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Back in the old, happy days…
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Source: 1. https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964 
2. https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c 
3. https://machinelearningmastery.com/use-pre-trained-vgg-model-classify-objects-photographs/
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But things are not that easy…

 3Acknowledgement: slides adapted from Aleksander Madry



But things are not that easy…

• Traditional testing is not enough for judging whether a 
trained neural network is reliable or not
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But things are not that easy…

• Traditional testing is not enough for judging whether a 
trained neural network is reliable or not 

• How can we be ensured that the network is reliable and 
doing what it should do?
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How to ensure?
• To formally ensure that the network is doing what it should do, 

we first need to specify what it should do
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How to ensure?
• To formally ensure that the network is doing what it should do, 

we first need to specify what it should do 
• Then we can verify that the network satisfies the specification
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How to ensure?
• To formally ensure that the network is doing what it should do, 

we first need to specify what it should do 
• Then we can verify that the network satisfies the specification 
• Typically, we want a neural network to learn and implement a 

function 
• Let’s first consider a much simpler function
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Simple Example
• Square root function: 
• First, we need to give a specification (what the 

implementation should achieve) 
• Precondition:  
• Postcondition:                 ?

 9

f(x) = x

x ≥ 0
f(x) = x



Simple Example
• Square root function: 
• First, we need to give a specification (what the 

implementation should achieve) 
• Precondition:  
• Postcondition:                 ? 

• Then, we can verify (prove) if an implementation satisfies this 
specification
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f(x) = x

x ≥ 0
f(x) = x

(1 − ϵ)x ≤ f(x)2 ≤ (1 + ϵ)x, f(x) ≥ 0



Simple Example
• Square root function: 
• First, we need to give a specification (what the 

implementation should achieve) 
• Precondition:  
• Postcondition:                 ? 

• Then, we can verify (prove) if an implementation satisfies this 
specification
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f(x) = x

x ≥ 0
f(x) = x

(1 − ϵ)x ≤ f(x)2 ≤ (1 + ϵ)x, f(x) ≥ 0



For neural networks…
• Denote the neural network as function  
• General form of a specification: 
• For all inputs in              , some property P holds
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f( ⋅ ; θ) : ℝm → ℝn

𝒞 ⊆ ℝm} }
Precondition Postcondition



Robustness (under    -norm bounded 
perturbation)
• Given NN                              for classification (output pre-

softmax score), and a labeled point  
• Precondition:  
• Postcondition:  
• If we can verify it, then no adversarial example exists around 

this point 
• How to verify?
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f( ⋅ ; θ) : ℝm → ℝn

(x, λ(x))
𝒞 = {x′�|∥x′�− x∥p ≤ ϵ}

lp

argmaxi fi(x′�; θ) = λ(x)



Search for adversarial example?
• Try using better and better adversarial attacks to search for 

adversarial example 
• Only solves part of the problem: 
• If we found an adversarial example, we know the model is 

not robust 
• But if we can’t find one, we are still not sure
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Let’s take a look at the goal again…
• Verification goal: 

• We can rewrite the postcondition:
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∀x′� s.t. ∥x′�− x∥p ≤ ϵ, argmaxi fi(x′�; θ) = λ(x)

∀x′� s.t. ∥x′�− x∥p ≤ ϵ, ∀k ∈ {1,2,...,n}∖{λ(x)}, fλ(x)(x′ �; θ) − fk(x′ �; θ) > 0

∀k ∈ {1,2,...,n}∖{λ(x)}, min
{x′�|∥x′�−x∥p≤ϵ}

(fλ(x)(x′�; θ) − fk(x′�; θ)) > 0

Constrained optimization problem!



Verification as solving constrained 
optimization problem
• For each                                 , solve  

• Consider a l-layer feed forward network 

 16

k ∈ {1,2,...,n}∖{λ(x)}

min
{x′�|∥x′�−x∥p≤ϵ}

(fλ(x)(x′�; θ) − fk(x′�; θ))

̂zi+1 = Wizi + bi, i = 1,...,l − 1
zi = h( ̂zi), i = 1,...,l − 1
z1 = x
f(x; θ) = ̂zl



Verification as solving constrained 
optimization problem

subject to
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min (fλ(x)(x′ �; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h( ̂zi), i = 1,...,l − 1
z1 = x′�
f(x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

• Solve this constrained optimization problem for every k 
• If all optimized objectives >0, then verified



How to solve?

• Need a way to deal with nonlinearity 

• Major types of approaches: 

• Mixed integer linear program (MILP) 

• Convex relaxation 

• Duality
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min (fλ(x)(x′�; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h( ̂zi), i = 1,...,l − 1
z1 = x′�
f (x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

subject to



• Formulate the optimization problem as MILP (only linear and 
integer constraints) 
• Works for piecewise-linear networks (ReLU, max pooling), and 

input region     needs to be a set of polyhedra (         norm). 

Mixed Integer Linear Program (MILP) 
[Tjeng Xiao Tedrake ’18]
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𝒞 l1, l∞

min (fλ(x)(x′�; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h( ̂zi), i = 1,...,l − 1
z1 = x′�
f(x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ∥x′�− x∥p ≤ ϵ∥x′�− x∥p ≤ ϵ

subject to

∀i : − ϵ ≤ (x′�− x)i ≤ ϵ
l∞



• Express                   as integer and linear constraints.  
• Assume we have obtained a (potentially loose) bound on    (we 

will talk about how to obtain this later): 

Formulating ReLU
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z = max( ̂z,0)
̂z

l ≤ ̂z ≤ u
z = max( ̂z,0) ⟹ if u ≤ 0, z = 0

else if l ≥ 0, z = ̂z
else  z ≤ ̂z − l(1 − a)

z ≥ ̂z
z ≤ u ⋅ a
z ≥ 0
a ∈ {0,1}

} Stable



• With the problem formulated as MILP, we can use off-the-shelf 
solvers to solve it (CPLEX, Gurobi, etc) 
• Solving time heavily affected by the number of integer 

variables, because we need to do combinatorial search on 
them 
• Therefore, a key to efficient solving is having tight bounds (l,u) 

on pre-ReLU activations.
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Solving MILP



Bound computation
• Fast, but loose: interval arithmetic (IA) 
• Propagate bounds layer by layer, bounds on this layer only 

depend on bounds of the previous layer 
• E.g.                             ,                for i=1,2,3. Then bound 

for y by IA is  
• In general, to compute bounds on                     with  

• Not consider correlations on bounds, so loose 
• But only involves matrix operations, so fast
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y = − 2x1 + 3x2 + 4x3 li ≤ xi ≤ ui
−2u1 + 3l2 + 4l3 ≤ y ≤ − 2l1 + 3u2 + 4u3

̂zi+1 = Wizi + bi li ≤ zi ≤ ui
W−

i ui + W+
i li + bi ≤ ̂zi+1 ≤ W−

i li + W+
i ui + bi



Bound computation
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• Tight, but slow: MILP 
• Same as before, just make the objective being max/min of 

the pre-ReLU activations 
• Combining these methods: progressive bound tightening 
• First use fast&loose methods 
• For those ReLUs that haven’t proven to be stable, use 

tight&slow methods



MILP Summary
• Verification is complete 
• If it doesn’t verify, then there exists an adversarial example 

and robustness doesn’t hold 
• But can be slow, due to integer variables 
• Has limitation on input region and non-linearity (though it can 

already work with a lot of cases)
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How to solve?

• Need a way to deal with nonlinearity 

• Major types of approaches: 

• Mixed integer linear program (MILP) 

• Convex relaxation 

• Duality
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min (fλ(x)(x′�; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h( ̂zi), i = 1,...,l − 1
z1 = x′�
f (x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

subject to



• Verification as solving constrained optimization problems 

• Perform convex relaxation on non-linearity constraints
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Convex Relaxation 
[Salman et.al. ’19]

min (fλ(x)(x′�; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h( ̂zi), i = 1,...,l − 1
z1 = x′�
f (x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

subject to



Example: convex relaxation of ReLU
•                    , 
• If l<0 and u>0, translate this constraint into: 
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z = max( ̂z,0) l ≤ ̂z ≤ u

z ≥ 0
z ≥ ̂z

z ≤
u

u − l
( ̂z − l)

[Salman et.al. ’19]



Convex Relaxation 
• Now we can formulate the optimization problem as a linear 

program (LP) 
• Faster to solve 
• But since we do relaxation, it’s not complete anymore: 
• If the method does not verify, then it is still possible that 

robustness property holds
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How to solve?

• Need a way to deal with nonlinearity 

• Major types of approaches: 

• Mixed integer linear program (MILP) 

• Convex relaxation 

• Duality
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min (fλ(x)(x′�; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h( ̂zi), i = 1,...,l − 1
z1 = x′�
f (x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

subject to



Recap on Lagrange multiplier and duality
• Consider constrained optimization problem 

• The Lagrangian function  

• Primal problem 

• Primal problem gives the exact solution to the original problem 
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p* = min
x

max
λ≥0,ν

Λ(x, λ, ν)



Recap on Lagrange multiplier and duality
• Primal problem 

• Dual problem 

• Weak duality: for any           , 

• (Strong duality:           , if original problem is convex and some additional 
condition holds e.g. Slater’s condition. We don’t use strong duality here)
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p* = min
x

max
λ≥0,ν

Λ(x, λ, ν)

d* = max
λ≥0,ν

min
x

Λ(x, λ, ν) = max
λ≥0,ν

g(λ, ν)

g(λ, ν) = min
x

Λ(x, λ, ν)

λ ≥ 0,ν g(λ, ν) ≤ p*

d* = p*

Dual function



• First do convex relaxation
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Using Weak Duality 
[Wong Kolter ’18] min (fλ(x)(x′�; θ) − fk(x′�; θ))

̂zi+1 = Wizi + bi, i = 1,...,l − 1
zi = h( ̂zi), i = 1,...,l − 1
z1 = x′�
f (x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

subject to



• Introduce dual variables (Lagrange multipliers) 

• Then the dual problem becomes:
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Using Weak Duality 
[Wong Kolter ’18]

max
λ,τ,μ,ζ−,ζ+≥0,ν

min
z, ̂z

Λ(z, ̂z, λ, τ, μ, ζ−, ζ+, ν) = max
λ,τ,μ,ζ−,ζ+≥0,ν

g(λ, τ, μ, ζ−, ζ+, ν)



•                                                   can be computed analytically, 

since it’s unconstrained minimization. 

• We can get additional constraints on                   where
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Using Weak Duality 
[Wong Kolter ’18]

g(λ, τ, μ, ζ−, ζ+, ν) = min
z, ̂z

Λ(z, ̂z, λ, τ, μ, ζ−, ζ+, ν)

(λ, τ, μ, ζ−, ζ+, ν) g ≠ − ∞



• The dual problem becomes: 
• Weak duality says any 
                    that satisfies 
these constraints will give  

• So we just need to 
compute a set of feasible 
values for                  , 
then we get a lower bound 
on the original objective.   
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Using Weak Duality 
[Wong Kolter ’18] g(λ, τ, μ, ζ−, ζ+, ν)

(λ, τ, μ, ζ−, ζ+, ν)

g(λ, τ, μ, ζ−, ζ+, ν) ≤ p*

(λ, τ, μ, ζ−, ζ+, ν)



 36

Using Weak Duality 
[Wong Kolter ’18]

• Rewrite the constraints so that computing a feasible solution 
for dual variables is easy 

• Suggest choice of

αi, j =
ui, j

ui, j − li, j
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Using Weak Duality: Summary 
[Wong Kolter ’18]

• We can compute a lower bound on the optimized objective by 
simply running a ‘backward pass’ of the network.  
• Not even need to solve a linear program, so can be even faster 
• But again, the solution can be loose. Convex relaxation + weak 

duality. 
• Not complete



Takeaway on robustness verification algorithms

• Robustness verification can be formulated as solving constrained 
optimization problems 
• Can formulate the problem exactly, as an MILP 
• Complete, but can be slow to solve 

• Can do convex relaxation on the non-linear constraints, and solve a 
linear program 
• Incomplete, faster 

• Can use weak duality to obtain lower bounds on the objective, not 
even need to solve LP 
• Incomplete, even faster
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Let’s take a step back…
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Let’s take a step back…
• Specification for robustness requires that the network 

prediction doesn’t change for inputs around some labeled point 
• It only specifies for a local region, and specifies that the 

output is stable, but not necessarily correct 
• Compare with the specification for square root function 
• Can we possibly give a more comprehensive specification for 

neural networks?
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More comprehensive specification

• We consider neural networks for perception tasks 
• For perception, the tasks are typically to recover some 

attribute of the world given an observation of the world 
• We propose a framework to give specification through state 

space and observation process 
• We introduce state of the world and the observation process 

that maps from states to inputs

 41

x f y



Key Insight
• Introducing state space and observation process 
• Example: a road, a camera taking pictures of the road, estimate position 

of camera given image
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- Camera offset: … 
- Camera facing angle: … 
- road width: … 
- …

Camera Imaging Process

InputsLatent state of the world xObservation Process g

• Perception task is typically to recover some attribute of the world, which is encoded in 
s. Denote this attribute as        , ground truth function (typically trivial to compute)λ(s)



Now we can give specification

• State space    : the space of all states of the world that the 
network is expected to work in. 
• Precondition: feasible input space  
• Postcondition: the correct output is given by 
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x f ys g

𝒮

𝒳̃ = {x |∃s ∈ 𝒮, x ∈ g(s)}
λ(s)



Correctness Verification

• Correctness: 
• For regression problems, neural networks won’t give exactly 

correct predictions  
• (Approximate) correctness:  

• Can be other distance metric depending on how you want to 
measure error 

 44

x f ys g

∀s ∈ 𝒮, ∀x ∈ g(s), f(x) = λ(s)

∀s ∈ 𝒮, ∀x ∈ g(s), | f(x) − λ(s) | ≤ ϵ



Correctness Verification

• Problem formulation (regression): given a trained network f, a 
specification by    , g,   , find a bound on the maximum error 
the network can make with respect to the specification 

                   Find bound on                           
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x f ys g

𝒮 λ

max
s∈𝒮,x∈g(s)

| f(x) − λ(s) |



Example
• Setup: a camera takes picture of a road 
• Camera can vary its horizontal offset and 

viewing angle.  
• A neural network takes the picture as 

input, predict the camera position
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(δ, θ)

x f ys
g

(δ, θ)
Camera Imaging Process Neural Network

(δ*, θ*)



Example
• The neural network is designed to work for                
                                       
• So state space 
• Feasible input space   
• Problem of correctness verification: 

  Find bound on                                             
over all images that can be taken within 
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δ ∈ [−40,40], θ ∈ [−60∘,60∘]

50

𝒮 = {sδ,θ |δ ∈ [−40,40], θ ∈ [−60∘,60∘]}

𝒳̃ = {x |∃s ∈ 𝒮, x ∈ g(s)}

max( |δ − δ* | ), max( |θ − θ* | )

δ ∈ [−40,40], θ ∈ [−60∘,60∘]



How to solve?
• State space    can in general be continuous and contains 

infinite number of states (as is in the example) 
• Cannot enumerate each state 
• Idea: finitize the space into tiles and compute error bound for 

each tile
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𝒮

Tiler



Tiler
• Step 1: Divide the state space     into local regions       such 

that        
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𝒮 {𝒮i}
∪i 𝒮i = 𝒮

𝒮i

δ

𝒮i𝒮 θ



Tiler
• Step 2: For each    , compute the ground truth bound        , 

such that
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𝒮i [li, ui]
∀s ∈ 𝒮i, li ≤ λ(s) ≤ ui

𝒮i

δ

𝒮i𝒮 θ

δi
1 δi

2

θi
1

θi
2 Ground truth bound for     : 

For    prediction:  
For    prediction:

𝒮i
δ [δi

1, δi
2]

θ [θi
1, θi

2]



Tiler
• Each     is mapped to a tile in input space by g:  
• Step 3: Using     and g, compute a bounding box     for each input tile    

such that
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𝒮i

δ

𝒮i𝒮 θ

𝒳i = {x |x ∈ g(s), s ∈ 𝒮i}𝒮i
𝒮i ℬi

𝒳i ⊆ ℬi

𝒳i

𝒳i

Input space 𝒳

g

ℬi

For each pixel, compute 
the range of values it can 
take when s varies in      . 

This gives a     -norm ball 
in the input space that 
encapsulate  

𝒮i

l∞ ℬi

𝒳i



Tiler
• Step 4: Given network    and bounding boxes       , use a compatible 

technique to solve for the network output ranges            , 
satisfying:                                       
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f {ℬi}
{[l′�i, u′�i]}

∀x ∈ ℬi, l′�i ≤ f(x) ≤ u′�i

𝒮i

δ

𝒮i𝒮 θ
𝒳i

Input space 𝒳

g

ℬi

Standard techniques to solve 
network output range given 
input constraints: 
- MILP 
- Convex relaxation 
- Duality Network output range 

MILP  
Solver

[δi
min, δi

max], [θi
min, θi

max]



Tiler
• Step 5: For each tile, use the ground truth bound         and network 

output bound         to compute the error bound: 
• This gives the upper bound on prediction error for all                         
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𝒮i

δ

𝒮i𝒮 θ
𝒳i

Input space 𝒳

g

ℬi
Network output range 

MILP  
Solver

[δi
min, δi

max], [θi
min, θi

max]

Ground truth bound 
[δi

1, δi
2], [θi

1, θi
2]

Error Bound 
ei

δ, ei
θ

(li, ui)
(l′�i, u′�i) ei = max(u′�i − li, ui − l′�i)

s ∈ 𝒮i



Tiler
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Case Study 1
• Position measurement from road scene 

• Global error bounds: 
• For   , 12.66 (15.8% of the measurement range) 

• For   ,          (5.94% of the measurement range) 

• We have verified that the network will not make errors 
greater than these values for all input images that it is 
expected to work on!
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50

δ
θ 7.13∘



Error Bound Landscape
• We can view how the error bounds varies across the state space: 

• Can inspect where the network is doing well and where it is not
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• This framework also enables rejecting inputs that the network 
is not designed to work for, by checking if the new input     is 
contained in any bounding box   
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Detecting illegal inputs

ℬi

x*



Case Study 2
• Sign classification from LiDAR measurement 
• LiDAR shoots an array of lasers in fixed 

directions, and measure the distance to the 
first object hit 
• Distance measurement has Gaussian noise 

(noisy observation process) 
• State space contains 2 continuous 

dimensions          and 1 discrete (sign shape)
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θ

Sign

Lidar

d

working 
 zone

x

yz

(d, θ)



• Tiler gives the error bound landscape 
• We can see in which regions the network is reliable
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Error Bound Landscape



Summary
• State space and observation process provide a more comprehensive specification 

• Specifies all feasible inputs for which the network is expected to work on 

• Specifies correct output for each input 

• By finitizing state and input spaces into tiles, we can do correctness verification, 
verifying the max error the network can make for all feasible inputs 

• This framework also enables detecting and rejecting illegal inputs 

• In general, the big question is: how to obtain guarantees that an ML system is 
reliable in real-world operating scenarios? 
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