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Course Logistics

Martin David Constantinos Antonio Arvind Asuman
Rinard Sontag Daskalakis Torralba Satyanarayan Ozdaglar

Ankur Pablo Aleksander Armando Russ
Moitra Parrilo Madry Solar-Lezama Tedrake

Please fill out the form at https://bit.ly/2kwmYé63 (by today)

New meeting time: TR 12pm-1:30pm 11am-12:30pm or 12:30pm-2pm
Prerequisites: Solid knowledge of ML (at the level of 6.867)
Grading: Project [70%] + Scribing [25%] + Class discussion [5%]



What will this class be about?



ML: A Success Story
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At last — a computer program that
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. A Success Story

Trump Signs Executive Order
Promoting Artificial Intelligence

ﬁ Andrew Ng (] Follow
<

“Al is the new electricity!" Electricity

What will it take to be able to

confidently deploy ML in the real-world?
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Question |:
Do we understand our ML toolkit?



(Supervised) Machine Learning

f*: concept to learn

f(0): (parametrized) model class

Training: Recover (approx.) f*
by finding parameters 6* s.t.
f(6*) fits the training data

Choice of family f( ) is crucial
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(Supervised) Machine Learning

f*: concept to learn

N .
] f(0): (parametrized) model class
‘ Training: Recover (approx.) f*
D ~ AN + by finding parameters 6* s.t.
f(6*) fits the training data
+

Choice of family () is crucial

Too simple = under-fitting

Too complex = over-fitting

“Classical” ML has rich theory to understand this phenomenon



IMAGENET
Butthen”. 4?

L STATISTICAL LEARNING \
~ £ -‘

Gentlemen, our learner
overgeneralizes because the
C-Dimension of our Kernel

s too high, Get some
experts and minimze the
structural risk in a new one.
Rework our loss function,
ake the next kernel stable,

nbiased and consider using 3
oft margin

DEEPER MODEL
CAME ALONG

Deep neural networks are very

expressive, why don’t they overtit?



Optimization in Deep Learning

Our true goal: To minimize (wrt 6) the population risk

E . ,exlloss(f(0,x), y)]

What we actually do: Minimize (wrt 0) the empirical risk

D loss(f(6, x), y)

where {(x;,y;)}; are the training data points

— |n case of neural networks, empirical risk is a continuous and
(mostly) differentiable function

— Can use gradient descent method

But why does it work?
(aka back-propagation)! |



Optimization in Deep Learning

D loss(f(6,x), )

— Issue 1: There are a lot of terms in this sum (lots of data)

— Use stochastic gradient descent (SGD) instead of grad. descent

(SGD = the workhorse of deep learning)

— Issue 2: This problem is very non-convex

— Still, we seem to reliably converge to good solutions. Why?

In fact: Stochasticity of SGD seems to be a “feature”, not a

deticiency. (Hypothesis: “Implicit regularization”)



Question |I:
s our current ML robust?



Can we rely on ML?




Can we rely on ML?
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Breaking: Two Explosions in the White
House and Barack Obama is injured
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Can we rely on ML?

AP TheAssociated Press © - [

Breaking: Two Explosions in the White
House and Barack Obama is injured
& Reply T3 Retweet WY Favorite  *ee More
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GOOGLE SELF DRIVING CAR
CRASHES INTO ABUS




A Glimpse Into ML Reliability

ILSVRC top-5 error on ImageNet

30
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7.5

2010 2011 2012 2013 2014 Human  ArXiv 2015

Have we really achieved human-level performance?
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“airliner” (99%)

Al is more brittle than we think

[Szegedy et al 2013] [Biggio et al 2013]

X

(NOT random)

noise

“pig” (91%)



Al is more brittle than we think

[Athalye Engstrom llyas Kwok 2018]



Al is more brittle than we think
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Al is more brittle than we think
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Why should we care?

p Security TR .
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Voice commands that are

unintelligible to humans
[Carlini Wagner 2018]

Glasses that fool face recognition
[Sharif Bhagavatula Bauer Reiter 2016]
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Why should we care?

p Security
p Reliability
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Why should we care?

p Security
» Reliability
p Alignment

Need to understand the “failure modes” of ML



ML pipeline (via adversarial lens)

Data Collection
Training

Inference

Deployment
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ML pipeline (via adversarial lens)

Classified as 7 Classified as 5

Data Collection

Original image Pattern Backdoor

Classified as van Classified as dog

Inference

Dep\oyment Outsourcing training

'

Backdoor attacks




ML pipeline (via adversarial lens)

“pig” (non-random) noise

Data Collection

Training

Inference

“airliner”

Deployment

Adversarial examples




ML pipeline (via adversarial lens)
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Data Collection

Training

Inference
Exposing ML predictions

Deployment i
Model stealing/
Extraction of (training) data




What do we do now?

Problem: Adversarial examples are not at odds with
our current notion of generalization

Maybe time to re-think what we want in generalization?

Again: This is not only about security but also about
understanding how ML/deep learning works (and ftails!)



Question llI:
ls ML ready for being "in the loop”?



Reinforcement Learning (RL)

World

Observation
Reward

Agent

Goal: Maximize the reward

Questions:

What it the agent is a
(deep) neural network?
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« How to train such agent (exploration vs. exploitation)?

* What are the fundamental limits on efficiency of this approach?

* How to ensure that the agent does what we intend it to do?



Question |V
What are the societal impacts of ML?



ML is entering every aspects of our life

e Should we be worried?

e Potential concerns:

— Interpretability (Can we understand ML models?)

— Reliability (Can | trust the prediction ot an ML model?)

— Fairness (Is the ML model behaving in a “tair” way?)
— Privacy (Is the ML model protecting our privacy?)
— Al Safety (If we build a super-human Al, will it destroy us?)

— (Your suggestion here)



Now: Onto Optimization



