6.S979: Topics in Deployable ML

Martin Rinard

David Sontag

Constantinos Daskalakis

Antonio Torralba

Arvind Satyanarayan

Asuman Ozdaglar

Ankur Moitra

Pablo Parrilo

Aleksander Madry

Armando Solar-Lezama

Russ Tedrake

Course Logistics

Martin Rinard

David Sontag

Asuman 1 Ozdaglar

Constantinos / Daskalakis

Antonio Torralba

Arvind A Satyanarayan O

Moitra

Pablo

Aleksander Madry

Russ Tedrake

Parrilo Madry Solar-Lezama Tedrake

Please fill out the form at https://bit.ly/2kwmY63 (by today)

- New meeting time: TR 12pm-1:30pm 11am-12:30pm or 12:30pm-2pm
- Prerequisites: Solid knowledge of ML (at the level of 6.867)
- **Grading:** Project [70%] + Scribing [25%] + Class discussion [5%]

What will this class be about?

ML: A Success Story

LEE SEDOL 00:01:00

> ONGBIRDS LA CARTE

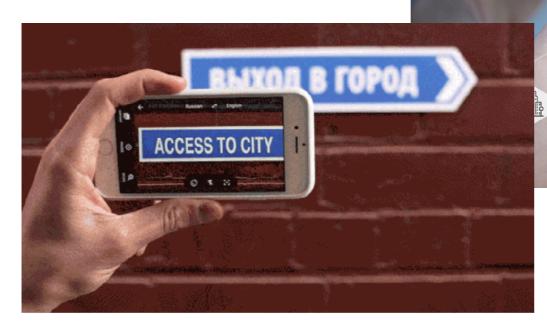
0

At last – a computer program that can beat a champion Go player PAGE 484

ALL SYSTEMS GO

SAFEGUARD WHEN GENES TRANSPARENCY GOT 'SELFISH'

ImageNet Large Scale Visual Recognition Chal AlphaGo



ML: A Success Story

Andrew Ng 📀

"Al is the new electricity!" Electricity

Trump Signs Executive Order Promoting Artificial Intelligence

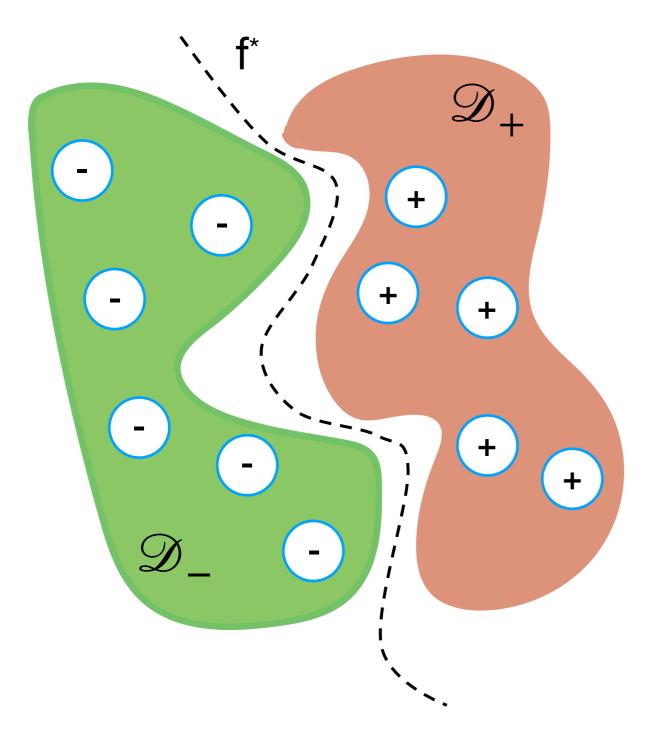
Follow

What will it take to be able to

confidently deploy ML in the real-world?

Question I: Do we understand our ML toolkit?

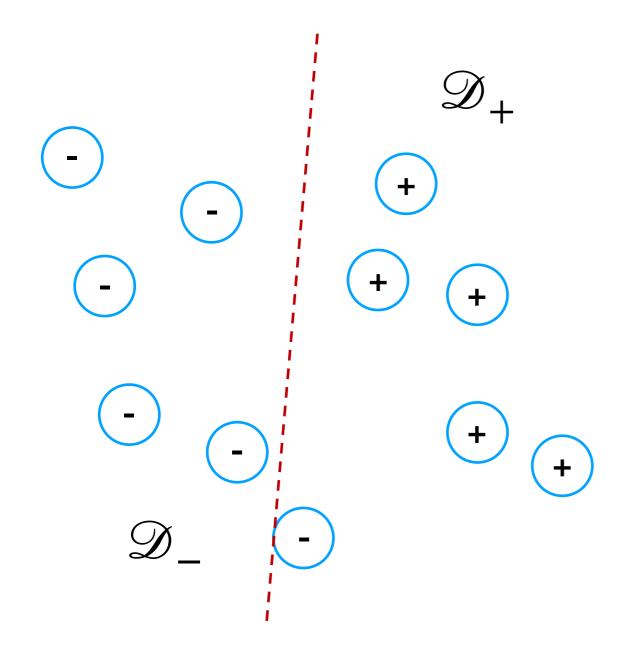
(Supervised) Machine Learning



f*: concept to learn
f(θ): (parametrized) model class
Training: Recover (approx.) f*
by finding parameters θ* s.t.
f(θ*) fits the training data

Choice of family f() is crucial

(Supervised) Machine Learning

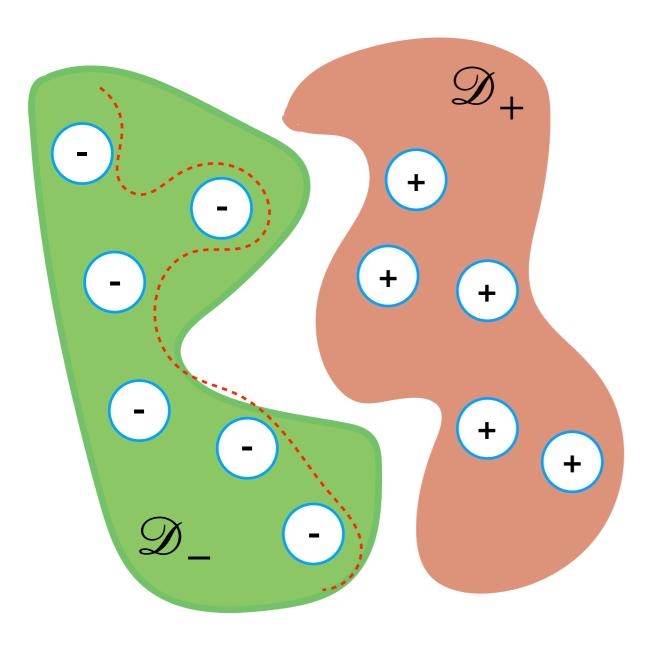


f*: concept to learn
f(θ): (parametrized) model class
Training: Recover (approx.) f*
by finding parameters θ* s.t.
f(θ*) fits the training data

Choice of family f() is crucial

Too simple → under-fitting

(Supervised) Machine Learning



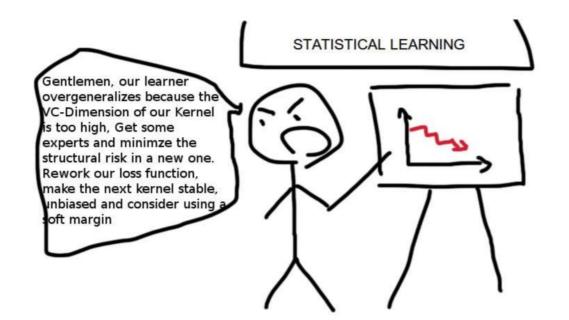
f*: concept to learn
f(θ): (parametrized) model class
Training: Recover (approx.) f*
by finding parameters θ* s.t.
f(θ*) fits the training data

Choice of family f() is crucial

Too simple \rightarrow under-fitting Too complex \rightarrow over-fitting

"Classical" ML has rich theory to understand this phenomenon

But then...



Deep neural networks are **very** expressive, why don't they overfit?

Optimization in Deep Learning

Our true goal: To minimize (wrt θ) the **population risk** $E_{(x,y)\in \mathscr{D}}[\mathbf{loss}(f(\theta, x), y)]$

What we actually do: Minimize (wrt θ) the empirical risk

$$\sum_{i} \mathsf{loss}(f(\theta, x_i), y_i)$$

where $\{(x_i, y_i)\}_i$ are the training data points

→ In case of neural networks, empirical risk is a continuous and (mostly) differentiable function

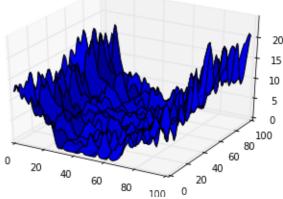
→ Can use gradient descent method (aka back-propagation)! But why does it work?

θο

Optimization in Deep Learning

$$\sum_{i} loss(f(\theta, x_i), y_i)$$

- → Issue 1: There are a lot of terms in this sum (lots of data)
- → Use **stochastic** gradient descent (SGD) instead of grad. descent (SGD = the workhorse of deep learning)
- → Issue 2: This problem is very non-convex

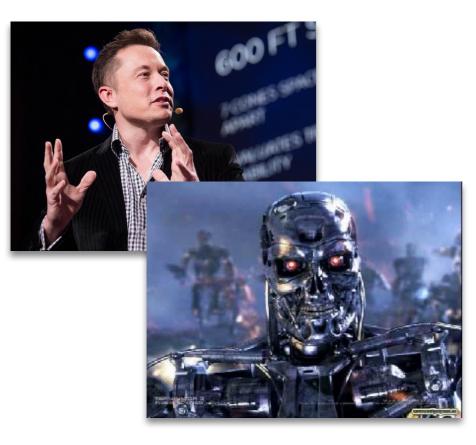


→ Still, we seem to reliably converge to good solutions. Why?

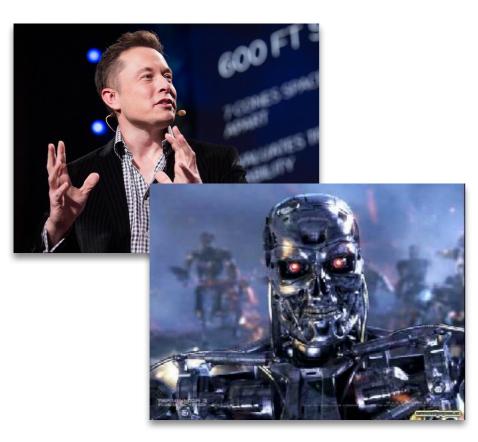
In fact: Stochasticity of SGD seems to be a "feature", not a deficiency. (Hypothesis: "Implicit regularization")

Question II: Is our current ML robust?

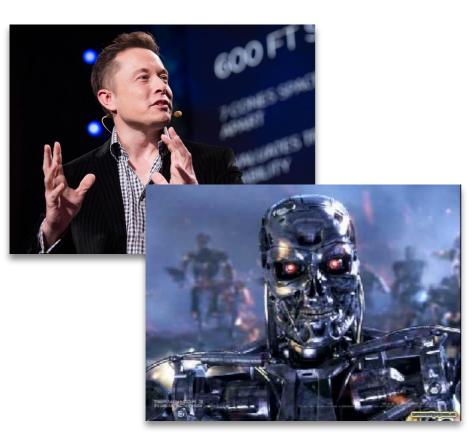
Can we rely on ML?



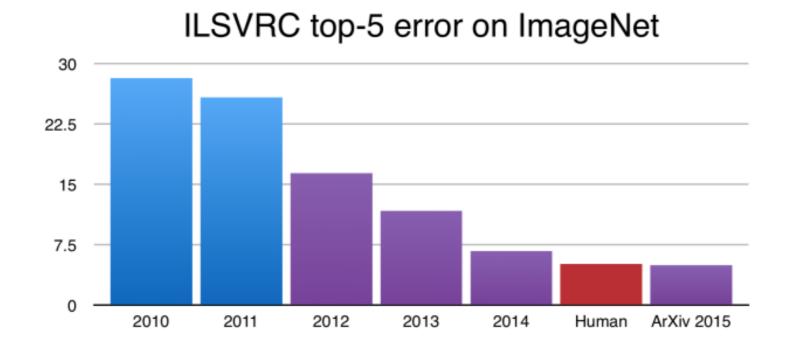
Can we rely on ML?



Can we rely on ML?

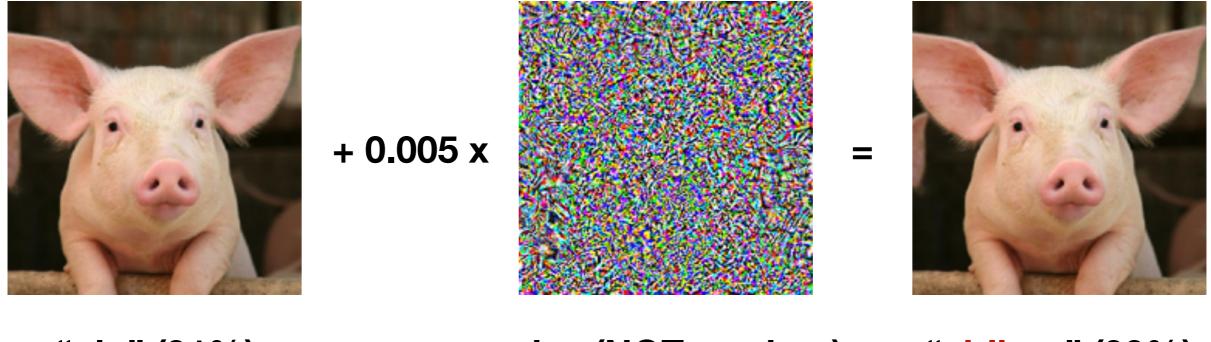


A Glimpse Into ML Reliability



Have we really achieved human-level performance?

[Szegedy et al 2013] [Biggio et al 2013]

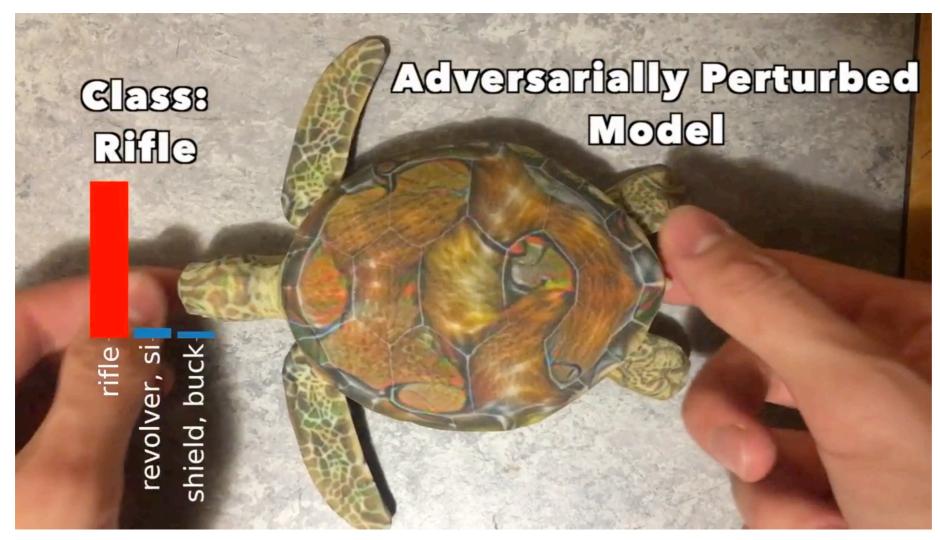


"pig" (91%)

noise (NOT random)

"airliner" (99%)

[Athalye Engstrom Ilyas Kwok 2018]



[Athalye Engstrom Ilyas Kwok 2018]

0.2

0.0·

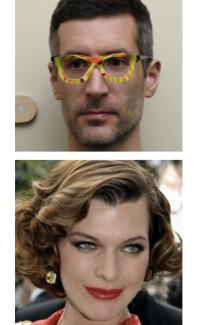
assault i

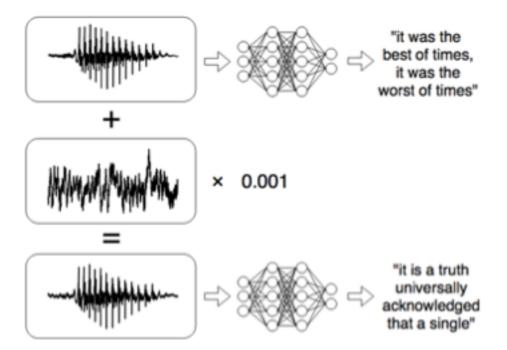
plow, plou

[Athalye Engstrom Ilyas Kwok 2018]

[Engstrom Tsipras Tran Schmidt M 2018]

Security



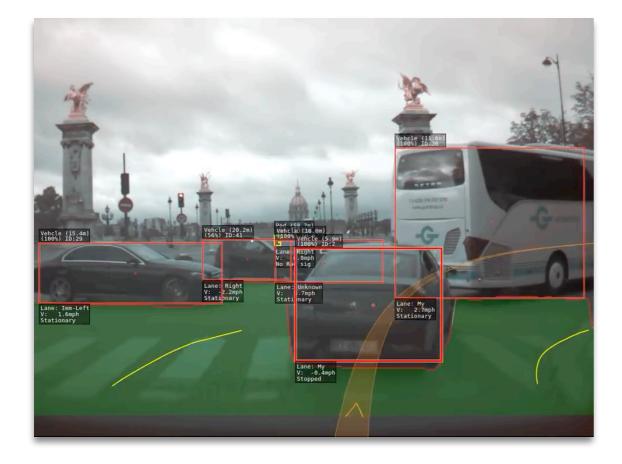


Voice commands that are unintelligible to humans [Carlini Wagner 2018]

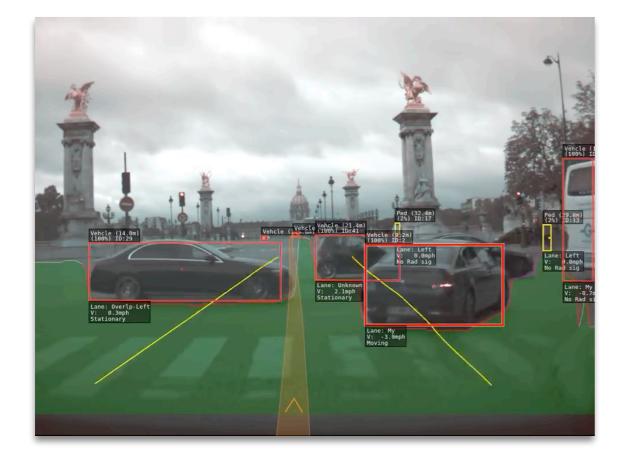
Glasses that fool face recognition [Sharif Bhagavatula Bauer Reiter 2016]

- Security
- Reliability

SecurityReliability

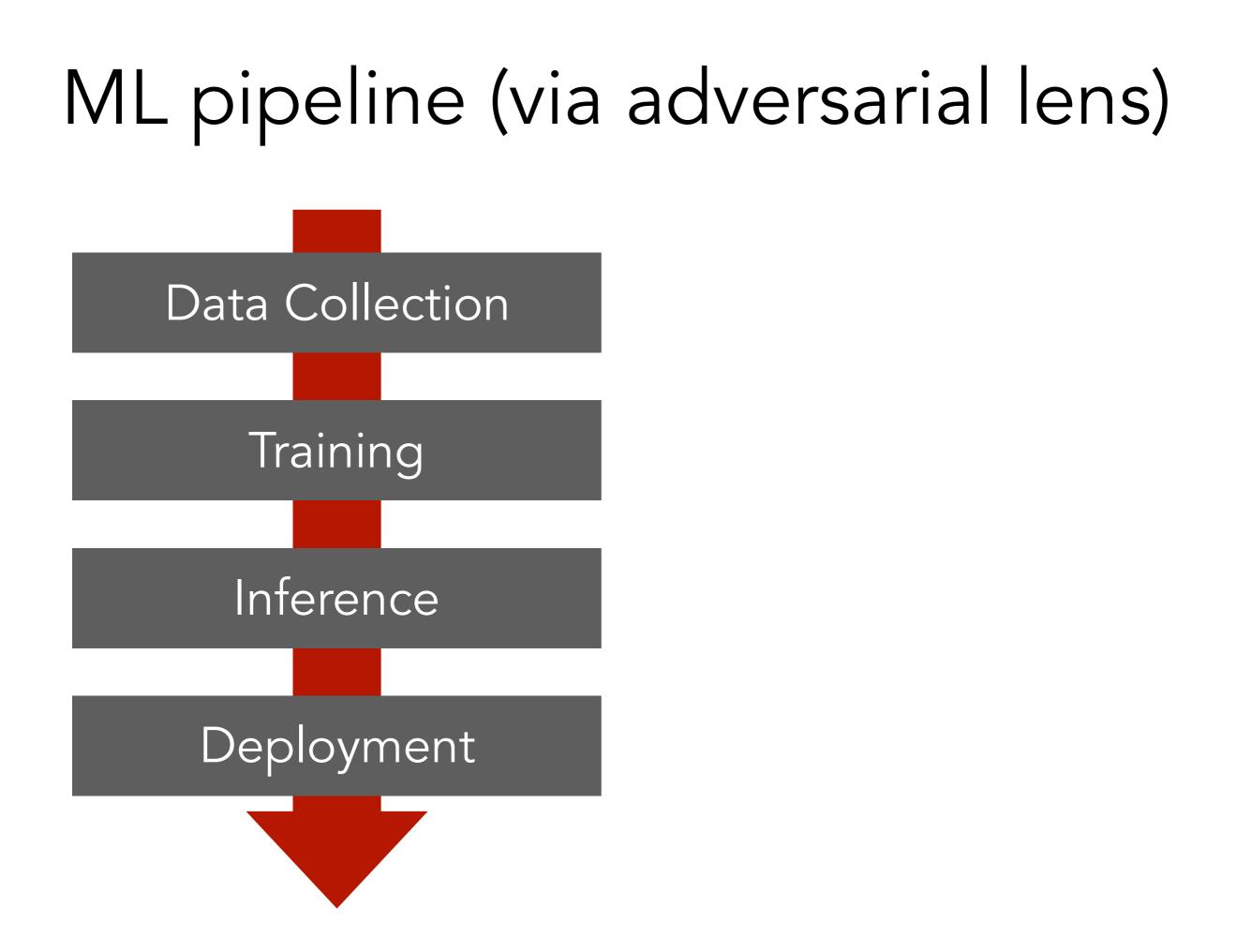


SecurityReliability



- Security
- Reliability
- Alignment

Need to understand the "failure modes" of ML

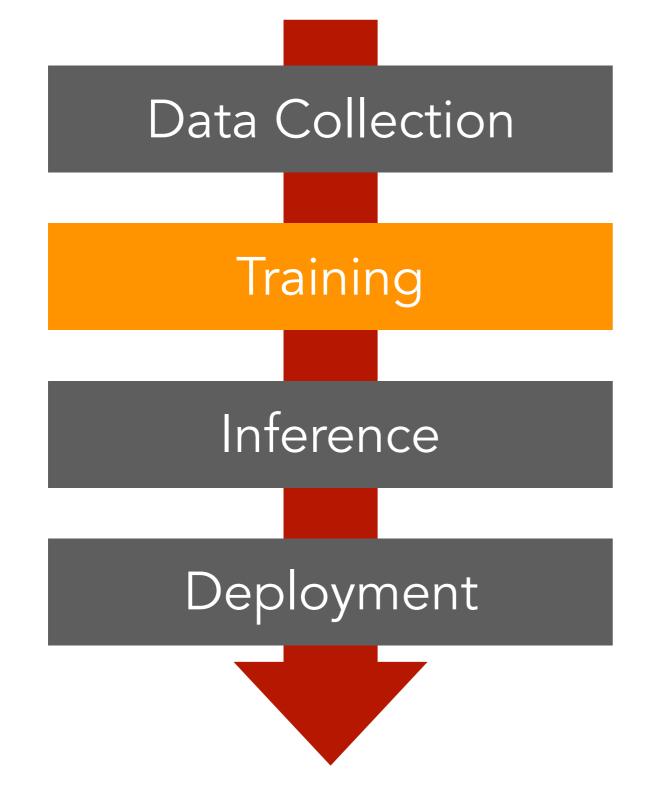


ML pipeline (via adversarial lens) Untrusted data sources **Data Collection** Training Inference Cat Dog Deployment Data poisoning

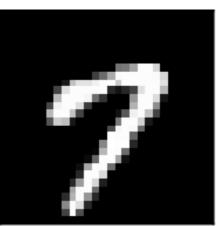
ML pipeline (via adversarial lens) Untrusted data sources **Data Collection** Training Inference Cat Dog Deployment

Data poisoning

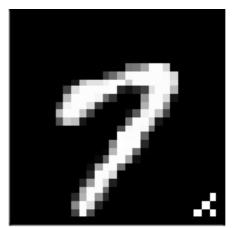
ML pipeline (via adversarial lens)



Classified as 7



Classified as 5



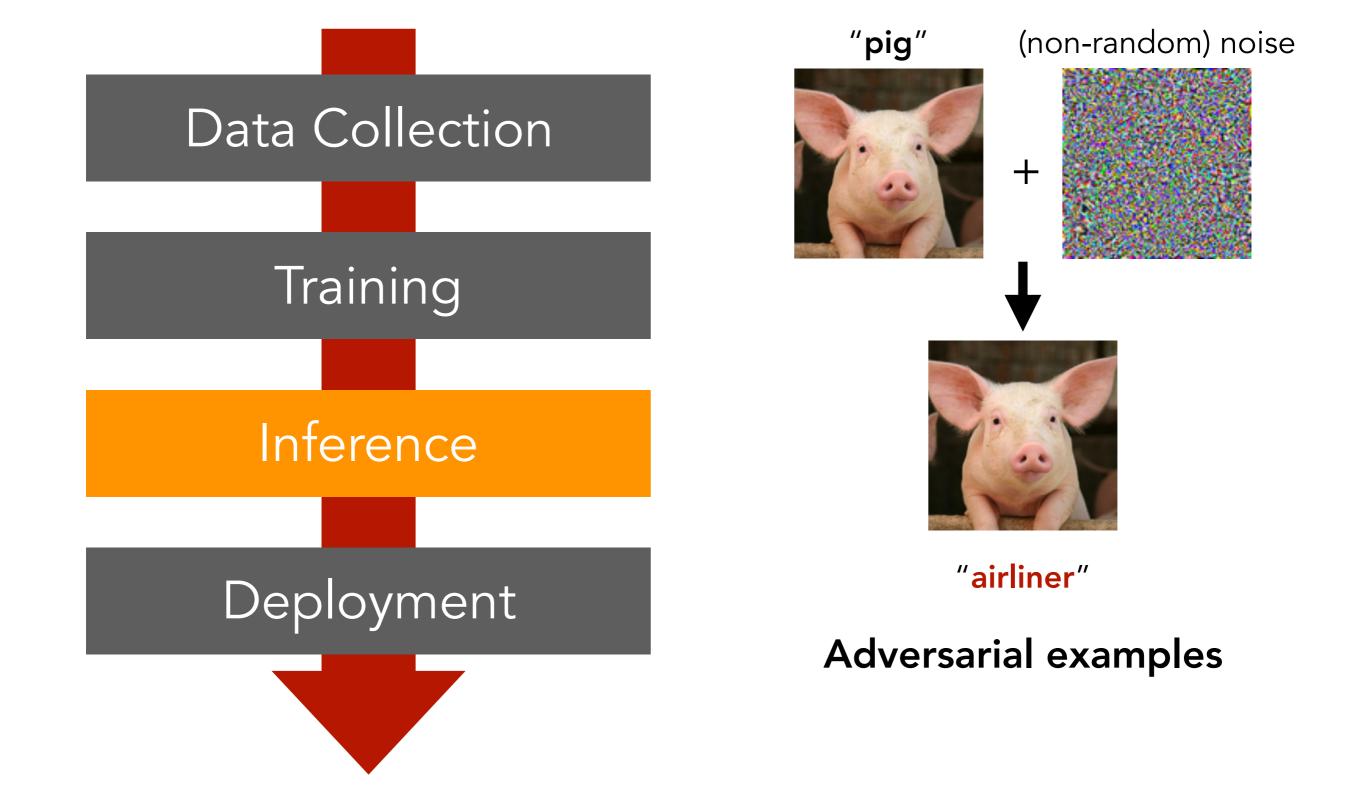
Original image

Pattern Backdoor

Classified as van Classified as dog

Outsourcing training Backdoor attacks

ML pipeline (via adversarial lens)



ML pipeline (via adversarial lens)

What do we do now?

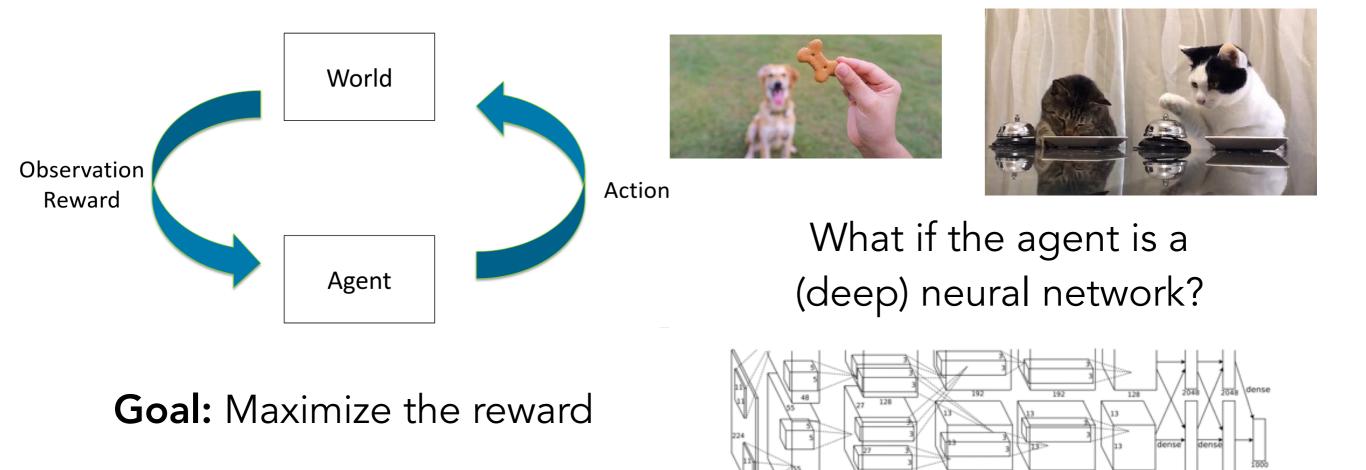
Problem: Adversarial examples are not at odds with our current notion of generalization

Maybe time to re-think what we want in generalization?

Again: This is not only about security but also about understanding how ML/deep learning works (and fails!)

Question III: Is ML ready for being "in the loop"?

Reinforcement Learning (RL)



pooling

Questions:

- How to train such agent (exploration vs. exploitation)?
- What are the fundamental limits on efficiency of this approach?
- How to ensure that the agent does what we intend it to do?

Question IV: What are the societal impacts of ML?

ML is entering every aspects of our life

- Should we be worried?
- Potential concerns:
 - → Interpretability (Can we understand ML models?)
 - → Reliability (Can I trust the prediction of an ML model?)
 - → Fairness (Is the ML model behaving in a "fair" way?)
 - → Privacy (Is the ML model protecting our privacy?)
 - \rightarrow AI Safety (If we build a super-human AI, will it destroy us?)
 - → (Your suggestion here)

Now: Onto Optimization