
6.S979 Topics in Deployable ML

Verification of Deep Learning Models

Yichen Yang & Martin Rinard
MIT CSAIL

 1

Back in the old, happy days…

 2
Source: 1. https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964
2. https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c
3. https://machinelearningmastery.com/use-pre-trained-vgg-model-classify-objects-photographs/

Train

Test

95%

https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

But things are not that easy…

 3Acknowledgement: slides adapted from Aleksander Madry

But things are not that easy…

• Traditional testing is not enough for judging whether a
trained neural network is reliable or not

 4

But things are not that easy…

• Traditional testing is not enough for judging whether a
trained neural network is reliable or not

• How can we be ensured that the network is reliable and
doing what it should do?

 5

How to ensure?
• To formally ensure that the network is doing what it should do,

we first need to specify what it should do

 6

How to ensure?
• To formally ensure that the network is doing what it should do,

we first need to specify what it should do
• Then we can verify that the network satisfies the specification

 7

How to ensure?
• To formally ensure that the network is doing what it should do,

we first need to specify what it should do
• Then we can verify that the network satisfies the specification
• Typically, we want a neural network to learn and implement a

function
• Let’s first consider a much simpler function

 8

Simple Example
• Square root function:
• First, we need to give a specification (what the

implementation should achieve)
• Precondition:
• Postcondition: ?

 9

f(x) = x

x ≥ 0
f(x) = x

Simple Example
• Square root function:
• First, we need to give a specification (what the

implementation should achieve)
• Precondition:
• Postcondition: ?

• Then, we can verify (prove) if an implementation satisfies this
specification

 10

f(x) = x

x ≥ 0
f(x) = x

(1 − ϵ)x ≤ f(x)2 ≤ (1 + ϵ)x, f(x) ≥ 0

Simple Example
• Square root function:
• First, we need to give a specification (what the

implementation should achieve)
• Precondition:
• Postcondition: ?

• Then, we can verify (prove) if an implementation satisfies this
specification

 11

f(x) = x

x ≥ 0
f(x) = x

(1 − ϵ)x ≤ f(x)2 ≤ (1 + ϵ)x, f(x) ≥ 0

For neural networks…
• Denote the neural network as function
• General form of a specification:
• For all inputs in , some property P holds

 12

f(⋅ ; θ) : ℝm → ℝn

𝒞 ⊆ ℝm} }
Precondition Postcondition

Robustness (under -norm bounded
perturbation)
• Given NN for classification (output pre-

softmax score), and a labeled point
• Precondition:
• Postcondition:
• If we can verify it, then no adversarial example exists around

this point
• How to verify?

 13

f(⋅ ; θ) : ℝm → ℝn

(x, λ(x))
𝒞 = {x′�|∥x′�− x∥p ≤ ϵ}

lp

argmaxi fi(x′�; θ) = λ(x)

Search for adversarial example?
• Try using better and better adversarial attacks to search for

adversarial example
• Only solves part of the problem:
• If we found an adversarial example, we know the model is

not robust
• But if we can’t find one, we are still not sure

 14

Let’s take a look at the goal again…
• Verification goal:

• We can rewrite the postcondition:

 15

∀x′� s.t. ∥x′�− x∥p ≤ ϵ, argmaxi fi(x′�; θ) = λ(x)

∀x′� s.t. ∥x′�− x∥p ≤ ϵ, ∀k ∈ {1,2,...,n}∖{λ(x)}, fλ(x)(x′ �; θ) − fk(x′ �; θ) > 0

∀k ∈ {1,2,...,n}∖{λ(x)}, min
{x′�|∥x′�−x∥p≤ϵ}

(fλ(x)(x′�; θ) − fk(x′�; θ)) > 0

Constrained optimization problem!

Verification as solving constrained
optimization problem
• For each , solve

• Consider a l-layer feed forward network

 16

k ∈ {1,2,...,n}∖{λ(x)}

min
{x′�|∥x′�−x∥p≤ϵ}

(fλ(x)(x′�; θ) − fk(x′�; θ))

̂zi+1 = Wizi + bi, i = 1,...,l − 1
zi = h(̂zi), i = 1,...,l − 1
z1 = x
f(x; θ) = ̂zl

Verification as solving constrained
optimization problem

subject to

 17

min (fλ(x)(x′ �; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h(̂zi), i = 1,...,l − 1
z1 = x′�
f(x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

• Solve this constrained optimization problem for every k
• If all optimized objectives >0, then verified

How to solve?

• Need a way to deal with nonlinearity

• Major types of approaches:

• Mixed integer linear program (MILP)

• Convex relaxation

• Duality

 18

min (fλ(x)(x′�; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h(̂zi), i = 1,...,l − 1
z1 = x′�
f (x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

subject to

• Formulate the optimization problem as MILP (only linear and
integer constraints)
• Works for piecewise-linear networks (ReLU, max pooling), and

input region needs to be a set of polyhedra (norm).

Mixed Integer Linear Program (MILP)
[Tjeng Xiao Tedrake ’18]

 19

𝒞 l1, l∞

min (fλ(x)(x′�; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h(̂zi), i = 1,...,l − 1
z1 = x′�
f(x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ∥x′�− x∥p ≤ ϵ∥x′�− x∥p ≤ ϵ

subject to

∀i : − ϵ ≤ (x′�− x)i ≤ ϵ
l∞

• Express as integer and linear constraints.
• Assume we have obtained a (potentially loose) bound on (we

will talk about how to obtain this later):

Formulating ReLU

 20

z = max(̂z,0)
̂z

l ≤ ̂z ≤ u
z = max(̂z,0) ⟹ if u ≤ 0, z = 0

else if l ≥ 0, z = ̂z
else z ≤ ̂z − l(1 − a)

z ≥ ̂z
z ≤ u ⋅ a
z ≥ 0
a ∈ {0,1}

} Stable

• With the problem formulated as MILP, we can use off-the-shelf
solvers to solve it (CPLEX, Gurobi, etc)
• Solving time heavily affected by the number of integer

variables, because we need to do combinatorial search on
them
• Therefore, a key to efficient solving is having tight bounds (l,u)

on pre-ReLU activations.

 21

Solving MILP

Bound computation
• Fast, but loose: interval arithmetic (IA)
• Propagate bounds layer by layer, bounds on this layer only

depend on bounds of the previous layer
• E.g. , for i=1,2,3. Then bound

for y by IA is
• In general, to compute bounds on with

• Not consider correlations on bounds, so loose
• But only involves matrix operations, so fast

 22

y = − 2x1 + 3x2 + 4x3 li ≤ xi ≤ ui
−2u1 + 3l2 + 4l3 ≤ y ≤ − 2l1 + 3u2 + 4u3

̂zi+1 = Wizi + bi li ≤ zi ≤ ui
W−

i ui + W+
i li + bi ≤ ̂zi+1 ≤ W−

i li + W+
i ui + bi

Bound computation

 23

• Tight, but slow: MILP
• Same as before, just make the objective being max/min of

the pre-ReLU activations
• Combining these methods: progressive bound tightening
• First use fast&loose methods
• For those ReLUs that haven’t proven to be stable, use

tight&slow methods

MILP Summary
• Verification is complete
• If it doesn’t verify, then there exists an adversarial example

and robustness doesn’t hold
• But can be slow, due to integer variables
• Has limitation on input region and non-linearity (though it can

already work with a lot of cases)

 24

How to solve?

• Need a way to deal with nonlinearity

• Major types of approaches:

• Mixed integer linear program (MILP)

• Convex relaxation

• Duality

 25

min (fλ(x)(x′�; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h(̂zi), i = 1,...,l − 1
z1 = x′�
f (x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

subject to

• Verification as solving constrained optimization problems

• Perform convex relaxation on non-linearity constraints

 26

Convex Relaxation
[Salman et.al. ’19]

min (fλ(x)(x′�; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h(̂zi), i = 1,...,l − 1
z1 = x′�
f (x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

subject to

Example: convex relaxation of ReLU
• ,
• If l<0 and u>0, translate this constraint into:

 27

z = max(̂z,0) l ≤ ̂z ≤ u

z ≥ 0
z ≥ ̂z

z ≤
u

u − l
(̂z − l)

[Salman et.al. ’19]

Convex Relaxation
• Now we can formulate the optimization problem as a linear

program (LP)
• Faster to solve
• But since we do relaxation, it’s not complete anymore:
• If the method does not verify, then it is still possible that

robustness property holds

 28

How to solve?

• Need a way to deal with nonlinearity

• Major types of approaches:

• Mixed integer linear program (MILP)

• Convex relaxation

• Duality

 29

min (fλ(x)(x′�; θ) − fk(x′�; θ))
̂zi+1 = Wizi + bi, i = 1,...,l − 1

zi = h(̂zi), i = 1,...,l − 1
z1 = x′�
f (x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

subject to

Recap on Lagrange multiplier and duality
• Consider constrained optimization problem

• The Lagrangian function

• Primal problem

• Primal problem gives the exact solution to the original problem

 30

p* = min
x

max
λ≥0,ν

Λ(x, λ, ν)

Recap on Lagrange multiplier and duality
• Primal problem

• Dual problem

• Weak duality: for any ,

• (Strong duality: , if original problem is convex and some additional
condition holds e.g. Slater’s condition. We don’t use strong duality here)

 31

p* = min
x

max
λ≥0,ν

Λ(x, λ, ν)

d* = max
λ≥0,ν

min
x

Λ(x, λ, ν) = max
λ≥0,ν

g(λ, ν)

g(λ, ν) = min
x

Λ(x, λ, ν)

λ ≥ 0,ν g(λ, ν) ≤ p*

d* = p*

Dual function

• First do convex relaxation

 32

Using Weak Duality
[Wong Kolter ’18] min (fλ(x)(x′�; θ) − fk(x′�; θ))

̂zi+1 = Wizi + bi, i = 1,...,l − 1
zi = h(̂zi), i = 1,...,l − 1
z1 = x′�
f (x′�; θ) = ̂zl
∥x′�− x∥p ≤ ϵ

subject to

• Introduce dual variables (Lagrange multipliers)

• Then the dual problem becomes:

 33

Using Weak Duality
[Wong Kolter ’18]

max
λ,τ,μ,ζ−,ζ+≥0,ν

min
z, ̂z

Λ(z, ̂z, λ, τ, μ, ζ−, ζ+, ν) = max
λ,τ,μ,ζ−,ζ+≥0,ν

g(λ, τ, μ, ζ−, ζ+, ν)

• can be computed analytically,

since it’s unconstrained minimization.

• We can get additional constraints on where

 34

Using Weak Duality
[Wong Kolter ’18]

g(λ, τ, μ, ζ−, ζ+, ν) = min
z, ̂z

Λ(z, ̂z, λ, τ, μ, ζ−, ζ+, ν)

(λ, τ, μ, ζ−, ζ+, ν) g ≠ − ∞

• The dual problem becomes:
• Weak duality says any
 that satisfies
these constraints will give

• So we just need to
compute a set of feasible
values for ,
then we get a lower bound
on the original objective.

 35

Using Weak Duality
[Wong Kolter ’18] g(λ, τ, μ, ζ−, ζ+, ν)

(λ, τ, μ, ζ−, ζ+, ν)

g(λ, τ, μ, ζ−, ζ+, ν) ≤ p*

(λ, τ, μ, ζ−, ζ+, ν)

 36

Using Weak Duality
[Wong Kolter ’18]

• Rewrite the constraints so that computing a feasible solution
for dual variables is easy

• Suggest choice of

αi, j =
ui, j

ui, j − li, j

 37

Using Weak Duality: Summary
[Wong Kolter ’18]

• We can compute a lower bound on the optimized objective by
simply running a ‘backward pass’ of the network.
• Not even need to solve a linear program, so can be even faster
• But again, the solution can be loose. Convex relaxation + weak

duality.
• Not complete

Takeaway on robustness verification algorithms

• Robustness verification can be formulated as solving constrained
optimization problems
• Can formulate the problem exactly, as an MILP
• Complete, but can be slow to solve

• Can do convex relaxation on the non-linear constraints, and solve a
linear program
• Incomplete, faster

• Can use weak duality to obtain lower bounds on the objective, not
even need to solve LP
• Incomplete, even faster

 38

Let’s take a step back…

 39

Let’s take a step back…
• Specification for robustness requires that the network

prediction doesn’t change for inputs around some labeled point
• It only specifies for a local region, and specifies that the

output is stable, but not necessarily correct
• Compare with the specification for square root function
• Can we possibly give a more comprehensive specification for

neural networks?

 40

More comprehensive specification

• We consider neural networks for perception tasks
• For perception, the tasks are typically to recover some

attribute of the world given an observation of the world
• We propose a framework to give specification through state

space and observation process
• We introduce state of the world and the observation process

that maps from states to inputs

 41

x f y

Key Insight
• Introducing state space and observation process
• Example: a road, a camera taking pictures of the road, estimate position

of camera given image

 42

- Camera offset: …
- Camera facing angle: …
- road width: …
- …

Camera Imaging Process

InputsLatent state of the world xObservation Process g

• Perception task is typically to recover some attribute of the world, which is encoded in
s. Denote this attribute as , ground truth function (typically trivial to compute)λ(s)

Now we can give specification

• State space : the space of all states of the world that the
network is expected to work in.
• Precondition: feasible input space
• Postcondition: the correct output is given by

 43

x f ys g

𝒮

�̃� = {x |∃s ∈ 𝒮, x ∈ g(s)}
λ(s)

Correctness Verification

• Correctness:
• For regression problems, neural networks won’t give exactly

correct predictions
• (Approximate) correctness:

• Can be other distance metric depending on how you want to
measure error

 44

x f ys g

∀s ∈ 𝒮, ∀x ∈ g(s), f(x) = λ(s)

∀s ∈ 𝒮, ∀x ∈ g(s), | f(x) − λ(s) | ≤ ϵ

Correctness Verification

• Problem formulation (regression): given a trained network f, a
specification by , g, , find a bound on the maximum error
the network can make with respect to the specification

 Find bound on

 45

x f ys g

𝒮 λ

max
s∈𝒮,x∈g(s)

| f(x) − λ(s) |

Example
• Setup: a camera takes picture of a road
• Camera can vary its horizontal offset and

viewing angle.
• A neural network takes the picture as

input, predict the camera position

 46

(δ, θ)

x f ys
g

(δ, θ)
Camera Imaging Process Neural Network

(δ*, θ*)

Example
• The neural network is designed to work for

• So state space
• Feasible input space
• Problem of correctness verification:

 Find bound on
over all images that can be taken within

 47

δ ∈ [−40,40], θ ∈ [−60∘,60∘]

50

𝒮 = {sδ,θ |δ ∈ [−40,40], θ ∈ [−60∘,60∘]}

�̃� = {x |∃s ∈ 𝒮, x ∈ g(s)}

max(|δ − δ* |), max(|θ − θ* |)

δ ∈ [−40,40], θ ∈ [−60∘,60∘]

How to solve?
• State space can in general be continuous and contains

infinite number of states (as is in the example)
• Cannot enumerate each state
• Idea: finitize the space into tiles and compute error bound for

each tile

 48

𝒮

Tiler

Tiler
• Step 1: Divide the state space into local regions such

that

 49

𝒮 {𝒮i}
∪i 𝒮i = 𝒮

𝒮i

δ

𝒮i𝒮 θ

Tiler
• Step 2: For each , compute the ground truth bound ,

such that

 50

𝒮i [li, ui]
∀s ∈ 𝒮i, li ≤ λ(s) ≤ ui

𝒮i

δ

𝒮i𝒮 θ

δi
1 δi

2

θi
1

θi
2 Ground truth bound for :

For prediction:
For prediction:

𝒮i
δ [δi

1, δi
2]

θ [θi
1, θi

2]

Tiler
• Each is mapped to a tile in input space by g:
• Step 3: Using and g, compute a bounding box for each input tile

such that

 51

𝒮i

δ

𝒮i𝒮 θ

𝒳i = {x |x ∈ g(s), s ∈ 𝒮i}𝒮i
𝒮i ℬi

𝒳i ⊆ ℬi

𝒳i

𝒳i

Input space 𝒳

g

ℬi

For each pixel, compute
the range of values it can
take when s varies in .

This gives a -norm ball
in the input space that
encapsulate

𝒮i

l∞ ℬi

𝒳i

Tiler
• Step 4: Given network and bounding boxes , use a compatible

technique to solve for the network output ranges ,
satisfying:

 52

f {ℬi}
{[l′�i, u′�i]}

∀x ∈ ℬi, l′�i ≤ f(x) ≤ u′�i

𝒮i

δ

𝒮i𝒮 θ
𝒳i

Input space 𝒳

g

ℬi

Standard techniques to solve
network output range given
input constraints:
- MILP
- Convex relaxation
- Duality Network output range

MILP
Solver

[δi
min, δi

max], [θi
min, θi

max]

Tiler
• Step 5: For each tile, use the ground truth bound and network

output bound to compute the error bound:
• This gives the upper bound on prediction error for all

 53

𝒮i

δ

𝒮i𝒮 θ
𝒳i

Input space 𝒳

g

ℬi
Network output range

MILP
Solver

[δi
min, δi

max], [θi
min, θi

max]

Ground truth bound
[δi

1, δi
2], [θi

1, θi
2]

Error Bound
ei

δ, ei
θ

(li, ui)
(l′�i, u′�i) ei = max(u′�i − li, ui − l′�i)

s ∈ 𝒮i

Tiler

 54

Case Study 1
• Position measurement from road scene

• Global error bounds:
• For , 12.66 (15.8% of the measurement range)

• For , (5.94% of the measurement range)

• We have verified that the network will not make errors
greater than these values for all input images that it is
expected to work on!

 55

50

δ
θ 7.13∘

Error Bound Landscape
• We can view how the error bounds varies across the state space:

• Can inspect where the network is doing well and where it is not

 56

• This framework also enables rejecting inputs that the network
is not designed to work for, by checking if the new input is
contained in any bounding box

 57

Detecting illegal inputs

ℬi

x*

Case Study 2
• Sign classification from LiDAR measurement
• LiDAR shoots an array of lasers in fixed

directions, and measure the distance to the
first object hit
• Distance measurement has Gaussian noise

(noisy observation process)
• State space contains 2 continuous

dimensions and 1 discrete (sign shape)

 58

θ

Sign

Lidar

d

working
 zone

x

yz

(d, θ)

• Tiler gives the error bound landscape
• We can see in which regions the network is reliable

 59

Error Bound Landscape

Summary
• State space and observation process provide a more comprehensive specification

• Specifies all feasible inputs for which the network is expected to work on

• Specifies correct output for each input

• By finitizing state and input spaces into tiles, we can do correctness verification,
verifying the max error the network can make for all feasible inputs

• This framework also enables detecting and rejecting illegal inputs

• In general, the big question is: how to obtain guarantees that an ML system is
reliable in real-world operating scenarios?

 60

