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Course Logistics

• Prerequisites: Solid knowledge of ML (at the level of 6.867) 

• Grading: Project [70%] + Scribing [25%] + Class discussion [5%]

Please fill out the form at https://bit.ly/2kwmY63 (by today) 

• New meeting time: TR 12pm-1:30pm 11am-12:30pm or 12:30pm-2pm  
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What will this class be about?



ML: A Success Story



ML: A Success Story

What will it take to be able to 

confidently deploy ML in the real-world?



Question I: 
Do we understand our ML toolkit?



(Supervised) Machine Learning
f*
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Training: Recover (approx.) f* 

by finding parameters !* s.t.  

f(!*) fits the training data

θ
θ

f! : (parametrized) model class(θ)

Choice of family f( ) is crucial 
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Too complex → over-fitting 

“Classical” ML has rich theory to understand this phenomenon

f*: concept to learn

Training: Recover (approx.) f* 

by finding parameters !* s.t.  

f(!*) fits the training data

θ
θ

f! : (parametrized) model class(θ)

Choice of family f( ) is crucial 



Deep neural networks are very 

expressive, why don’t they overfit?

But then…



Optimization in Deep Learning

Our true goal: To minimize (wrt θ) the population risk 
�E(x,y)∈𝒟[loss( f(θ, x), y)]

What we actually do: Minimize (wrt θ) the empirical risk 

� 


	    where {(xi,yi)}i are the training data points

∑
i

loss( f(θ, xi), yi)

→ In case of neural networks, empirical risk is a continuous and 	    

    (mostly) differentiable function
→ Can use gradient descent method

     (aka back-propagation)!

But why does it work?



Optimization in Deep Learning

�∑
i

loss( f(θ, xi), yi)

→ Issue 1: There are a lot of terms in this sum (lots of data)  

→ Issue 2: This problem is very non-convex 
→ Still, we seem to reliably converge to good solutions. Why?

In fact: Stochasticity of SGD seems to be a “feature”, not a 

deficiency. (Hypothesis: “Implicit regularization”)

→ Use stochastic gradient descent (SGD) instead of grad. descent 
 (SGD = the workhorse of deep learning)



Question II: 
Is our current ML robust?



Can we rely on ML?
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Can we rely on ML?



Have we really achieved human-level performance?

A Glimpse Into ML Reliability



AI is more brittle than we think
[Szegedy et al 2013] [Biggio et al 2013]

“pig” (91%) noise (NOT random) “airliner” (99%)

+ 0.005 x =
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AI is more brittle than we think

[Athalye Engstrom Ilyas Kwok 2018]

[Engstrom Tsipras Tran Schmidt M 2018] 



Why should we care?
‣ Security 

‣

Glasses that fool face recognition

[Sharif Bhagavatula Bauer Reiter 2016]

Voice commands that are 

unintelligible to humans


[Carlini Wagner 2018]
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Why should we care?
‣ Security 

‣ Reliability 

‣ Alignment

Need to understand the “failure modes” of ML



ML pipeline (via adversarial lens)

Data Collection

Training

Deployment

Inference
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Data Collection

Training

Deployment

Inference

Classified as 7 Classified as 5

Outsourcing training

Backdoor attacks

ML pipeline (via adversarial lens)

Classified as van Classified as dog



Data Collection

Training

Deployment

Inference

“pig” (non-random) noise

+

“airliner”

Adversarial examples

ML pipeline (via adversarial lens)



Data Collection

Training

Deployment

Inference
Exposing ML predictions

Model stealing/ 
Extraction of (training) data

ML pipeline (via adversarial lens)



Problem: Adversarial examples are not at odds with 
our current notion of generalization 

Maybe time to re-think what we want in generalization?  

Again: This is not only about security but also about 
understanding how ML/deep learning works (and fails!)

What do we do now?



Question III: 
Is ML ready for being ”in the loop”?



Reinforcement Learning (RL)

What if the agent is a 
(deep) neural network?

Questions:  
• How to train such agent (exploration vs. exploitation)? 

• What are the fundamental limits on efficiency of this approach? 

• How to ensure that the agent does what we intend it to do?

Goal: Maximize the reward



Question IV: 
What are the societal impacts of ML?



ML is entering every aspects of our life

• Should we be worried? 

• Potential concerns: 

 → Interpretability (Can we understand ML models?) 

 → Reliability (Can I trust the prediction of an ML model?) 

 → Fairness (Is the ML model behaving in a “fair” way?) 

 → Privacy (Is the ML model protecting our privacy?) 

 → AI Safety (If we build a super-human AI, will it destroy us?) 

 → (Your suggestion here)



Now: Onto Optimization


