Deployable Robotics (Part I)

Russ Tedrake
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If a Robotic Hand Solves

a Rubik's Cube, Does It
Prove Something?

A five-fingered feat could show important progress in A.L.
research. It is also a stunt.
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“For the Rubik’s cube task, we use 8 x 8 = 64 NVIDIA V100 GPUs
and 8 x 115 = 920 worker machines with 32 CPU cores each.
The cumulative amount of experience ... is roughly 13 thousand
years.”
Solving Rubik's Cube with a Robot Hand by OpenAl, arXiv:1910.07113



Table 6: Performance of different policies on the Rubik’s cube for a fixed fair scramble goal sequence. We evaluate each
policy on the real robot (N=10 trials) and report the mean + standard error and median number of successes (meaning
the total number of successful rotations and flips). We also report two success rates for applying half of a fair scramble
(“half”’) and the other one for fully applying it (“full’”). For ADR policies, we report the entropy in nats per dimension
(npd). For “Manual DR”, we obtain an upper bound on its ADR entropy by running ADR with the policy fixed and
report the entropy once the distribution stops changing (marked with an “*”).

Policy Sensing ADR Entropy Successes (Real). Success Rate
Pose Face Angles Mean Median Half Full
Manual DR Vision Giiker —0.569" npd 1.8+0.4 20 0% 0 %
ADR Vision Giiker —0.084 npd 3.8+ 1.0 3.0 0 % 0 %
ADR (XL) Vision Giiker 0.467npd | 17.8 £4.2 125 30% 10%
ADR (XXL) Vision Giiker 0.479npd | 26.8 +4.9 220 60% 20 %
ADR (XXL) Vision Vision 0.479npd | 128+ 3.4 10.5 20 % 0 %

Solving Rubik's Cube with a Robot Hand by OpenAl, arXiv:1910.07113
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Introduction to (robust) control and Lyapunov;
we’ll do a bit more of that here...

Billion dollar question:

What will be the epistemology of
deployable ML?
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Challenge #1: System Complexity



Deploying Autonomous/Learning Systems

The complexity of perception breaks our existing tools...

Sensor
— Plant Sensor Pergeptl.on/ | Planning P> Control
Estimation
Sensor

e Sensors include cameras = sensor model is a photo-realistic rendering
engine

e Perception components (especially) include deep neural networks; but
verifying planning algorithms also nontrivial.

e Plant model has to capture distributions over natural scenes (numbers/types
of objects, material properties, lighting conditions)



Challenge #2: Distributional Robustness
and Black Swans
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What do you see in this Picture?

Courtesy: John Leonard Coolidge Corner, Brookline MA








https://docs.google.com/file/d/17dnTRWvF6wxZdkhRoAnEoiuX_X-vhQdw/preview

My lesson in robustness

In a garage at MIT just days before the
competition...

Now passionate to understand how to get
robustness from these complex systems.




Challenge #3: High expectations

(how safe do we have to be to deploy?)



RAND > Press Room > News Releases > 2016 >

Autonomous Vehicles Cannot Be Test-Driven
Enough Miles to Demonstrate Their Safety;
Alternative Testing Methods Needed

FOR RELEASE .
— Media Resources
= Tuesday

April 12, 2016 RAND Office of Media Relations
(703) 414-4795
Autonomous vehicles would have to be driven hundreds of millions of (310) 451-6913
miles and, under some scenarios, hundreds of billions of miles to create SRR

enough data to clearly demonstrate their safety, according to a new
RAND report. Researcher Spotlight

Analysis (via a very simple coin flipping model): To estimate to within 20% of
assumed rate (1.09/100 million), with 95% confidence, requires ~ 8.8 billion miles.



Releases of technology in the airline industry

10 year moving average accident rate per million flights*
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*Below 10 years of operation, the moving average is based on the number of years of operation.

“A Statistical Analysis of Commercial Aviation Accidents:1958-2015" by Airbus



Goal: Toolkit for reasoning about about
uncertainty in closed-loop systems



Uncertainty representations

Domain randomization in
In controls (polytopic/ellipsoidal, etc) reinforcement learning
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Fig. 1. Example 1: Zonotope Containment Problem: [left] Z; C Z,, [Right] -

Zy; Z 7Y, where the last column of G, is dropped. 27 Feb 2018 |16:48 GMT
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Creating Driving Tests for
Self-Driving Cars
Volvo-backed Zenuity wants to prove that

autonomous vehicles can drive more safely
than humans

By Erik Coelingh and Jonas Nilsson

Developing autonomous
systems in the real world.




Common Lyapunov Functions and Invariant Sets

On the board.

Relevant course notes (from 6.832) are here.


http://underactuated.csail.mit.edu/underactuated.html?chapter=lyapunov
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https://docs.google.com/file/d/1pPYMJ_VL1VJNUeZKKMQGJqUnrIWUn_UO/preview

Can we make a control system for a fixed-wing airplane to land on a
perch like a bird?
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https://docs.google.com/file/d/1VuPE08HF0dHbLzH_i-BiOpZNhipunCbs/preview
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Nonlinear (post-stall) dynamics described well by polynomial diff eq.
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Plan trajectories with sequential quadratic programming (SQP)

Invariant sets as a sums-of-squares (SOS) optimization

| | |

-3 -2 ~1 0 1
X-Position (m)



0.8

0.6






https://docs.google.com/file/d/1Elky0p72RA9aduU4PYgvw-CFucyAS55s/preview

Wind disturbances:
colored “noise” drawn
from ellipsoidal
uncertainty set

Robust control via
bilinear SOS
alternations



https://docs.google.com/file/d/1UlG1h-W4vg3lao5niScO92S6tUmZdQhi/preview






https://docs.google.com/file/d/1eNnM1ojJjtWYvTDMWN4JKWmfL1wzUKpx/preview

ONR MURI: Provable-safe high-speed flight . 23 s g -
through forests P Sepecas A :



Some final thoughts (on the board)



