6.S979 Topics in Deployable ML

Verification of Deep Learning Models

Yichen Yang & Martin Rinard MIT CSAIL

Back in the old, happy days...

But things are not that easy...

But things are not that easy...

• Traditional testing is not enough for judging whether a trained neural network is reliable or not

But things are not that easy...

- Traditional testing is not enough for judging whether a trained neural network is reliable or not
- How can we be ensured that the network is reliable and doing what it should do?

How to ensure?

 To formally ensure that the network is doing what it should do, we first need to specify what it should do

"pig" (91%)

"airliner" (99%)

How to ensure?

- To formally ensure that the network is doing what it should do, we first need to specify what it should do
- Then we can verify that the network satisfies the specification

How to ensure?

- To formally ensure that the network is doing what it should do, we first need to specify what it should do
- Then we can verify that the network satisfies the specification
- Typically, we want a neural network to learn and implement a function
- Let's first consider a much simpler function

Simple Example

- Square root function: $f(x) = \sqrt{x}$
- First, we need to give a **specification** (what the implementation should achieve)
 - Precondition: $x \ge 0$
 - Postcondition: $f(x) = \sqrt{x}$?

Simple Example

- Square root function: $f(x) = \sqrt{x}$
- First, we need to give a **specification** (what the implementation should achieve)
 - Precondition: $x \ge 0$
 - Postcondition: $f(x) = \sqrt{x}$? $(1 - \epsilon)x \le f(x)^2 \le (1 + \epsilon)x, f(x) \ge 0$
- Then, we can verify (prove) if an implementation satisfies this specification

Simple Example

- Square root function: $f(x) = \sqrt{x}$
- First, we need to give a **specification** (what the implementation should achieve)
 - Precondition: $x \ge 0$
 - Postcondition: $f(x) = \sqrt{x}$? $(1 - \epsilon)x \le f(x)^2 \le (1 + \epsilon)x, f(x) \ge 0$
- Then, we can verify (prove) if an implementation satisfies this specification

For neural networks...

- Denote the neural network as function $f(\cdot; \theta) : \mathbb{R}^m \to \mathbb{R}^n$
- General form of a specification:
 - For all inputs in $\mathscr{C} \subseteq \mathbb{R}^m$, some property P holds

Precondition

Postcondition

Robustness (under l_p -norm bounded perturbation)

- Given NN $f(\cdot; \theta) : \mathbb{R}^m \to \mathbb{R}^n$ for classification (output presoftmax score), and a labeled point $(x, \lambda(x))$
- Precondition: $\mathscr{C} = \{x' | \|x' x\|_p \le \epsilon\}$
- Postcondition: $\operatorname{argmax}_{i} f_{i}(x'; \theta) = \lambda(x)$
- If we can verify it, then no adversarial example exists around this point
- How to verify?

Search for adversarial example?

- Try using better and better adversarial attacks to search for adversarial example
- Only solves part of the problem:
 - If we found an adversarial example, we know the model is not robust
 - But if we can't find one, we are still not sure

Let's take a look at the goal again...

• Verification goal:

$$\forall x' \text{ s.t. } \|x' - x\|_p \le \epsilon, \text{ } \operatorname{argmax}_i f_i(x'; \theta) = \lambda(x)$$

• We can rewrite the postcondition:

$$\forall x' \text{ s.t. } \|x' - x\|_p \leq \epsilon, \ \forall k \in \{1, 2, \dots, n\} \setminus \{\lambda(x)\}, f_{\lambda(x)}(x'; \theta) - f_k(x'; \theta) > 0$$

$$\forall k \in \{1, 2, \dots, n\} \setminus \{\lambda(x)\}, \min_{\substack{\{x' \mid \|x' - x\|_p \leq \epsilon\}}} \left(f_{\lambda(x)}(x'; \theta) - f_k(x'; \theta) \right) > 0$$

Constrained optimization problem!

Verification as solving constrained optimization problem

• For each $k \in \{1,2,\ldots,n\} \setminus \{\lambda(x)\}$, solve

$$\min_{\{x'|\|x'-x\|_p \le \epsilon\}} \left(f_{\lambda(x)}(x';\theta) - f_k(x';\theta) \right)$$

• Consider a l-layer feed forward network

$$\hat{z}_{i+1} = W_i z_i + b_i, \ i = 1, ..., l - 1$$

$$z_i = h(\hat{z}_i), \ i = 1, ..., l - 1$$

$$z_1 = x$$

$$f(x; \theta) = \hat{z}_l$$

Verification as solving constrained optimization problem

 $\min \left(f_{\lambda(x)}(x';\theta) - f_k(x';\theta) \right)$ subject to $\hat{z}_{i+1} = W_i z_i + b_i, \ i = 1, ..., l - 1$ $z_i = h(\hat{z}_i), \ i = 1, ..., l - 1$ $z_1 = x'$ $f(x';\theta) = \hat{z}_l$ $\|x' - x\|_p \le \epsilon$

- Solve this constrained optimization problem for every k
- If all optimized objectives >0, then verified

How to solve?

- Need a way to deal with nonlinearity
- Major types of approaches:
 - Mixed integer linear program (MILP)
 - Convex relaxation
 - Duality

 $\min \left(f_{\lambda(x)}(x';\theta) - f_k(x';\theta) \right)$ subject to $\hat{z}_{i+1} = W_i z_i + b_i, \ i = 1,...,l-1$ $z_i = h(\hat{z}_i), \ i = 1,...,l-1$ $z_1 = x'$ $f(x';\theta) = \hat{z}_l$ $\|x' - x\|_p \le \epsilon$

Mixed Integer Linear Program (MILP) [Tjeng Xiao Tedrake '18]

- Formulate the optimization problem as MILP (only linear and integer constraints)
- Works for piecewise-linear networks (ReLU, max pooling), and input region \mathscr{C} needs to be a set of polyhedra (l_1 , l_{∞} norm).

$$\min \left(f_{\lambda(x)}(x';\theta) - f_k(x';\theta) \right) \quad \checkmark$$

subject to $\hat{z}_{i+1} = W_i z_i + b_i, \ i = 1, \dots, l-1 \quad \checkmark$
 $z_i = h(\hat{z}_i), \ i = 1, \dots, l-1 \quad \bigstar$
 $z_1 = x' \quad \checkmark$
 $f(x';\theta) = \hat{z}_l \quad \checkmark$
 $\|x' - x\|_p \le \epsilon \quad \longrightarrow \quad \forall i : -\epsilon \le (x' - x)_i \le \epsilon \quad \checkmark$

Formulating ReLU

- Express $z = \max(\hat{z}, 0)$ as integer and linear constraints.
- Assume we have obtained a (potentially loose) bound on \hat{z} (we will talk about how to obtain this later): $l \leq \hat{z} \leq u$

$$z = \max(\hat{z}, 0) \implies \text{if } u \le 0, \ z = 0$$

else if $l \ge 0, \ z = \hat{z}$
else $z \le \hat{z} - l(1 - a)$
 $z \ge \hat{z}$
 $z \le u \cdot a$
 $z \ge 0$
 $a \in \{0, 1\}$
Stable

Solving MILP

- With the problem formulated as MILP, we can use off-the-shelf solvers to solve it (CPLEX, Gurobi, etc)
- Solving time heavily affected by the number of integer variables, because we need to do combinatorial search on them
- Therefore, a key to efficient solving is having tight bounds (l,u) on pre-ReLU activations.

Bound computation

- Fast, but loose: interval arithmetic (IA)
 - Propagate bounds layer by layer, bounds on this layer only depend on bounds of the previous layer
 - E.g. $y = -2x_1 + 3x_2 + 4x_3$, $l_i \le x_i \le u_i$ for i=1,2,3. Then bound for y by IA is $-2u_1 + 3l_2 + 4l_3 \le y \le -2l_1 + 3u_2 + 4u_3$
 - In general, to compute bounds on $\hat{z}_{i+1} = W_i z_i + b_i$ with $l_i \le z_i \le u_i$ $W_i^- u_i + W_i^+ l_i + b_i \le \hat{z}_{i+1} \le W_i^- l_i + W_i^+ u_i + b_i$
 - Not consider correlations on bounds, so loose
 - But only involves matrix operations, so fast

Bound computation

- Tight, but slow: MILP
 - Same as before, just make the objective being max/min of the pre-ReLU activations
- Combining these methods: progressive bound tightening
 - First use fast&loose methods
 - For those ReLUs that haven't proven to be stable, use tight&slow methods

MILP Summary

- Verification is complete
 - If it doesn't verify, then there exists an adversarial example and robustness doesn't hold
- But can be slow, due to integer variables
- Has limitation on input region and non-linearity (though it can already work with a lot of cases)

How to solve?

- Need a way to deal with nonlinearity
- Major types of approaches:
 - Mixed integer linear program (MILP)
 - Convex relaxation
 - Duality

 $\min \left(f_{\lambda(x)}(x';\theta) - f_k(x';\theta) \right)$ subject to $\hat{z}_{i+1} = W_i z_i + b_i, \ i = 1,...,l-1$ $z_i = h(\hat{z}_i), \ i = 1,...,l-1$ $z_1 = x'$ $f(x';\theta) = \hat{z}_l$ $\|x' - x\|_p \le \epsilon$

Convex Relaxation [Salman et.al. '19]

• Verification as solving constrained optimization problems

 $\min\left(f_{\lambda(x)}(x';\theta) - f_k(x';\theta)\right)$

subject to
$$\hat{z}_{i+1} = W_i z_i + b_i$$
, $i = 1,...,l-1$
 $z_i = h(\hat{z}_i), i = 1,...,l-1$
 $z_1 = x'$
 $f(x'; \theta) = \hat{z}_l$
 $||x' - x||_p \le \epsilon$

Perform convex relaxation on non-linearity constraints

Example: convex relaxation of ReLU

- $z = \max(\hat{z}, 0)$, $l \le \hat{z} \le u$
- If l<0 and u>0, translate this constraint into:

[Salman et.al. '19]

Convex Relaxation

- Now we can formulate the optimization problem as a linear program (LP)
- Faster to solve
- But since we do relaxation, it's not complete anymore:
 - If the method does not verify, then it is still possible that robustness property holds

How to solve?

- Need a way to deal with nonlinearity
- Major types of approaches:
 - Mixed integer linear program (MILP)
 - Convex relaxation
 - Duality

 $\min \left(f_{\lambda(x)}(x';\theta) - f_k(x';\theta) \right)$ subject to $\hat{z}_{i+1} = W_i z_i + b_i, \ i = 1,...,l-1$ $z_i = h(\hat{z}_i), \ i = 1,...,l-1$ $z_1 = x'$ $f(x';\theta) = \hat{z}_l$ $\|x' - x\|_p \le \epsilon$

Recap on Lagrange multiplier and duality

• Consider constrained optimization problem $\min f_0(x)$

 $ext{subject to } f_i(x) \leq 0, \ i \in \{1,\ldots,m\} \ h_i(x) = 0, \ i \in \{1,\ldots,p\}$

• The Lagrangian function

$$\Lambda(x,\lambda,
u)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p
u_ih_i(x).$$

• Primal problem

$$p^* = \min_{x} \max_{\lambda \ge 0, \nu} \Lambda(x, \lambda, \nu)$$

• Primal problem gives the exact solution to the original problem

Recap on Lagrange multiplier and duality

Primal problem

$$p^* = \min_{x} \max_{\lambda \ge 0, \nu} \Lambda(x, \lambda, \nu)$$

• Dual problem

$$d^* = \max_{\lambda \ge 0, \nu} \min_{x} \Lambda(x, \lambda, \nu) = \max_{\lambda \ge 0, \nu} g(\lambda, \nu)$$

$$g(\lambda, \nu) = \min_{x} \Lambda(x, \lambda, \nu) \quad \text{Dual function}$$

$$g(\lambda, \nu) = \min_{x} \Lambda(x, \lambda, \nu)$$
 Dual function

• Weak duality: for any $\lambda \ge 0, \nu$, $g(\lambda, \nu) \le p^*$

• (Strong duality: $d^* = p^*$, if original problem is convex and some additional condition holds e.g. Slater's condition. We don't use strong duality here)

• First do convex relaxation

$$\begin{array}{l} \underset{\hat{z}_{k}}{\min i i i} c^{T} \hat{z}_{k}, \text{ subject to} \\ \hat{z}_{i+1} = W_{i} z_{i} + b_{i}, \ i = 1, \dots, k-1 \\ z_{1} \leq x + \epsilon \\ z_{1} \geq x - \epsilon \\ z_{i,j} = 0, \ i = 2, \dots, k-1, \ j \in \mathcal{I}_{i}^{-} \\ z_{i,j} = \hat{z}_{i,j}, \ i = 2, \dots, k-1, \ j \in \mathcal{I}_{i}^{+} \\ z_{i,j} \geq 0, \\ z_{i,j} \geq \hat{z}_{i,j}, \\ \left((u_{i,j} - \ell_{i,j}) z_{i,j} \\ - u_{i,j} \hat{z}_{i,j} \right) \leq -u_{i,j} \ell_{i,j} \end{array} \right\} \ i = 2, \dots, k-1, \ j \in \mathcal{I}_{i}$$

 $\min \left(f_{\lambda(x)}(x';\theta) - f_k(x';\theta) \right)$ subject to $\hat{z}_{i+1} = W_i z_i + b_i$, i = 1, ..., l - 1 $z_i = h(\hat{z}_i)$, i = 1, ..., l - 1 $z_1 = x'$ $f(x';\theta) = \hat{z}_l$ $\|x' - x\|_p \le \epsilon$

• Introduce dual variables (Lagrange multipliers)

$$\begin{aligned} \hat{z}_{i+1} &= W_i z_i + b_i \Rightarrow \nu_{i+1} \in \mathbb{R}^{|\hat{z}_{i+1}|} \\ z_1 &\leq x + \epsilon \Rightarrow \xi^+ \in \mathbb{R}^{|x|} \\ -z_1 &\leq -x + \epsilon \Rightarrow \xi^- \in \mathbb{R}^{|x|} \\ -z_{i,j} &\leq 0 \Rightarrow \mu_{i,j} \in \mathbb{R} \\ \hat{z}_{i,j} - z_{i,j} &\leq 0 \Rightarrow \tau_{i,j} \in \mathbb{R} \\ -u_{i,j} \hat{z}_{i,j} + (u_{i,j} - \ell_{i,j}) z_{i,j} &\leq -u_{i,j} \ell_{i,j} \Rightarrow \lambda_{i,j} \in \mathbb{R} \end{aligned}$$

• Then the dual problem becomes:

 $\max_{\lambda,\tau,\mu,\zeta^-,\zeta^+ \ge 0,\nu} \min_{z,\hat{z}} \Lambda(z,\hat{z},\lambda,\tau,\mu,\zeta^-,\zeta^+,\nu) = \max_{\lambda,\tau,\mu,\zeta^-,\zeta^+ \ge 0,\nu} g(\lambda,\tau,\mu,\zeta^-,\zeta^+,\nu)$

- $g(\lambda, \tau, \mu, \zeta^{-}, \zeta^{+}, \nu) = \min_{z, \hat{z}} \Lambda(z, \hat{z}, \lambda, \tau, \mu, \zeta^{-}, \zeta^{+}, \nu)$ can be computed analytically, since it's unconstrained minimization.
- We can get additional constraints on $(\lambda, \tau, \mu, \zeta^-, \zeta^+, \nu)$ where $g \neq -\infty$

- The dual problem becomes:
- Weak duality says any $(\lambda, \tau, \mu, \zeta^{-}, \zeta^{+}, \nu)$ that satisfies these constraints will give $g(\lambda, \tau, \mu, \zeta^{-}, \zeta^{+}, \nu) \leq p^{*}$
- So we just need to compute a set of feasible values for (λ, τ, μ, ζ⁻, ζ⁺, ν), then we get a lower bound on the original objective.

$$\maxinize\left(-(x+\epsilon)^{T}\xi^{+}+(x-\epsilon)^{T}\xi^{-}\right)$$
$$-\sum_{i=1}^{k-1}\nu_{i+1}^{T}b_{i}+\sum_{i=2}^{k-1}\lambda_{i}^{T}(u_{i}\ell_{i})\right)$$

subject to

$$\nu_{k} = -c$$

$$\nu_{i,j} = 0, \ j \in \mathcal{I}_{i}^{-}$$

$$\nu_{i,j} = (W_{i}^{T}\nu_{i+1})_{j}, \ j \in \mathcal{I}_{i}^{+}$$

$$\left((u_{i,j} - \ell_{i,j})\lambda_{i,j} \\ -\mu_{i,j} - \tau_{i,j} \right) = (W_{i}^{T}\nu_{i+1})_{j}$$

$$\nu_{i,j} = u_{i,j}\lambda_{i,j} - \mu_{i}$$

$$i = 2, \dots, k - 1$$

$$j \in \mathcal{I}_{i}$$

$$W_{1}^{T}\nu_{2} = \xi^{+} - \xi^{-}$$

$$\lambda, \tau, \mu, \xi^{+}, \xi^{-} \ge 0$$

• Rewrite the constraints so that computing a feasible solution for dual variables is easy

$$\begin{aligned} & \underset{\alpha}{\text{maximize}} \quad -\sum_{i=1}^{k-1} \nu_{i+1}^T b_i - x^T \hat{\nu}_1 - \epsilon \| \hat{\nu}_1 \|_1 + \sum_{i=2}^{k-1} \sum_{j \in \mathcal{I}_i} \ell_{i,j} [\nu_{i,j}]_+ \\ & \text{subject to} \quad \alpha_{i,j} \in [0,1], \; \forall i,j \end{aligned}$$

Suggest choice of

 $\alpha_{i,j} = \frac{u_{i,j}}{u_{i,j} - l_{i,j}}$

$$\nu_{k} = -c$$

$$\hat{\nu}_{i} = W_{i}^{T} \nu_{i+1}, \text{ for } i = k - 1, \dots, 1$$

$$\nu_{i,j} = \begin{cases} 0 & j \in \mathcal{I}_{i}^{-} \\ \hat{\nu}_{i,j} & j \in \mathcal{I}_{i}^{+} \\ \frac{u_{i,j}}{u_{i,j} - \ell_{i,j}} [\hat{\nu}_{i,j}]_{+} - \alpha_{i,j} [\hat{\nu}_{i,j}]_{-} & j \in \mathcal{I}_{i}, \end{cases}$$
for $i = k - 1, \dots, 2$

Using Weak Duality: Summary [Wong Kolter '18]

- We can compute a lower bound on the optimized objective by simply running a 'backward pass' of the network.
- Not even need to solve a linear program, so can be even faster
- But again, the solution can be loose. Convex relaxation + weak duality.
- Not complete

Takeaway on robustness verification algorithms

- Robustness verification can be formulated as solving constrained optimization problems
- Can formulate the problem **exactly**, as an MILP
 - Complete, but can be slow to solve
- Can do convex relaxation on the non-linear constraints, and solve a linear program
 - Incomplete, faster
- Can use weak duality to obtain lower bounds on the objective, not even need to solve LP
 - Incomplete, even faster

Let's take a step back...

Let's take a step back...

- Specification for robustness requires that the network prediction doesn't change for inputs around some labeled point
- It only specifies for a local region, and specifies that the output is stable, but not necessarily correct
- Compare with the specification for square root function
- Can we possibly give a more comprehensive specification for neural networks?

More comprehensive specification

- We consider neural networks for perception tasks
- For perception, the tasks are typically to recover some attribute of the world given an observation of the world
- We propose a framework to give specification through state space and observation process
 - We introduce state of the world and the observation process that maps from states to inputs

Key Insight

- Introducing state space and observation process
- Example: a road, a camera taking pictures of the road, estimate position of camera given image

Latent state of the world S Observation Process g

- Camera offset: ...
- Camera facing angle: ...
- road width: ...

- ...

Camera Imaging Process

• Perception task is typically to recover some attribute of the world, which is encoded in s. Denote this attribute as $\lambda(s)$, ground truth function (typically trivial to compute)

Now we can give specification

$$s \xrightarrow{g} x \xrightarrow{f} y$$

- State space \mathcal{S} : the space of all states of the world that the network is expected to work in.
- Precondition: feasible input space $\tilde{\mathcal{X}} = \{x \mid \exists s \in \mathcal{S}, x \in g(s)\}$
- Postcondition: the correct output is given by $\lambda(s)$

Correctness Verification

$$s \xrightarrow{g} x \xrightarrow{f} y$$

- Correctness: $\forall s \in \mathcal{S}, \forall x \in g(s), f(x) = \lambda(s)$
- For regression problems, neural networks won't give exactly correct predictions
- (Approximate) correctness:

$$\forall s \in \mathcal{S}, \forall x \in g(s), |f(x) - \lambda(s)| \le \epsilon$$

• Can be other distance metric depending on how you want to measure error

Correctness Verification

$$s \xrightarrow{g} x \xrightarrow{f} y$$

• Problem formulation (regression): given a trained network f, a specification by S, g, λ , find a bound on the maximum error the network can make with respect to the specification

Find bound on
$$\max_{s \in \mathcal{S}, x \in g(s)} |f(x) - \lambda(s)|$$

Example

- Setup: a camera takes picture of a road
- Camera can vary its horizontal offset and viewing angle.
- A neural network takes the picture as input, predict the camera position (δ, θ)

Example

- The neural network is designed to work for $\delta \in [-40,40], \theta \in [-60^{\circ},60^{\circ}]$
- So state space $\mathcal{S} = \{s_{\delta,\theta} | \delta \in [-40,40], \theta \in [-60^\circ,60^\circ]\}$
- Feasible input space $\tilde{\mathcal{X}} = \{x \mid \exists s \in \mathcal{S}, x \in g(s)\}$
- Problem of correctness verification:

Find bound on $\max(|\delta - \delta^*|), \max(|\theta - \theta^*|)$ over all images that can be taken within $\delta \in [-40,40], \theta \in [-60^\circ,60^\circ]$

How to solve?

- State space S can in general be continuous and contains infinite number of states (as is in the example)
- Cannot enumerate each state
- Idea: finitize the space into *tiles* and compute error bound for each tile

• Step 1: Divide the state space S into local regions $\{S_i\}$ such that $\cup_i S_i = S$

• Step 2: For each S_i , compute the ground truth bound $[l_i, u_i]$, such that $\forall s \in S_i, l_i \le \lambda(s) \le u_i$

Ground truth bound for \mathcal{S}_i : • For δ prediction: $[\delta_1^i, \delta_2^i]$ • For θ prediction: $[\theta_1^i, \theta_2^i]$

- Each S_i is mapped to a tile in input space by g: $\mathcal{X}_i = \{x \mid x \in g(s), s \in S_i\}$
- Step 3: Using S_i and g, compute a bounding box \mathscr{B}_i for each input tile \mathscr{X}_i such that $\mathscr{X}_i \subseteq \mathscr{B}_i$

For each pixel, compute the range of values it can take when s varies in S_i .

This gives a l_{∞} -norm ball \mathscr{B}_i in the input space that encapsulate \mathscr{X}_i

• Step 4: Given network f and bounding boxes $\{\mathscr{B}_i\}$, use a compatible technique to solve for the network output ranges $\{[l'_i, u'_i]\}$, satisfying: $\forall x \in \mathscr{B}_i, l'_i \leq f(x) \leq u'_i$

Standard techniques to solve network output range given input constraints:

- MILP
- Convex relaxation
- Duality

- Step 5: For each tile, use the ground truth bound (l_i, u_i) and network output bound (l'_i, u'_i) to compute the error bound: $e_i = \max(u'_i l_i, u_i l'_i)$
- This gives the upper bound on prediction error for all $s \in \mathcal{S}_i$

Algorithm 1 Tiler (for regression)	
Input: S, g, λ, f	
Output: $e_{\text{global}}, \{e_i\}, \{\mathcal{B}_i\}$	
1: procedure TILER(S, g, λ, f)	
2: $\{S_i\} \leftarrow \text{DIVIDESTATESPACE}(S)$	⊳ Step 1
3: for each S_i do	
4: $(l_i, u_i) \leftarrow \text{GetGroundTruthBo}$	$PUND(\mathcal{S}_i, \lambda)$ \triangleright Step 2
5: $\mathcal{B}_i \leftarrow \text{GetBoundingBox}(\mathcal{S}_i, g)$	⊳ Step 3
6: $(l'_i, u'_i) \leftarrow \text{SOLVER}(f, \mathcal{B}_i)$	⊳ Step 4
7: $e_i \leftarrow \max(u'_i - l_i, u_i - l'_i)$	⊳ Step 5
8: end for	
9: $e_{\text{global}} \leftarrow \max(\{e_i\})$	⊳ Step 5
10: return $e_{\text{global}}, \{e_i\}, \{\mathcal{B}_i\}$	$\triangleright \{e_i\}, \{\mathcal{B}_i\}$ can be used later to compute $e_{\text{local}}(x)$
11: end procedure	

Case Study 1

- Position measurement from road scene
- Global error bounds:
 - For δ , 12.66 (15.8% of the measurement range)
 - For θ , 7.13° (5.94% of the measurement range)
- We have verified that the network will not make errors greater than these values for all input images that it is expected to work on!

Error Bound Landscape

• We can view how the error bounds varies across the state space:

• Can inspect where the network is doing well and where it is not

Detecting illegal inputs

• This framework also enables rejecting inputs that the network is not designed to work for, by checking if the new input x^* is contained in any bounding box \mathcal{B}_i

Case Study 2

- Sign classification from LiDAR measurement
- LiDAR shoots an array of lasers in fixed directions, and measure the distance to the first object hit
- Distance measurement has Gaussian noise (noisy observation process)
- State space contains 2 continuous dimensions (d, θ) and 1 discrete (sign shape)

Error Bound Landscape

- Tiler gives the error bound landscape
- We can see in which regions the network is reliable

Summary

- State space and observation process provide a more comprehensive specification
 - Specifies all feasible inputs for which the network is expected to work on
 - Specifies correct output for each input
- By finitizing state and input spaces into tiles, we can do correctness verification, verifying the max error the network can make for all feasible inputs
- This framework also enables detecting and rejecting illegal inputs
- In general, the big question is: how to obtain guarantees that an ML system is reliable in real-world operating scenarios?