
6.S979 Topics in Deployable ML – Fall 2019 September 10, 2019

Lecture 2: Continuous Optimization in Deep Learning
Lecturer: Aleksander Mądry Scribes: Scott Foster, Luke Kulik, Kevin Li

(Revised by Andrew Ilyas and Dimitris Tsipras)

1 Introduction
In the previous lecture, we covered gradient descent methods. An iterative approach to solving un-
constrained minimization problem whose update step ∆t, derived from a locally linearization of the
(β-smooth) function f ended up being:

∆t := arg min
∆

∇f
(
xt
)>

∆ +
1

2
β‖∆‖2 = − 1

β
∇f

(
xt
)
,

and our next iterate became:
xt+1 := xt + ∆t.

We have also shown that, once the function f is also α-strongly convex, for some α > 0 then, we
have that, for any ε > 0,

f(xT )− f(x∗) ≤ ε,

once
T = C ·

(
β

α
log

R

ε

)
= C ·

(
κ log

R

ε

)
, (1)

for some constant C > 0. Here, the quantity κ := β/α is called the condition number of f . It can be
viewed as a reflection of the “badness” of the (Euclidean) geometry of f .

In particular, if f is twice differentiable everywhere (which we assumed here), the values of α and β
correspond to the bounds on the smallest and largest eigenvalues of the Hessian. That is,

α = inf
x
λmin(∇2f(x)) and β = sup

x
λmax(∇2f(x)) (2)

Now, to get some intuition regarding why this condition number is important one should note that
when κ = 1 (i.e., when f is quadratic), the gradient point directly in the direction of the minimizer.
Conversely, when κ is large, the gradient direction does not correlate well with the direction towards
minimum. As a result, the optimization path tends to slowly zig-zag toward the minimizer. See the
figures below.

1



1.1 Momentum Gradient Descent
So, we see that the dependence of the convergence of our algorithm on the condition number κ is, in
some sense, inevitable. But does this dependence have to be linear?

One can show that, in the worst-case, it will be linear for the gradient descent algorithm we considered.
But maybe there is a different variant of this algorithm that does better?

Indeed! There is. The family of algorithms to consider here is called momentum gradient descent
methods. These algorithms attempt to overcome the zig-zagging problem we alluded to above by working
with the following dynamics:

vt+1 = γvt − η∇f(xt)

xt+1 = xt + vt+1
(3)

One can view this dynamics as corresponding to a physical system of heavy ball with friction. Specifically,
here, v is the velocity of the ball, γ < 1 is the friction parameter and the gradient corresponds to the
applied force. The intuition why this kind of dynamics might be helpful is that zig-zagging along the
directions orthogonal to the direction of the minimum point will cancel out, and the velocity will instead
build up in the desired direction of the minimum.

Indeed, one can show that a certain “predictive” variant of this dynamics, known as Nesterov’s
momentum variant of gradient descent, given by

vt+1 = γtv
t − ηt∇f(xt + γtv

t)

xt+1 = xt + vt+1,
(4)

with a very specific way of setting γt and ηt, can be formally analyzed and shown to achieve ε-optimality
in only

T = O

(√
κ log

R

ε

)
steps. (5)

Also, one can show that if the interaction with f is restricted to its gradients only (so-called first order
optimization model), then the square root dependence on κ is the best asymptotically possible bound
(in the worst case).

2 Generalized gradient descent
In machine learning applications, we typically are able to learn more about f than its gradient—can
we use this extra information to achieve better bounds? Recall that the above analysis relied on the
sandwiching inequality

1

2
α‖∆‖2 ≤ ςx(∆) ≤ 1

2
β‖∆‖2, for all x and ∆. (6)

2



The norm used in the above equation so far was, naturally, assumed to be an Euclidean norm. However,
it does not have to be! We can change the norm ‖ · ‖ so that, in effect, the constants α and β are
improved. And what we will get in this way is so-called general gradient descent method.

There is many norm choices we might consider here. But the one family of norms that will be most
useful to us will be so-called A-norm ‖ · ‖A specified by some positive definite matrix A � 0 and defined
as

‖v‖A := vᵀAv.

Note that if A is an identity matrix, this corresponds directly to the Euclidean norm.
Now, in analogy to the “standard” gradient descent setup, we minimize the objective

minimize
∆

ϕx(∆) + β‖∆‖2A. (7)

Note the solution to (7) is given by

1

β
A−1∇f(x) = arg min

∆
ϕx(∆) +

1

2
β‖∆‖2A. (8)

So, it is not necessarily corresponding to moving in the direction of the actual gradient.
The right choice of A will be helpful as it can “rescale” the ellipsoidal level sets of f (i.e., which

correspond to large κ) to make them much “rounder” and thus enable more rapid convergence. (Although
at the cost of having to compute the inverse of A, or solving a linear system in it each time we take a
step.)

Now, one could wonder what is the “best” choice of A. This choice, in a sense, turns out to be taking
A to be the Hessian ∇2f(x) of our function at the point x. (Note that it means this might be a different
norm at different points!) This choice is motivated by noticing that if ∆ is “not too big” we have that

%x(∆) /
1

2
∆ᵀ∇2f(x)∆ ≈ 1

2
‖∆‖2∇2f(x). (9)

So, the (local) condition number here is close to 1 and thus being best possible.
The resulting algorithm is known as Newton’s method and its update rule ends up being

xt+1 = xt − η∇2f(x)−1∆f(x). (10)

Here, the step size η have to be chosen carefully to address the requirement that ∆ needs to be “not too
big”. In general, analyzing the convergence of such methods turns out to be tricky (also, because of the
norm potentially changing in each iteration) and is beyond the scope of this class. But it can lead to
significant speed ups. Unfortunately, this comes at a price of the need to invert the Hessian (or rather
solve linear system in it), which tends to be computationally expensive (and also might require too much
space to even store the Hessian explicitly). This is particularly relevant in deep learning context.

2.1 Quasi-Newton methods
The idea behind so-called quasi-Newton methods is to try to strike a compromise between the benefit
of being able to improve the geometry of the problem via rescaling and the computation time/space
constraints. The basic idea is to use the update rule

xt+1 = xt − ηH−1
t ∇f(x) (11)

for a sequence of matrices Ht � 0 that approximates the Hessian (c.f. (10)) in some way.
We discuss two choices of approximations, the BFGS (as well as its variant L-BFGS) and the

AdaGrad algorithm.

3



2.2 BFGS method
In the BFGS method we aim to approximate in certain sense the inverse of the Hessian. Specifically,
we start with a “trivial” guess for the inverse of the Hessian: the identity matrix, i.e., B0 = I. Then, in
each step, we refine this guess by updating it based on the new “information” we got about the Hessian.
(Note that, importantly, we make an implicit assumption here that Hessians at different point are the
same/close to each other.)

Note that the inverse Hessian and thus our guess for it Bt at time t, has to satisfy a number of
simple conditions. First of all, it has to be positive definite, i.e., Bt � 0. Secondly, if we observe how
the gradients change between two consecutive points, it has to “explain” this change. That is, we need
to have that

Btyt = st (12)

where st = xt − xt−1 and yt = ∇f(xt)−∇f(xt−1).
This constraints restrict the choice of Bt but do not uniquely define it. To this end, we settle on a

choice of Bt that satisfies these constraints and is “minimal” in the sense of its similarity to our previous
estimate Bt−1. Specifically, we take it to be

Bt = min
B
‖B −Bt−1‖F subject to Btyt = st and Bt � 0 (13)

where ‖ · ‖F is the Frobenius norm.
Once again, the implicit assumption in this algorithm is that the Hessian is globally constant; indeed,

it is possible to show that BFGS accelerates the optimization of quadratic functions. This is clearly not
true in applications, yet this method works well in practice (sometimes).

In high dimensional problems, even storing the Hessian is not really feasible though. So, a simplified
version of the BFGS method, known as L-BFGS (“limited memory” BFGS) is a variant where (13) is
replaced with

Bt+1 = min
B
‖B − I‖F subject to Btyt = st and Bt � 0, (14)

i.e., we assume always that Bt−1 is just an identity matrix. The L-BFGS heuristic is also successfully
used in practice, even though its theoretical motivation seems to be much weaker.

3 AdaGrad
The final algorithm we consider is the AdaGrad algorithm, which is derived using the so-called online
convex optimization (or online learning) framework. In this framework, one considers the following
iterative online prediction game:

• For each t = 1, . . . , T :

1. output a choice xt;

2. learn a “penalty” function ft and incur penalty ft(xt) corresponding to your choice.

The goal of this game is to choose a sequence of choices so that to minimize the sum of all the corre-
sponding penalties

∑T
t=1 ft(xt).

Of course, since the penalty function ft is revealed only after the choice xt was made, the resulting
penalty can be arbitrary large. So, there is no hope one would be able to provide any non-trivial
guarantees for a given strategy of making the choices in absolute terms. Still, it turns out that there is
a useful measure of relative performance: the regret, which is defined as

R(T ) :=
∑
t

ft(xt)−min
x

∑
t

ft(x). (15)

That is, R is the difference between the penalty of our algorithm against a hypothetical algorithm which
knows the sequence {ft} in advance but is restricted to choosing a single choice x∗ in each one of the
rounds.

4



Note that minimizing R(T ) with f1 = · · · = fT , f := fT , amounts to finding a minimum of f . In
particular, if R(T ) is sub-linear, i.e., R(T ) ∈ o(T ), then xt is making progress towards the minimum:

R(T ) ∈ o(T ) =⇒ 1

T

∑
t

f(xt)− f(x∗)→ 0, where f(x∗) = min f(x). (16)

Follow the regularized leader. One algorithm that achieves sublinear regret is the regularized follow
the leader algorithm, defined by always playing

xt := arg min
x

[
η

t−1∑
s=1

fs(x) + ‖x‖2
]
, (17)

and taking x0 = 0.
For appropriate choices of the parameter η, we can show that

R(T ) ≤ O
(
‖x∗ − x0‖

√∑
‖∇ft(xt)‖

)
∈ o(T ), (18)

as required.

The AdaGrad algorithm. Now, in analogy to what we did above, we could make this algorithm
be tuned to the geometry of the problem by introducing a different (to Euclidean) norm ‖ · ‖Ht in each
step. Specifically, we could have

xt := arg min
x

[
η

t−1∑
s=1

fs(x) + ‖x‖2Ht

]
in which case R(T ) ≤ O

(
‖x∗ − x0‖

√∑
‖∇ft(xt)‖Ht

)
. (19)

It turns out that we can achieve the tighter bound

R(T ) ≤ min
H�0

O

(
‖x∗ − x0‖

√∑
‖∇ft(xt)‖H

)
, the minimum over positive definite H (20)

if we set Ht to the square-root of the empirical covariance matrix

Ht =

(t−1∑
s=1

∇fs(xs)∇fs(xs)T
)1/2

. (21)

This latter choice is the AdaGrad algorithm. In machine learning, the covariance matrix may be too
large to fit inside memory, so another choice is to use the only the diagonal entries

H̃t =

(
t−1∑
s=1

diagHt

)1/2

. (22)

One benefit of (21) (and also (22)) is that it allows different coordinates of x to have different
learning rates. Specifically, the learning rate for each parameter depends upon how large the magnitude
of gradients along that parameter dimension has been in the previous iterations. For each parameter
dimension, AdaGrad accumulates (as a vector r the square of magnitudes of gradient g along that
dimension in all the previous iterations (ri+1 ← ri + g2

i ) and divides the learning rate by square root of
ri along each dimension. The resulting update step can then be written as:

θ(t+1) = θ(t) − η diag

(
t−1∑
τ=1

gτg
>
τ

)−1/2

gt where gτ = ∇(τ)f(θτ ), gradient collected at time τ (23)

As such, AdaGrad heavily reduces the learning rate for parameters that have too large oscillations
(as indicated by high-magnitude gradients), and has much less of an effect on the learning rate for
parameters that do not contribute much to the oscillations (i.e. whose gradient magnitude decreases).

5



This feature is especially useful in cases coordinates of the data set have different rates of occurrence.
Consider a natural language setting where

x = (binary vector of 0’s and 1’s)v∈V (24)

with one word v for every word in the vocabulary V . If v is a common word, then there will be many
1’s in the vth column (e.g., ‘and ’) which may not be very informative; on the other hand, a less common
word w may be very informative (e.g., ‘solipsism’). A different learning rate for every coordinate allows
us to “slow down” the not very helpful learning on the vth coordinate without hampering the helpful
learning on the wth one.

3.1 RMSProp Algorithms
In the above, ri is an accumulator of non-negative terms (magnitudes), and hence always increases. As a
result, the learning rates for all the parameters decrease, and may in fact vanish (become infinitesimally
small). If the learning rate vanishes too quickly, AdaGrad will not be able to learn a value for the
parameter and it will remain fixed and far from the optimum. (Note that such a concern only arises
because of the non-convex nature of training deep neural networks—in the convex case, AdaGrad is
proven to converge.) The RMSProp algorithm1 was designed as an attempt to circumvent this issue.

Rather than using an accumulator of the squared gradients, RMSProp uses weighted sum of square
magnitudes of gradients, where the weights exponentially decay (with rate ρ, a hyperparameter) over
time. Thus, gradients of more recent iterations are assigned more weight than those in earlier iterations.

Intuitively, one can think of RMSProp as directly addressing the non-convexity of the training land-
scape. In particular, one might imagine that the steepness/shallowness of this landscape may change
along the trajectory from initialization to final weights. By assigning more weight to recent gradient
magnitudes, one can view RMSProp as implementing AdaGrad “locally," i.e. according to the current
shape of the landscape. This view may help to explain why RMSProp tends to outperform AdaGrad in
practice. Concretely, the update step implemented by RMSProp is as follows:

θ(t+1) = θ(t) − η diag

(
t−1∑
τ=1

ρt−τgτg
>
τ

)−1/2

gt,

with gτ being defined as in (23) and ρ < 1 being a user-defined hyperparameter.

3.2 Adaptive Moment Estimate Adam
The Adam [KB14] method, short for “ADAptive Moment” estimation, is a combination of ideas from
RMSProp and Nesterov’s momentum. The motivation is similar to that of AdaGrad and RMSProp ,
i.e. reducing the learning rate along dimensions contributing to high oscillation by taking into account
historical gradient magnitude. Adam combines this idea with momentum by exponentially-weighted
averaging both the first and second “moments" (the gradient gt and its outer product gtg>t , respectively).
The algorithm also introduces “bias correction terms” 1−βt1 and 1−βt2, which are meant to counteract the
fact that we initialize the average squared magnitude as r = 0. It turns out that this simple unification
of RMSProp /AdaGrad is highly effective in many settings—since its inception Adam has attained
widespread popularity (the original paper has 6000+ citations).

Despite this, Adam is still somewhat poorly understood from an optimization perspective. The
original paper provides “recommended hyperparameters" that are not theoretically justified but seem to
work well in practice on a wide variety of tasks. Furthermore, though the original paper presented a proof
of convergence for convex functions, the proof was later shown to be incorrect, and a counterexample of
convergence was recently published [RKK18] for a simple convex problem.

In fact, we still lack conclusive evidence that Adam provides significant benefit over stochastic gra-
dient descent in a general sense (although it has been empirically shown to help in many specific cases).

1Interestingly, the RMSProp algorithm was never published—it was originally described by Geoff Hinton in a Coursera
lecture.

6



Figure 1: The Adaptive Moment (Adam) algorithm for first-order optimization.

References
[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. CoRR,

abs/1412.6980, 2014.

[RKK18] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the Convergence of Adam and Beyond.
In International Conference on Learning Representations, 2018.

7


	Introduction
	Momentum Gradient Descent

	Generalized gradient descent
	Quasi-Newton methods
	BFGS method

	AdaGrad
	RMSProp Algorithms
	Adaptive Moment Estimate Adam 


