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Pablo’s billion dollar question: “What will be 
the epistemology of deployable ML?”



Verification & Validation
Some vocabulary:

● Desired outcomes described via Requirements/Specifications
● Correctness is the conformance of a system to its specification.
● Verification is the activity of establishing correctness.
● Validation is confirming that satisfying requirements achieved the intended 

results/performance.
● The whole bunch together makes can be used to form an “assurance case”, 

which is the structured argument that we communicate about a system to 
convince a third party.



Example: Safety 
case for aircraft 
collision avoidance

ACAS II is an airborne avionics 
system designed to reduce the 
risk of mid-air collision. Its 
carriage by a majority of aircraft 
within Europe is mandatory.



from Final Report on Studies on the Safety of ACAS II in 
Europe  [ACAS/ACASA/02-014]

The [encounter] model... from an analysis of 
encounters collected during 1998 and 2000 from 
European radar data.

The logic risk ratios reported here are computed 
assuming that all other aspects of the system 
operate as intended: the surveillance of intruders 
is perfect, and pilots react to all resolution 
advisories (RAs) and with an ideal response.

... using an ‘event tree’: a logical diagram that 
combines the relevant factors to calculate a risk of 
collision for the whole system. …  probabilities for 
the base level events were estimated.

The logic risk ratios quoted above (and others 
calculated for various non-standard pilot 
responses) were combined with the 
probabilities of other system events, using the 
event tree, to obtain risk ratios relevant to the 
operation of the total ACAS system. 



How do we build an assurance case for closed-loop 
systems with learning/perception/planning in the loop?



Last time

In controls (polytopic/ellipsoidal, etc)
Domain randomization in 
reinforcement learning

Developing autonomous 
systems in the real world.



Plan trajectories with sequential quadratic programming (SQP)

Invariant sets as a sums-of-squares (SOS) optimization



Lessons from Robust Control

Often criticized: sacrifice performance to guarantee robustness.

Control authority
+ model fidelity

Task requirements



Domain Randomization in RL

https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html

https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html


https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html

https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html


OpenAI Gym         vs.           ETH ANYmal results

http://www.youtube.com/watch?v=aTDkYFZFWug&t=7


“learned actuator dynamics 
effectively reduce the reality 
gap, whereas stochastic 
modeling guides the policy to 
be sufficiently conservative.

The center of mass positions, 
the masses of links, and joint 
positions were randomized by 
adding a noise sampled from 
U(−2, 2) cm, U(−15, 15)%, and 
U(−2, 2) cm, respectively.”



I think the really interesting question are for 
systems with both rich uncertainty + non-trivial 
tasks/dynamics



https://docs.google.com/file/d/1twjUVc9ZPJRJNVPK5WaKv1N0G3DovlTK/preview


http://www.youtube.com/watch?v=1RbaIo4VdbA&t=112


Proposed problem formulation:

“Class-general” manipulation.



http://www.youtube.com/watch?v=fm5RZ-ht1y0


kPAM pipeline No template model or pose 
appears in this pipeline.



http://www.youtube.com/watch?v=nDRBKb4AGmA


http://www.youtube.com/watch?v=nDRBKb4AGmA&t=124


Includes large neural net for perception (ResNet) 

And a recurrent network for 
control (LSTM)

https://docs.google.com/file/d/1TNfG8uZwF7BfgYB2VFoczdPlWEuItBG3/preview


Imitation learning

https://docs.google.com/file/d/1BqdJKsKGQ88ZABC99IL5vhxoAAM4zt8g/preview


Requirements/Specifications

In controls (polytopic/ellipsoidal, etc)
Domain randomization in 
reinforcement learning

Developing autonomous 
systems in the real world.





https://docs.google.com/file/d/1o__oe_tWUXan0ZKNxnL54BVJgY5wroNM/preview


https://docs.google.com/file/d/1T3CpUAVVtXiYWKtSqi2ig4mLGyOwYptb/preview




https://docs.google.com/file/d/18gneDfkeitfEhXt24e-ErSiLIN0k-u3g/preview
https://docs.google.com/file/d/1oix3PulDaypVent2K5OMAmuK4PqmGsVc/preview


https://docs.google.com/file/d/1dDXo2pEFvYF0AhXKuLTkLbKnjBgIsjD2/preview


Monte Carlo falsification



https://docs.google.com/file/d/18V9wNQIAibUepX6Zdssn80dV9s2TP3xZ/preview




Scenario description files

Parameters, initial 
conditions, and noise 
described as exact values 
or distributions



Scenario description files
Success criteria specified as 
constraints on systems

Can compose into complex 
diagrams, and be used for synthesis

https://drake.mit.edu/doxygen_cxx/classdrake_1_1systems_1_1_system_constraint.html


This seems to be a theme in companies deploying AI… 
requirements/specifications are authored as a set of objectives/constraints on a list 
of scenarios.



First you find bugs in 
your simulator!



Switched to a 
motion planning 
scheme that’s 
less sensitive to 
rack initial 
position (#2304)

Initial positions of the 
unmanipulated racks are 
drawn from MC instead of 0 
(#2362)



Finding subtle bugs

https://docs.google.com/file/d/1eL7-sreuJ_dPTqgnQomcMDcr1iSJYax3/preview


Finding subtle bugs

https://docs.google.com/file/d/1eL7-sreuJ_dPTqgnQomcMDcr1iSJYax3/preview
https://docs.google.com/file/d/1txa-3KxK50CEZc66h4fHjsy37zjGwIuH/preview


Finding subtle bugs

OK to 
place 
mug

Start mug load

Stop! Rack 
appears closed

Added (calibrated) noise for 
rack perception



Falsification algorithms

Increase test
randomness / 
scope

Improve 
robustness / 
fix bugs

naive Monte Carlo has been sufficient (so far)



Sim vs Real

Made simulation tests 
more difficult than the 

real-world



Procedural dishes

https://docs.google.com/file/d/1wl1ZzDpUTeG_hJJbUt6nutgMpMa0QfAk/preview
https://docs.google.com/file/d/18XPX-N99_e9G7y_roL4DbISdCpXvOpRd/preview
https://docs.google.com/file/d/1k_jWrAz-ozT9UgzGn5BJRbyCNPKijcGa/preview
https://docs.google.com/file/d/1diIUN0pmoGanXD13sId-9JIt5e1GA9fW/preview


Procedural dishes



Very analogous to autonomous 
driving



http://metamoto.com

http://metamoto.com


http://metamoto.com

http://metamoto.com


http://metamoto.com

http://metamoto.com


http://paralleldomain.com

http://paralleldomain.com


More advanced falsification via nonlinear black-box optimization and rare event 
simulation.

NIPS 2018



Nonlinear “black-box” optimization can be applied at scale; finds “rare” events

● E.g. CMA-ES (covariance matrix adaptation evolution strategy)

“Adversarial training” -- by engineers or fine-tuning

But performance bounds are only empirical -- and often weak.

Still requires a sufficiently rich simulation.

https://en.wikipedia.org/wiki/CMA-ES


But how do I achieve robustness to 
every mug?  every shoe?  

in every kitchen?



To achieve robustness, do I need to 
simulate the diversity of the world?





A 2D Example



Training

Optimize an ELBO loss with REINFORCE/ADAM in Pyro.





Outlier detection



Procedural dishes

https://docs.google.com/file/d/1wl1ZzDpUTeG_hJJbUt6nutgMpMa0QfAk/preview
https://docs.google.com/file/d/18XPX-N99_e9G7y_roL4DbISdCpXvOpRd/preview
https://docs.google.com/file/d/1k_jWrAz-ozT9UgzGn5BJRbyCNPKijcGa/preview
https://docs.google.com/file/d/1diIUN0pmoGanXD13sId-9JIt5e1GA9fW/preview


Procedural dishes



Uncertainty representations

In controls (polytopic/ellipsoidal, etc)
Domain randomization in 
reinforcement learning

Developing autonomous 
systems in the real world.

Abbeel et al.



Uncertainty representations 

Does simultaneous stabilization (or expected value) with richer randomization of 
the task/environment somehow make the problem fundamentally easier?

Can we bring robust control formulations closer to what the real world uses to 
develop autonomous systems?



More big questions



Can we simulate everything in the kitchen? 

Napkins? Ketchup? Soba noodles?

How accurate do our models have to be?

Control authority
+ model fidelity

Task requirements



How do I provide test coverage for every possible kitchen?

Hypothesis: Only need a sufficiently rich 
sandbox to deploy 

+ continual improvement (fleet learning)



Summary
Optimization brought us today’s “modern control”...

..with strong results for relatively simple forms uncertainty.

Real world uncertainty and “domain randomization” in RL is much richer.  
“Black-box” optimization in RL still works.

Dealing with perception and “open-worlds” may cause the next major shift in 
controls research; we need the maturity of control to help address fundamental 
problems in robustness and sample-complexity.


