latter

set of patients.

Figure 7-2: Comparison of outcomes (90-day survival) between the observed and
counterfactual trajectories, on the test set. Most notably, under the counterfactual it
is estimated that only one patient would have died, and most of the patients who died
would have lived. However, 14% of patients have no outcomes in the counterfactuals,
due to a nuance discussed in Section 7.5

7.4 Inspection of Counterfactuals using the Full

Medical Record

As stated many times throughout this thesis, one of the main conceptual advantages of

using counterfactuals is that they are conceptually easier to ‘disprove’, and that faults

in the counterfactuals are a (heuristic) indication of faults in the learned model of the
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Simulating counterfactual trajectories
What we need

1 Observed trajectories

3 Model of discrete dynamics, 
e.g., Markov Decision Process

𝑆

𝐴

𝑆′

2 Policy to evaluate
𝜋 𝐴 𝑆)

𝑆: Current State
𝐴: Action
𝑆′: Next State
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Simulating counterfactual trajectories
What we need

1 Observed trajectories

3 Model of discrete dynamics, 
e.g., Markov Decision Process

𝑆

𝐴

𝑆′

2 Policy to evaluate
𝜋 𝐴 𝑆) +

𝑆h = 𝑓(𝑆, 𝐴, 𝑈Ch)
𝑈Ch ∼ 𝑃(𝑈Cw)

𝑈xh

𝑆

𝐴

𝑆′

Structural Causal Model (SCM)

Form of SCM is an assumption: 
SCM is not identifiable from data!

𝑆: Current State
𝐴: Action
𝑆′: Next State



Structural Causal Models (SCMs)

Causal Graph (Example)

𝑆

𝐴

𝑆′

Structural Causal Model (SCM)

𝑆 𝑆′

𝐴𝑈A 𝑈Ch

𝑈C

S, S’, A are R.V.s U’s are R.V.s  /  S, S’, A are functions

Use post-
treatment 

information to 
reveal exogenous 

factors

𝑈Ch ∼ 𝑈𝑛𝑖𝑓 0, 1 ,

𝑆′ = z1, 𝑈Ch ≤ 𝑝
0, 𝑈Ch > 𝑝 where 𝑝 ≔ Pr 𝑆′ = 1 𝑆, 𝐴 ]

Example:



Counterfactuals with SCMs

Treatment A

Treatment B
Patient w.

condition X

Response to treatment A

Structural Causal Model

1 Infer the posterior of 
𝑈} given 𝑋, 𝑌A = 1

2 Intervene to set 𝑇 = 𝑏

3 Predict counterfactual 
outcome 𝑌�

𝑃(𝑈})

10
𝑝�𝑝A

𝑃 𝑈} ≤ 𝑝� 𝑈} ≤ 𝑝A) = 1
→ 𝑌� = 1

This SCM has the monotonicity (Pearl 
2000) property, which implies that if 
𝑝� ≥ 𝑝A, then 𝑌A = 1 → 𝑌� = 1

Response to treatment B

? 𝑌�

𝑌A 𝑈} ∼ 𝑈𝑛𝑖𝑓 0, 1 ,

𝑌𝑡 = �
1, 𝑈} ≤ 𝑝𝑡
0, 𝑈} > 𝑝𝑡

where 𝑝𝑡 ≔ Pr 𝑌 = 1 𝑇 = 𝑡, 𝑋 ]

Observed



SCMs for Markov Decision Processes
Causal Graph (one step)

𝑆

𝐴

S’

Structural Causal Model

𝑆 𝑆′

𝐴 𝑈

What is an appropriate SCM for categorical transitions?

𝑝@|C,A ≔ 𝑃 𝑆h = 𝑖 𝑆 = 𝑠, 𝐴 = 𝑎)

Criteria 1: Want to choose 𝑓C 𝑆<, 𝐴<, 𝑈 and P(𝑈) such 
that:

𝐸� 𝑓C 𝑆< = 𝑠, 𝐴< = 𝑎, 𝑈 = 𝑖 = 𝑝@|C,A

Choosing a structural mechanism

Criteria 2: Given unidentifiability of counterfactuals, 
want to make a “reasonable assumption” analogous to 
monotonicity (Pearl, 2000)



Counterfactual Stability & Gumbel-Max SCM

Counterfactual Stability
New counterfactual stability condition: 

If we observe 𝑆h = 𝑖 under 𝐴 = 𝑎, then 
under counterfactual 𝐴 = �𝑎,

𝑝�
𝑝@
>
�𝑝�
�𝑝@
⇒ 𝑆h ≠ 𝑗.

Theorem 1 (Oberst, Sontag 2019):  
Counterfactual stability implies 
monotonicity (Pearl, 2000) when 𝑘 = 2

Gumbel-Max SCM
Use the Gumbel-Max trick to sample from 
a categorical distribution with 𝑘
categories:

𝑔� ∼ 𝐺𝑢𝑚𝑏𝑒𝑙
𝑆h = 𝑎𝑟𝑔𝑚𝑎𝑥� { log 𝑃 𝑆h = 𝑗 𝑆, 𝐴) + 𝑔� }

Theorem 2 (Oberst, Sontag 2019):  
The Gumbel-Max SCM satisfies the 
Counterfactual Stability condition



Summary

• Causal inference is a special case of off-policy reinforcement learning
• As a result, off-policy reinforcement learning is subject to the same 

assumptions:
• Overlap
• No unobserved confounding

• We suggested one approach of using introspection to help detect 
errors
• Much more work needed to get safe & robust algorithms


