Deployable Robotics (Part i)

Russ Tedrake



Pablo’s billion dollar question: “What will be
the epistemology of deployable ML?”



Verification & Validation

Some vocabulary:

Desired outcomes described via Requirements/Specifications
Correctness is the conformance of a system to its specification.
Verification is the activity of establishing correctness.

Validation is confirming that satisfying requirements achieved the intended
results/performance.

e The whole bunch together makes can be used to form an “assurance case’,
which is the structured argument that we communicate about a system to
convince a third party.



Example: Safety
case for aircraft
collision avoidance

ACAS Il is an airborne avionics
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Altitude critenon

Example of ACAS Protection Volume between 5000 and 10000 fest



The [encounter] model... from an analysis of
encounters collected during 1998 and 2000 from
European radar data.

The logic risk ratios reported here are computed
assuming that all other aspects of the system
operate as intended: the surveillance of intruders
is perfect, and pilots react to all resolution
advisories (RAs) and with an ideal response.

... using an ‘event tree’: a logical diagram that
combines the relevant factors to calculate a risk of
collision for the whole system. ... probabilities for
the base level events were estimated.

The logic risk ratios quoted above (and others
calculated for various non-standard pilot
responses) were combined with the
probabilities of other system events, using the
event tree, to obtain risk ratios relevant to the
operation of the total ACAS system.

5.2.1 Monte Carlo approach

5.2.1.1 As presented in Figure 5.1, the approach [WP-1 142] relies on using ‘Monte Carlo’
simulations. It consists in conducting a very large number of simulations and modifying for
each simulation the initial encounters in order to take into account the uncertainties of
surveillance data.
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Figure 5.1: Monte Carlo simulations

5.2.1.2 Due to computer constraints, the number of initial encounters is restricted to N=10,732. For
each initial encounter, the number of variations into surveillance data is M = 50.

from Final Report on Studies on the Safety of ACAS Il in
Europe [ACAS/ACASA/02-014]



How do we build an assurance case for closed-loop
systems with learning/perception/planning in the loop?



Last time
Domain randomization in
In controls (polytopic/ellipsoidal, etc) reinforcement learning
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Fig. 1. Example 1: Zonotope Containment Problem: [left] Z; C Z,, [Right] -
Zy; Z 7Y, where the last column of G, is dropped.
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Creating Driving Tests for
Self-Driving Cars
Volvo-backed Zenuity wants to prove that

autonomous vehicles can drive more safely
than humans

By Erik Coelingh and Jonas Nilsson

Developing autonomous
systems in the real world.
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Lessons from Robust Control

Task requirements

Control authority L 4
+ model fidelity :

Often criticized: sacrifice performance to guarantee robustness.



Domain Randomization in RL

In the original form of DR (Tobin et al, 2017; Sadeghi et al. 2016), each | R
randomization parameter &; is bounded by an interval, ﬂ

& € [5}0“’, f?jgh],i = 1, ..., N and each parameter is uniformly
sampled within the range.

¢ Position, shape, and color of objects,

e Material texture,
e Lighting condition,
e Random noise added to images,

e Position, orientation, and field of view of the camera in the simulator.

https://lilianweng.qgithub.io/lil-loa/2019/05/05/domain-randomization.html



https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html

Physical dynamics in the simulator can also be randomized (Peng et al. 2018). Studies
have showed that a recurrent policy can adapt to different physical dynamics including
the partially observable reality. A set of physical dynamics features include but are not
limited to:

Mass and dimensions of objects,
Mass and dimensions of robot bodies,
Damping, kp, friction of the joints,
Gains for the PID controller (P term),

Joint limit,

Action delay,

Observation noise.

Fig. 1. A recurrent neural network policy trained for a pushing task in
simulation is deployed directly on a Fetch Robotics arm. The red marker
indicates the target location for the puck.

https://lilianweng.qgithub.io/lil-loa/2019/05/05/domain-randomization.html



https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html
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To this end, we train a neural network representing this
complex dynamics with data from the real robot.
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OpenAl Gym VS. ETH ANYmal results


http://www.youtube.com/watch?v=aTDkYFZFWug&t=7

Learning agile and dynamic motor skills for legged

robots

Jemin Hwangbo'*, Joonho Lee’, Alexey Dosovitskiy, Dario Bellicoso’, Vassilios Tsounis', Vladlen Koltun® and Marco Hutt...

+ See all authors and affiliations

Science Robotics 16 Jan 2019:
Vol. 4, Issue 26, eaau5872
DOI: 10.1126/scirobotics.aau5872

1 .
learned actuator dynamics

effectively reduce the reality
gap, whereas stochastic
modeling guides the policy to
be sufficiently conservative.

The center of mass positions,
the masses of links, and joint

positions were randomized by
adding a noise sampled from

U(-2,2) cm, U(-15, 15)%, and

U(-2, 2) cm, respectively.”

X?

Stochastic
rigid body modeling

Train actuator net
with real data

Reinforcement
learning in simulation

Deploy on the
real system




| think the really interesting question are for
systems with both rich uncertainty + non-trivial
tasks/dynamics





https://docs.google.com/file/d/1twjUVc9ZPJRJNVPK5WaKv1N0G3DovlTK/preview



http://www.youtube.com/watch?v=1RbaIo4VdbA&t=112

Proposed problem formulation:

“Class-general” manipulation.





http://www.youtube.com/watch?v=fm5RZ-ht1y0

kPAM pl pel | ne No template model or pose

appears in this pipeline.

RGBD image w/ instance
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Action Optimization
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http://www.youtube.com/watch?v=nDRBKb4AGmA

/
W

4 speed



http://www.youtube.com/watch?v=nDRBKb4AGmA&t=124

Includes large neural net for perception (ResNet)

Dense Object Nets: Learning Dense Visual
Object Descriptors By and For Robotic Manipulation

Generated at ~20 Hz (approximately real-time)

Peter R. Florence*, Lucas Manuelli*, Russ Tedrake
CSAIL, Massachusetts Institute of Technology
{peteflo,manuelli,russt}Qcsail.mit.edu
*These authors contributed equally to this work.

And a recurrent network for
control (LSTM)



https://docs.google.com/file/d/1TNfG8uZwF7BfgYB2VFoczdPlWEuItBG3/preview



https://docs.google.com/file/d/1BqdJKsKGQ88ZABC99IL5vhxoAAM4zt8g/preview

Requirements/Specifications
Domain randomization in
In controls (polytopic/ellipsoidal, etc) reinforcement learning
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https://docs.google.com/file/d/1o__oe_tWUXan0ZKNxnL54BVJgY5wroNM/preview



https://docs.google.com/file/d/1T3CpUAVVtXiYWKtSqi2ig4mLGyOwYptb/preview

Elevatlon Aznmuth Inp lane-x

KOSNet: A Unified Keypoint, Orientation and Scale Network for
Probabilistic 6D Pose Estimation
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Kunimatsu Hashimoto*, Duy-Nguyen Ta*, Eric Cousineau and Russ Tedrake
*These authors contributed equally to this work.





https://docs.google.com/file/d/18gneDfkeitfEhXt24e-ErSiLIN0k-u3g/preview
https://docs.google.com/file/d/1oix3PulDaypVent2K5OMAmuK4PqmGsVc/preview



https://docs.google.com/file/d/1dDXo2pEFvYF0AhXKuLTkLbKnjBgIsjD2/preview

Monte Carlo falsification





https://docs.google.com/file/d/18V9wNQIAibUepX6Zdssn80dV9s2TP3xZ/preview
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Scenario description files

_DishwareConstants:
- &dish_input sink
- &mug_anywhere

Parameters, |n|t|a| base_frame: xdish_input
Conditions, and noise translation: !UniformVector
described as exact values min: [-0.10, -0.20, 0.10]

max: [0.10, 0.20, 0.30]
rotation_rpy_deg: !UniformRotation {}

or distributions

- &plate_anywhere



Scenario description files

Success criteria specified as
constraints on systems

Can compose into complex
diagrams, and be used for synthesis

TestMuglLoadAcrossSink:
station_name: central_square
iiwa_q@: *iiwa_anywhere
dishwashers:
dishwasher:
door_angle_deg: *door_open_deg
silverware_rack_position: *silverware_rack_in
upper_rack_position: xupper_rack_out
lower_rack_position: xlower_rack_anywhere
position_sensor_noise: *default_dishwasher_position_sensor_noise
use_wrist_camera: True
items:
kind: &mug
role: corelle_livingware_1loz_mug_red
model: &mug_model models/mug/corelle_livingware_1lloz_mug_red.sdf
link_name: &mug_link corelle_livingware_11lo0z_mug_red
X_initial: *mug_anywhere
dish_task: load_dish_test
pose_constraints:

&mug_placement_position

frame: *xmug_link

base_frame: dishwasher_upper_rack
translation_lower: [-0.20, -0.20, 0.056]
translation_upper: [0.20, 0.20, 0.057]

&mug_placement_position

frame: *mug_link

base_frame: dishwasher_upper_rack
translation_lower: [-0.20, -0.20, 0.056]
translation_upper: [0.20, 0.20, 0.057]

CC_ULr_Constralnts.

&mug_placement_orientation
frame: *mug_link
vectors_in_base_frame:

- [0, 0, -1]
vectors_in_frame:

- [0, 0, 1]
tolerance_deg_lower: [0]
tolerance_deg_upper: [10]


https://drake.mit.edu/doxygen_cxx/classdrake_1_1systems_1_1_system_constraint.html

This seems to be a theme in companies deploying Al...
requirements/specifications are authored as a set of objectives/constraints on a list
of scenarios.
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Initial positions of the
unmanipulated racks are
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Finding subtle bugs



https://docs.google.com/file/d/1eL7-sreuJ_dPTqgnQomcMDcr1iSJYax3/preview

Finding subtle bugs



https://docs.google.com/file/d/1eL7-sreuJ_dPTqgnQomcMDcr1iSJYax3/preview
https://docs.google.com/file/d/1txa-3KxK50CEZc66h4fHjsy37zjGwIuH/preview

Finding subtle bugs
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Falsification algorithms
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Sim vs Real
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https://docs.google.com/file/d/1wl1ZzDpUTeG_hJJbUt6nutgMpMa0QfAk/preview
https://docs.google.com/file/d/18XPX-N99_e9G7y_roL4DbISdCpXvOpRd/preview
https://docs.google.com/file/d/1k_jWrAz-ozT9UgzGn5BJRbyCNPKijcGa/preview
https://docs.google.com/file/d/1diIUN0pmoGanXD13sId-9JIt5e1GA9fW/preview

Procedural dishes

TOYOTA »
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Very analogous to autonomous
driving



Build your scenarios inside virtual scenes. Parameterize anything with the click of a
button. Scenarios contain the behaviors of the ego vehicle, sensor configurations,
traffic, pedestrians, and more.

http://metamoto.com


http://metamoto.com

Schedule and run simulations across a spectrum of scenarios (e.g. unique edge cases),
systems under test, and then ranges of environmental and hardware parameters. Run
Monte Carlo training and regression testing exercises.

0 metamoto “ metamoto ) metamoto

e

; '
2
4 §
H r
¥

http://metamoto.com



http://metamoto.com

Debug and replay simulations and comprehensively assess how your vehicle software
performed. Dig into your software stack to get to the heart of the matter faster.

http://metamoto.com


http://metamoto.com
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http://paralleldomain.com

More advanced falsification via nonlinear black-box optimization and rare event
simulation.

Scalable End-to-End Autonomous Vehicle
Testing via Rare-event Simulation

NIPS 2018
Search Algorithm | ~=0.14 =046 =018 A= ¥=10.42
Naive (2.0£2.0)e-5 (22.0£6.6)e-5 (82.0+12.8)e-5 (334.4+8.0)e-4  (389.7+8.6)e-4

Cross-entropy (3.2+2.6)e-6 (258 +4.5)-5 (84.6+93)e-5 (3345+8.0e-4 (386.4+8.6)e-4

Table 1: Estimate of rare-event probability p- (non-vision ego policy), with standard deviations

Search Algorithm | ~ = 0.26 v =0.28 ~ = 0.30 ~ = 0.50 v = 0.52

Naive (8.0+4.0)e-3 (8.0£4.0)e-3 (12.0£4.9)e-3 (13.8£1.5)e-2 (15.6£1.6)e-2
Cross-entropy (2.7+2.1)e-3  (5.4+£2.7)e-3  (6.4+2.7)-3 (7.6+1.0)e-2 (8.1£1.0)e-2

Table 2: Estimate of rare-event probability p- (vision-based ego policy), with standard deviations



Nonlinear “black-box” optimization can be applied at scale; finds “rare” events
e E.g. CMA-ES (covariance matrix adaptation evolution strategy)

“Adversarial training” -- by engineers or fine-tuning

But performance bounds are only empirical -- and often weak.

Still requires a sufficiently rich simulation.


https://en.wikipedia.org/wiki/CMA-ES

But how do | achieve robustness to
every mug? every shoe?
in every kitchen?



To achieve robustness, do | need to
simulate the diversity of the world?



Generative Modeling of Environments with Scene Grammars
and Variational Inference

Gregory Izatt and Russ Tedrake
{gizatt, russt}@csail.mit.edu



A 2D Example




Training

Mean Batch log p(t)

Full Model, Test
Full Model, Train

Lesioned Model, Test
Lesioned Model, Train

0 100 200

300

Variance (x)

400

Epoch
Mean (x) P
© 0.2 0.075
X
> 0.050 -
g
8 0.1 A 0.025 -
©
& 0.000

Prior o0 200 400

Prior (')

Optimize an ELBO loss with REINFORCE/ADAM in Pyro.
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Outlier detection
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https://docs.google.com/file/d/1wl1ZzDpUTeG_hJJbUt6nutgMpMa0QfAk/preview
https://docs.google.com/file/d/18XPX-N99_e9G7y_roL4DbISdCpXvOpRd/preview
https://docs.google.com/file/d/1k_jWrAz-ozT9UgzGn5BJRbyCNPKijcGa/preview
https://docs.google.com/file/d/1diIUN0pmoGanXD13sId-9JIt5e1GA9fW/preview

Procedural dishes
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Uncertainty representations

Domain randomization in
In controls (polytopic/ellipsoidal, etc) reinforcement learning
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Developing autonomous
systems in the real world.




Uncertainty representations

Does simultaneous stabilization (or expected value) with richer randomization of
the task/environment somehow make the problem fundamentally easier?

Can we bring robust control formulations closer to what the real world uses to
develop autonomous systems?



More big questions



Can we simulate everything in the kitchen?

Napkins? Ketchup? Soba noodles?

How accurate do our models have to be?

Task requirements
Control authority L 4
+ model fidelity




How do | provide test coverage for every possible kitchen?

Hypothesis: Only need a sufficiently rich
sandbox to deploy

+ continual improvement (fleet learning)




Summary

Optimization brought us today’s “modern control”...
..with strong results for relatively simple forms uncertainty.

Real world uncertainty and “domain randomization” in RL is much richer.
“Black-box” optimization in RL still works.

Dealing with perception and “open-worlds” may cause the next major shift in
controls research; we need the maturity of control to help address fundamental
problems in robustness and sample-complexity.



