
Deployable Robotics (Part II)

Russ Tedrake

Pablo’s billion dollar question: “What will be
the epistemology of deployable ML?”

Verification & Validation
Some vocabulary:

● Desired outcomes described via Requirements/Specifications
● Correctness is the conformance of a system to its specification.
● Verification is the activity of establishing correctness.
● Validation is confirming that satisfying requirements achieved the intended

results/performance.
● The whole bunch together makes can be used to form an “assurance case”,

which is the structured argument that we communicate about a system to
convince a third party.

Example: Safety
case for aircraft
collision avoidance

ACAS II is an airborne avionics
system designed to reduce the
risk of mid-air collision. Its
carriage by a majority of aircraft
within Europe is mandatory.

from Final Report on Studies on the Safety of ACAS II in
Europe [ACAS/ACASA/02-014]

The [encounter] model... from an analysis of
encounters collected during 1998 and 2000 from
European radar data.

The logic risk ratios reported here are computed
assuming that all other aspects of the system
operate as intended: the surveillance of intruders
is perfect, and pilots react to all resolution
advisories (RAs) and with an ideal response.

... using an ‘event tree’: a logical diagram that
combines the relevant factors to calculate a risk of
collision for the whole system. … probabilities for
the base level events were estimated.

The logic risk ratios quoted above (and others
calculated for various non-standard pilot
responses) were combined with the
probabilities of other system events, using the
event tree, to obtain risk ratios relevant to the
operation of the total ACAS system.

How do we build an assurance case for closed-loop
systems with learning/perception/planning in the loop?

Last time

In controls (polytopic/ellipsoidal, etc)
Domain randomization in
reinforcement learning

Developing autonomous
systems in the real world.

Plan trajectories with sequential quadratic programming (SQP)

Invariant sets as a sums-of-squares (SOS) optimization

Lessons from Robust Control

Often criticized: sacrifice performance to guarantee robustness.

Control authority
+ model fidelity

Task requirements

Domain Randomization in RL

https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html

https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html

https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html

https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html

OpenAI Gym vs. ETH ANYmal results

http://www.youtube.com/watch?v=aTDkYFZFWug&t=7

“learned actuator dynamics
effectively reduce the reality
gap, whereas stochastic
modeling guides the policy to
be sufficiently conservative.

The center of mass positions,
the masses of links, and joint
positions were randomized by
adding a noise sampled from
U(−2, 2) cm, U(−15, 15)%, and
U(−2, 2) cm, respectively.”

I think the really interesting question are for
systems with both rich uncertainty + non-trivial
tasks/dynamics

https://docs.google.com/file/d/1twjUVc9ZPJRJNVPK5WaKv1N0G3DovlTK/preview

http://www.youtube.com/watch?v=1RbaIo4VdbA&t=112

Proposed problem formulation:

“Class-general” manipulation.

http://www.youtube.com/watch?v=fm5RZ-ht1y0

kPAM pipeline No template model or pose
appears in this pipeline.

http://www.youtube.com/watch?v=nDRBKb4AGmA

http://www.youtube.com/watch?v=nDRBKb4AGmA&t=124

Includes large neural net for perception (ResNet)

And a recurrent network for
control (LSTM)

https://docs.google.com/file/d/1TNfG8uZwF7BfgYB2VFoczdPlWEuItBG3/preview

Imitation learning

https://docs.google.com/file/d/1BqdJKsKGQ88ZABC99IL5vhxoAAM4zt8g/preview

Requirements/Specifications

In controls (polytopic/ellipsoidal, etc)
Domain randomization in
reinforcement learning

Developing autonomous
systems in the real world.

https://docs.google.com/file/d/1o__oe_tWUXan0ZKNxnL54BVJgY5wroNM/preview

https://docs.google.com/file/d/1T3CpUAVVtXiYWKtSqi2ig4mLGyOwYptb/preview

https://docs.google.com/file/d/18gneDfkeitfEhXt24e-ErSiLIN0k-u3g/preview
https://docs.google.com/file/d/1oix3PulDaypVent2K5OMAmuK4PqmGsVc/preview

https://docs.google.com/file/d/1dDXo2pEFvYF0AhXKuLTkLbKnjBgIsjD2/preview

Monte Carlo falsification

https://docs.google.com/file/d/18V9wNQIAibUepX6Zdssn80dV9s2TP3xZ/preview

Scenario description files

Parameters, initial
conditions, and noise
described as exact values
or distributions

Scenario description files
Success criteria specified as
constraints on systems

Can compose into complex
diagrams, and be used for synthesis

https://drake.mit.edu/doxygen_cxx/classdrake_1_1systems_1_1_system_constraint.html

This seems to be a theme in companies deploying AI…
requirements/specifications are authored as a set of objectives/constraints on a list
of scenarios.

First you find bugs in
your simulator!

Switched to a
motion planning
scheme that’s
less sensitive to
rack initial
position (#2304)

Initial positions of the
unmanipulated racks are
drawn from MC instead of 0
(#2362)

Finding subtle bugs

https://docs.google.com/file/d/1eL7-sreuJ_dPTqgnQomcMDcr1iSJYax3/preview

Finding subtle bugs

https://docs.google.com/file/d/1eL7-sreuJ_dPTqgnQomcMDcr1iSJYax3/preview
https://docs.google.com/file/d/1txa-3KxK50CEZc66h4fHjsy37zjGwIuH/preview

Finding subtle bugs

OK to
place
mug

Start mug load

Stop! Rack
appears closed

Added (calibrated) noise for
rack perception

Falsification algorithms

Increase test
randomness /
scope

Improve
robustness /
fix bugs

naive Monte Carlo has been sufficient (so far)

Sim vs Real

Made simulation tests
more difficult than the

real-world

Procedural dishes

https://docs.google.com/file/d/1wl1ZzDpUTeG_hJJbUt6nutgMpMa0QfAk/preview
https://docs.google.com/file/d/18XPX-N99_e9G7y_roL4DbISdCpXvOpRd/preview
https://docs.google.com/file/d/1k_jWrAz-ozT9UgzGn5BJRbyCNPKijcGa/preview
https://docs.google.com/file/d/1diIUN0pmoGanXD13sId-9JIt5e1GA9fW/preview

Procedural dishes

Very analogous to autonomous
driving

http://metamoto.com

http://metamoto.com

http://metamoto.com

http://metamoto.com

http://metamoto.com

http://metamoto.com

http://paralleldomain.com

http://paralleldomain.com

More advanced falsification via nonlinear black-box optimization and rare event
simulation.

NIPS 2018

Nonlinear “black-box” optimization can be applied at scale; finds “rare” events

● E.g. CMA-ES (covariance matrix adaptation evolution strategy)

“Adversarial training” -- by engineers or fine-tuning

But performance bounds are only empirical -- and often weak.

Still requires a sufficiently rich simulation.

https://en.wikipedia.org/wiki/CMA-ES

But how do I achieve robustness to
every mug? every shoe?

in every kitchen?

To achieve robustness, do I need to
simulate the diversity of the world?

A 2D Example

Training

Optimize an ELBO loss with REINFORCE/ADAM in Pyro.

Outlier detection

Procedural dishes

https://docs.google.com/file/d/1wl1ZzDpUTeG_hJJbUt6nutgMpMa0QfAk/preview
https://docs.google.com/file/d/18XPX-N99_e9G7y_roL4DbISdCpXvOpRd/preview
https://docs.google.com/file/d/1k_jWrAz-ozT9UgzGn5BJRbyCNPKijcGa/preview
https://docs.google.com/file/d/1diIUN0pmoGanXD13sId-9JIt5e1GA9fW/preview

Procedural dishes

Uncertainty representations

In controls (polytopic/ellipsoidal, etc)
Domain randomization in
reinforcement learning

Developing autonomous
systems in the real world.

Abbeel et al.

Uncertainty representations

Does simultaneous stabilization (or expected value) with richer randomization of
the task/environment somehow make the problem fundamentally easier?

Can we bring robust control formulations closer to what the real world uses to
develop autonomous systems?

More big questions

Can we simulate everything in the kitchen?

Napkins? Ketchup? Soba noodles?

How accurate do our models have to be?

Control authority
+ model fidelity

Task requirements

How do I provide test coverage for every possible kitchen?

Hypothesis: Only need a sufficiently rich
sandbox to deploy

+ continual improvement (fleet learning)

Summary
Optimization brought us today’s “modern control”...

..with strong results for relatively simple forms uncertainty.

Real world uncertainty and “domain randomization” in RL is much richer.
“Black-box” optimization in RL still works.

Dealing with perception and “open-worlds” may cause the next major shift in
controls research; we need the maturity of control to help address fundamental
problems in robustness and sample-complexity.

